Coulomb excitation 1972Do01,1978Mc02,2011Di07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

1972Do01: ¹⁷⁰Er(¹⁶O, ¹⁶O γ), E=59 MeV; measured σ (E), I γ , $\gamma(\theta)$.

1977Ke06: ${}^{170}\text{Er}({}^{56}\text{Fe}, {}^{56}\text{Fe}'\gamma), ({}^{84}\text{Kr}, {}^{84}\text{Kr}'\gamma), E({}^{56}\text{Fe})=232 \text{ MeV}, E({}^{84}\text{Kr})=348 \text{ MeV}; \text{ measured E}\gamma, \text{ Doppler-broadened}$

lineshapes; comparison with rotational model value, deduced mult.

1978Mc02: ¹⁷⁰Er($\alpha, \alpha' \gamma$), E=14 MeV; measured E γ , I γ , $\gamma(\theta)$.

2011Di07: ¹⁷⁰Er(³²S,³²S' γ), E=117 MeV; beam produced at the Laboratori Nazionali di Legnaro, Italy; 1 mg/cm² ¹⁷⁰Er target; GASP γ -ray detector array (40 high-efficiency Compton-suppressed HPGe detectors with efficiency of \approx 5.8% at 1.33 MeV); square double-sided Si strip detector for particle identification; measured E γ , I γ , particle- γ coin; deduced matrix elements using the coupled-channels code GOSIA. Compared results with collective model predictions. Previously known lifetimes of 934,2⁺ and 960,2⁺ levels and eight branching ratios from ENSDF database for ¹⁷⁰Er adopted dataset were used as input data for the GOSIA analysis.

Others: 1960E107, 1963Gr04, 1965Yo04, 1967Ku07, 1972Er04, 1974Ba81, 1983Hu01.

¹⁷⁰Er Levels

1978Mc02 do not observe levels (possibly 3^-) reported in (d,d') at 1304 and 1575, but they note that upper limits on B(E3) deduced from their data are consistent with the (d,d') data.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0 ^e	0^{+}		
78.7 ^e	2+	1.896 ns 23	B(E2) [†] =5.81 <i>10</i> (1972Er04) g=0.329 <i>25</i> (1967Ku07); g=0.357 <i>15</i> (1970Be36) Q=-1.94 <i>23</i> (1973Lu02) B(E2) [†] : 5.81 <i>10</i> (1972Er04), 5.44 <i>15</i> (1960El07), 6.1 <i>5</i> (1963Gr04), 6.70 +25-45 from $<2+_{g}$ M(E2) 0+ _g > =+2.59 +5-9 (2011Di07). J ^π : from excitation probability (1963Gr04). T _{1/2} : weighted average of 1.89 ns <i>3</i> (pulsed beam, 1967Ku07), 1.88 ns <i>5</i> (1968Ri09), 1.95 ns <i>8</i> (1969Av01), 1.91 ns <i>6</i> (from adopted B(E2) and Eγ). g(¹⁷⁰ Er)/g(¹⁶⁶ Er)=1.002 <i>13</i> (Mossbauer, 1969Wi04). Other O: Q(¹⁷⁰ Er)/Q(¹⁶⁶ Er)=1.05 <i>16</i> (1969Wi04).
260.2 ^e	4+	111 [@] ps +14-5	g=0.27 4 B(E2)↑=3.44 +14-43 B(E2)↑: from <4+g M(E2) 2+ _γ > =+4.15 +8-27 (2011Di07). g: from μ (1989Ra17) based on g from 1968De28 relative to g(4 ⁺) for ¹⁶⁶ Er. B(E4)=(0.24 +14-18) ² (1972Er04).
540.6 ^e	6+	14.3 [@] ps +8-9	B(E2) \uparrow =3.03 +19-17 B(E2) \uparrow : from <6+ ₉ M(E2) 4+ ₉ > =+5.23 +16-15 (2011Di07).
890.8 ^b	(0+)	<0.2 ps	B(E2) \uparrow =0.00032 +18-14 B(E2) \uparrow : from <0 ⁺ M(E2) 2+c> =+0.04 1 (2011Di07)
914.6 ^e	(8+)	3.58 ps 26	$B(E2)\uparrow=2.9 + 9-3$ $B(E2)\uparrow=2.9 + 9-3$ $B(E2)\uparrow: from <8+_g M(E2) 6+_g> =+6.1 + 9-3 (2011Di07).$ $T_{1/2}$: other: 3.4 ps +3-11 from B(E2) and adopted γ properties.
934.0 ^c	2+&	1.81 [@] ps 6	B(E2) \uparrow =0.103 3 Q=1.95 33 B(E2) \uparrow : weighted average of 0.103 8 (2011Di07, 934 γ), 0.102 6 (1978Mc02), 0.107 6 (1974Ba81), 0.100 6 (1972Do01). Other: 0.10 2 (1965Yo04). Q: from Coulomb excitation reorientation (1989Ra17 from 1983Hu01).
959.9 ^b	2^{+}	10.1 ps 9	B(E2) = 0.0079 9 (1978Mc02) T ₁ (a); weighted average of 9.9 ps 10 from $B(E2)$ (700x) and 12 ps 3 from $B(E2)$ (960x)
1010.3 ^c	3+	2.1 ps +13-3	$\Gamma_{1/2}$. The first energy of γ is γ is to from $D(D2)(\gamma 00\gamma)$ and Γ_2 is a from $D(D2)(\gamma 00\gamma)$.

Continued on next page (footnotes at end of table)

Coulomb excitation 1972Do01,1978Mc02,2011Di07 (continued)

¹⁷⁰Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
1103.0 ^b	4+	0.96 [@] ps 6	
1127.3 ^c	4+	8 ps 1	
1236.4 [°]	5+	_	
1332.0	2+	4.8 [@] ps 7	B(E2)↑=0.0074 <i>11</i> (1978Mc02)
1340.4 ^d	3-		
1350.6 <mark>b</mark>	6+		
1370.7 ^a	(3 ⁻)		B(E3)↑=0.020 <i>3</i> (1978Mc02)
			J^{π} : authors' value based on direct E3 Coulomb excitation of level (1978Mc02).
1376.1 ^e	(10^{+})	1.48 ps 10	
1402.0 ^c	6^+		
1415.0	21		$K^{*}=2^{+}(2011D_{10}).$
1482.9 ^{<i>a</i>}	5-		
1579.1	3-		Member of known $K^n = 2^-$ band.
1704.6 ^{<i>a</i>}	7-		
1918.0 ^e	(12^{+})	0.57 ps 3	

[†] From least squares fit to $E\gamma$, allowing 1 keV uncertainty In $E\gamma$ data for which the authors did not report an uncertainty.

[‡] Based on multiple Coulomb excitation and band configuration analyses for J>2 members of g.s. band, and on mult of deexciting γ rays and direct excitation in Coulomb excitation otherwise.

[#] From Doppler-broadened lineshape analysis of γ spectrum (1977Ke06), except as noted.

[@] From measured B(E2) and adopted γ properties.

& Level excited by direct E2 Coulomb excitation (1978Mc02).

^{*a*} Existence of this level is questionable because it should also be excited strongly in $(n,n'\gamma)$, yet it is absent in that reaction. No explanation of this discrepancy is available.

^{*b*} Band(A): $K^{\pi}=0^+$ band.

^{*c*} Band(B): $K^{\pi}=2^+ \gamma$ -band.

^{*d*} Band(C): $K^{\pi}=1^{-}$ band.

^{*e*} Band(D): $K^{\pi}=0^+$ g.s. band.

 $\gamma(^{170}\text{Er})$

E2 and M1 reduced matrix elements are given in comments in units of eb and μ N, respectively. B(E2) and B(M1) values were deduced by the evaluator from these matrix elements.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{\#}$	α^{e}	Comments
78.7 260.2	2+ 4+	78.63 181.6	100 100	$\begin{array}{ccc} 0.0 & 0^+ \\ 78.7 & 2^+ \end{array}$	E2 E2		7.47 0.348	E_{γ} : rounded value from Adopted Gammas. E_{γ} : rounded value from Adopted Gammas. Mult.: γ from level excited primarily by E2-E2 multiple Coulomb excitation.
540.6	6+	280.4	100	260.2 4+	E2		0.0849	E_{γ} : rounded value from Adopted Gammas.
890.8	(0^{+})	812 ^{&}		78.7 2+	(E2)			$A_2=+0.02$ 12, $A_4=-0.24$ 19, consistent with J=0 to 2, E2 transition (1972Do01).
914.6 934.0	(8 ⁺) 2 ⁺	374.0 ^b 5 674 ^a	100 1.28 <i>9</i>	540.6 6 ⁺ 260.2 4 ⁺	(E2) E2		0.0361	Mult.: B(E2)(exp)/B(E2)(rot)=1.09 8 (1977Ke06). I_{γ} : other I_{γ} : 1.7 from thick target yield (1978Mc02). B(E2)=0.0016 4 from $<2+_{\gamma}$ M(E2) $4+_{g}> =+0.09$ 1 (2011Di07). Mult.: from 2011Di07.
		855 ^a	100	78.7 2+	E2(+M1)	<-70		B(E2)=0.0336 +17-16 from $<2+_{\gamma}$ M(E2) $2+_{g}>=+0.41$ 1 (2011Di07). A ₂ =-0.18 4, A ₄ =-0.51 7 (1972Do01). W(0°)/W(90°)=0.913 16 (1978Mc02). (1978Mc02).
		934 <i>a</i>	89.7 24	0.0 0+	E2			B(E2)=0.0205 13 from $<2+_{\gamma}$ M(E2) $0+_g> =+0.32$ 1 (2011Di07). I _{γ} : weighted average of 92.6 34 (1972Do01) and 87.8 28 from (B(E2) \downarrow to g.s.)/(B(E2) \downarrow to 79 level)=0.566 18 (1983Hu01). Others: 84 (1978Mc02), 98 10 (2011Di07; for 934 γ +932 γ). W(0°)/W(90°)=1.42 2 (1978Mc02).
959.9	2+	69 ^{&}	0.65 ^{&} 13	890.8 (0 ⁺)	E2		12.69	I _{γ} : deduced from B(E2), half-life and conversion coefficient. B(E2)=0.73 <i>13</i> from <2 ⁺ M(E2) 0+(891)> =+1.91 + <i>16</i> - <i>18</i> (2011Di07)
		700 ^{<i>a</i>}	79 ^c 17	260.2 4+	E2			other I_{2} : 95 from 1978Mc02. Mult.: from 2011Di07.
		881 ^{<i>a</i>}	100 ^{<i>c</i>}	78.7 2+	E2+M1 ^{<i>a</i>}	+1.7 ^{<i>a</i>} 8		B(E2)=0.0097 +9-17 from $<2^{-1}$ M(E2) $4+_g> =+0.22 +1-2$ (2011D107). B(M1)=0.0020 4 from $<2^{+}$ M(M1) $2+_g> =0.10$ <i>I</i> ; sign not determined (2011D107). B(E2)=0.0005 +8-4 from $<2^{+}$ M(E2) $2+_g> =-0.05$ 3 (2011D107). $\delta: 0.37$ 26 deduced by evaluator from E2 and M1 matrix elements. W($^{(0)}$)W($^{(0)}$)=1.41 46 (1078M_{2}02)
		960 ^a	38 ^c 9	0.0 0+	E2 ^{<i>a</i>}			w(0) $f(90) = 1.41$ 16 (1978Mc02). other I γ : 65 from 1978Mc02. W(0°)/W(90°)=1.35 20 (1978Mc02). B(E2)=0.0016 4 from <2 ⁺ M(E2) 0+ _g > =+0.09 1 (2011Di07).
1010.3	3+	750 ^{&}	3.45 ^{&} 26	260.2 4+	E2 ^d			B(E2)=0.0146 +71-17 from $<3+_{\gamma}$ M(E2) $4+_{g}> =-0.32 +2-7$ (2011Di07).
		932 &	100 ^{&} 7	78.7 2+	E2 ^d			I _{γ} : for I(934 γ)+I(932 γ) doublet.

ω

Coulomb excitation				excitation	1972Do01,1978Mc02,2011Di07 (continued)			
						$\gamma(^{170}\text{Er})$ (continued)	<u>)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{\#}$	α^{e}	Comments
								B(E2)=0.037 +5-14 from $<3+_{\gamma}$ M(E2) $2+_{g}>=-0.51 +11-3$ (2011Di07).
1103.0	4+	143 ^{&}		959.9 2+	E2		0.797	B(E2)=1.07 +29-38 from <4 ⁺ M(E2) 2+> =+3.1 +4-6 (2011Di07).
		563 ^{&} f	<1.38 ^{&}	540.6 6+				I _{γ} : limit from 2011Di07; γ not evident In spectrum In FIG.1 or level diagram In fig. 2 of 2011Di07.
		843 ^{&}	100 ^{&} 6	260.2 4+	E2(+M1)	<-16		 other Eγ: 840 from 1972Do01. δ: -38 +22-∞ (1972Do01). δ: 2.67 +19-26 deduced in 2011Di07 from matrix element for 2⁺ (K=0) to 2+g and equation 4-254 in Bohr and Mottelson's book on Nuclear structure, volume II. A₂=-0.31 7, A₄=-0.62 11 (1972Do01). B(E2)=0.102 +11-8 from <4⁺ M(E2) 4+g> =-0.96 +4-5 (2011Di07).
		1024 ^{&}	29.8 ^{&} 21	78.7 2+	E2			other E γ : 1021 from 1972Do01. A ₂ =+0.43 <i>I1</i> , A ₄ =-0.52 <i>I9</i> (1972Do01). B(E2)=0.0121 7 from <4 ⁺ M(E2) 2+ _g > =+0.33 <i>I</i> (2011Di07).
1127.3	4+	193 &		934.0 2+	E2		0.284	B(E2)=0.81 +24-5 from $<4+_{\gamma}$ M(E2) 2+ $_{\gamma}>$ =+2.70 +37-8 (2011Di07).
		587 <mark>&</mark>	13.5 ^{&} 15	540.6 6+	E2		0.01101	B(E2)=0.0069 +12-10 from $<4+_{\gamma}$ M(E2) $6+_{g}> =+0.25$ 2 (2011Di07).
		867 ^{&}	100 ^{&} 7	260.2 4+	E2+M1	-4.3 +23-99		other E _Y : 863 from 1972Do01. B(E2)=0.00028 +132-24 from $<4+_{\gamma}$ M(E2) $4+_{\gamma}>=-0.05$ 7 (2011Di07). $A_{2}=-0.42$ J2 $A_{4}=-0.66$ 21 (1972Do01)
		1049 ^{&}	73 ^{&} 6	78.7 2+	E2			$B(E2)=0.0022 \ 3 \ \text{from } <4+_{\gamma} \ M(E2) \ 2+_{g}>=+0.14 \ 1 \ (2011\text{Dio7}).$ other E γ : 1045 from 1972Do01. other I γ : 88 10 from 1972Do01. A ₂ =+0.58 17, A ₄ =-0.40 25 (1972Do01).
1236.4	5+	696 <mark>&</mark> 976 <mark>&</mark>	24 ^{&} 15 100 ^{&} 10	540.6 6^+ 260.2 4^+				
1332.0	2+	398 ^a 1332 ^a	87 ^c 100 ^c	934.0 2^+ 0.0 0^+	M1+E2 ^a E2 ^a	-0.40^{a} +15-20	0.059 5	W(0°)/W(90°)=0.94 <i>13</i> (1978Mc02).
1340.4	3-	1080 ^{&} 1262 ^{&}	100 ^{&} 8 <29 ^{&}	$260.2 \ 4^+$ 78.7 2^+				
1350.6 1370.7	6^+ (3 ⁻)	810 ^{&} 1292 ^a	$100^{\&}$ $\approx 100^{c}$	$540.6 6^+$ $78.7 2^+$				E_{γ} : 810 γ +812 γ unresolved by/2011Di07.
1376.1	(10^+)	461.5 ^b 5	100	914.6 (8 ⁺)	(E2)		0.0203	Mult.: B(E2)(exp)/B(E2)(rot)=0.91 6 (1977Ke06).

4

 $^{170}_{68}\mathrm{Er}_{102}$ -4

L

Coulomb excitation						b excitation	n 1972D	001,1978Mc02,2011Di07 (continued)		
$\gamma(^{170}\text{Er})$ (continued)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.@	α^{e}	Comments		
1402.0	6+	275 ^{&}		1127.3	4+	E2	0.0902	B(E2)=1.60 +16-128 from $<6+_{\gamma}$ M(E2) $4+_{\gamma}>=+4.6 +2-25$ (2011Di07).		
		861 <mark>&</mark>		540.6	6+			B(E2)=0.04 +8-4 from $<6+_{\gamma}$ M(E2) $6+_{g}$ (542)> =+0.7 5 (2011Di07).		
		1142 <mark>&</mark>		260.2	4+	E2		B(E2)=0.010 +2-9 from $<6+_{\gamma}$ M(E2) $4+_{g}> =+0.36 +3-27$ (2011Di07).		
1415.0	2^{+}	481 ^{&}	100	934.0	2+			I_{γ} : line may be contaminated by a γ in ¹⁸¹ Ta (2011Di07).		
1482.9	5-	942 <mark>&</mark>		540.6	6+					
		1223 <mark>&</mark>		260.2	4+					
1579.1	3-	476 ^{&}	<53 &	1103.0	4+			I _{γ} : 46 7 from table 1 of 2011Di07, but line may be contaminated by a ¹⁸¹ Ta line, so I γ given here as upper limit (2011Di07).		
		569 <mark>&</mark>	89 <mark>&</mark> 11	1010.3	3+					
		645 <mark>&</mark>	100 ^{&} 11	934.0	2+					
1704.6	7-	790 <mark>&</mark>		914.6	(8 ⁺)					
		1164 <mark>&</mark>		540.6	6+					
1918.0	(12^{+})	541.9 <mark>b</mark> 5	100	1376.1	(10 ⁺)	(E2)	0.01341	Mult.: B(E2)(exp)/B(E2)(rot)=1.05 7 (1977Ke06).		

[†] From 1972Do01, except as noted. Authors estimate $\Delta E=0.5$ keV; however, comparison with adopted values shows E γ from 1972Do01 to be low by 1.5 to 4 keV. E γ values from 1978Mc02 (ΔE unstated) deviate from adopted values by ≤ 0.4 keV.

^{\ddagger} Photon branching from level, relative to 100 for strongest γ .

[#] Based on $\gamma(\theta)$ measurements. From 1972Do01, unless noted otherwise.

[@] Based on $\gamma(\theta)$ and/or Coulomb excitation yields, except as noted.

 $^{\&}$ From 2011Di07. authors do not state uncertainty In Ey and round values to nearest keV.

^a From 1978Mc02.

S

^b From 1977Ke06.

^c From thick target yield (1978Mc02).

^d Dominantly E2 from Adopted Gammas but small M1 admixture may be present.

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Placement of transition in the level scheme is uncertain.

 $^{170}_{68}\mathrm{Er}_{102}$ -5

Coulomb excitation 1972Do01,1978Mc02,2011Di07

Level Scheme

Intensities: Relative photon branching from each level

Coulomb excitation 1972Do01,1978Mc02,2011Di07

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

 $^{170}_{68}\mathrm{Er}_{102}$

7

Coulomb excitation 1972Do01,1978Mc02,2011Di07

 $^{170}_{68}\mathrm{Er}_{102}$