

Adopted Levels

Type	Author	Citation	History	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF		04-Jun-2021

$S(p)=90$ SY ; $Q(\alpha)=7770$ 30 [2021Wa16](#)

Estimated uncertainty ([2021Wa16](#)): $\Delta S(p)=420$.

$S(2p)=-1850$ 340 , $Q(\varepsilon)=9120$ 360 , $Q(ep)=10590$ 360 (syst, [2021Wa16](#)).

[2019Hi06](#): ^{165}Pt produced and identified in $^{96}\text{Ru}(^{78}\text{Kr},4\text{n})$, $E(^{78}\text{Kr})=390$ MeV reaction, followed by separation of fragments using MARA spectrometer, and multiwire proportional counter (MWPC) for detection of recoils, and double-sided silicon strip detector (DSSDs) for α detection at the University of Jyvaskyla K-130 cyclotron facility. Measured $E\alpha$, $I\alpha$, (recoils) α - α - α - α correlations in decay chain: $^{170}\text{Hg} \rightarrow ^{166}\text{Pt} \rightarrow ^{162}\text{Os} \rightarrow ^{158}\text{W}$, and half-life of the decay of ^{170}Hg g.s.

Theoretical structure calculations: [2016Ma54](#), [2008Sc02](#).

 ^{170}Hg Levels

E(level)	J^π	$T_{1/2}$	Comments
0	0^+	0.08 ms $+40-4$	$\% \alpha \approx 100$ (2019Hi06) 2019Hi06 assigned $\% \alpha \approx 100$, as only the α decay was observed in this work, as β decay half-life is expected to be much longer. Theory $T_{1/2}(\beta \text{ decay})=0.118$ s, $T_{1/2}(\alpha)=8.9 \mu\text{s}$ (2019Mo01). With $S(2p)=-1850$ 340 (2021Wa16), 2p-decay mode is likely, but from a search for this decay mode, no evidence was found for this decay mode by 2019Hi06 . Measured $E\alpha=7590$ 30 from the decay of the g.s. of ^{170}Hg (2019Hi06). $T_{1/2}$: measured by 2019Hi06 from observation of one (recoils) α - α - α - α correlated decay chain ($^{170}\text{Hg} \rightarrow ^{166}\text{Pt} \rightarrow ^{162}\text{Os} \rightarrow ^{158}\text{W}$) and analysis by maximum likelihood method.