¹⁷⁴Au α decay (139 ms) 2004GoZZ,2002Ro17,1983Sc24

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁴Au: E=0.0; J^{π} =(3⁻); $T_{1/2}$ =139 ms 3; Q(α)=6699 7; % α decay=90 6

 174 Au-T_{1/2}: from 2002Ro17 based on 6540 α (t). Other: 120 ms 20 (1983Sc24, 6530 α and 1984ScZQ, 6546 α).

¹⁷⁴Au-J^{π}: is unmeasured. A weak argument can be made for 3⁻ for the low spin isomer of ¹⁷⁴Au, based on HF<4 for α feeding to possibly (3⁻) ¹⁷⁰Ir, assuming the 6547 α is a g.s. to g.s. transition. However, please see comment on 'J^{π}(¹⁷⁴Au) parent' In ¹⁷⁴Au α decay (162.9 ms). Note that the α branch with lowest HF In (2⁻) ¹⁷⁸Tl α decay does not feed this level In ¹⁷⁴Au, so it is reasonable to suppose its structure differs from that of ¹⁷⁸Tl(g.s.).

¹⁷⁴Au- $\%\alpha$ decay: from 2002Ro17, based on observation of 1131⁻¹⁷⁸Tl-to-¹⁷⁴Au correlated decays and 82 ¹⁷⁸Tl-to-¹⁷⁴Pt decays, and assuming $\%\alpha(^{174}Pt)=67.6$ ($\%\alpha(^{174}Pt)=76.8$, adopted In the evaluation by 2002Ba93, does not significantly affect this conclusion).

2004GoZZ: ¹⁷⁴Au source from ⁹²Mo(⁸⁴Sr,pn), E=390, 395 MeV; 98.27% ⁹²Mo target; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured E α , I α , E γ , I γ , I(K x ray), recoil- α - γ coin, α (t), parent-daughter α correlations. Supersedes 2001KoZY.

2002Ro17: ¹⁷⁴Au produced by α decay of ¹⁷⁸Tl; Si strip detector; measured E α , parent-daughter α correlations, T_{1/2} for parent and daughter, $\%\alpha$ for ¹⁷⁴Au.

1983Sc24: ¹⁷⁴Au was identified from spectroscopy of α emitters produced in ⁹²Mo bombardments of Rb through Mo targets; measured E α with semiconductor detectors. Other: 1984ScZQ.

See comments and tabulation of data for both 174 Au isomer decays In 174 Au α decay (162.9 ms).

¹⁷⁰Ir Levels

E(level)	J^{π}	Comments
0	(3 ⁻)	 J^π: from Adopted Levels. E(level): the possibility that this is not the ¹⁷⁰Ir g.s. but, instead, a low-spin excited state, cannot be entirely ruled out.

	1		
N	rad	ı afı	ong
u	1 au	iau	ons

Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
6547 5	0	100	3.8 3	Eα: from 2004GoZZ; uncertainty from text, p. 119. Others: 6540 35 (2002Ro17), 6546 10 (1984ScZQ). 6530 20 (1983Sc24) could be attributed to either isomer of ¹⁷⁴ Au based on Eα, but absence In 1983Sc24 of known stronger lines from high-spin ¹⁷⁴ Au decay favors attribution to low-spin ¹⁷⁴ Au. The adopted Eα would imply Q(α)=6701 5 were this a g.s. to g.s. transition. Eα: correlated with 6704α from ¹⁷⁸ Tl (2002Ro17) and with 5815α from ¹⁷⁰ Ir(g.s.) (2002Ro17, 2004GoZZ, 2007Ha45).

[†] Tentative value assuming $r_0=1.5530\ 24$ (unweighted average of $r_0(^{170}\text{Os})=1.556\ 6$ and $r_0(^{170}\text{Pt})=1.548\ 12$ from the evaluation by 2002Ba93, $r_0(^{168}\text{Os})=1.558\ 8$ and $r_0(^{172}\text{Pt})=1.55\ 3$ from 1998Ak04), $\%\alpha(^{174}\text{Au})=90\ 6\ (2002\text{Ro}17)$ and $Q(\alpha)(^{174}\text{Au})=6699\ 7$ from 2017Wa10 (which assumes g.s. to g.s. transition for the 6547 α).

[‡] For absolute intensity per 100 decays, multiply by 0.90 6.