¹⁷⁰Ho $β^-$ decay (2.76 min) 1978Ka16,1978Tu04,1974Ka21

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁰Ho: E=0; $J^{\pi}=(6^+)$; $T_{1/2}=2.76 \text{ min } 5$; $Q(\beta^-)=3870 \ 50$; $\%\beta^-$ decay=100.0

Typically, sources have been produced by ${}^{170}\text{Er}(n,p)$, E(n)=14 MeV.

1978Ka16: measured E β , E β , I γ , $\gamma\gamma$ coin, $\beta\gamma$ coin, α (K)exp.

1974Ka21: measured E γ , I γ , $\gamma\gamma$ coin, E β , $\beta\gamma$ coin.

1969Sc01: measured E β , E γ , I γ , $\beta\gamma$ coin.

Measured Q(β^{-})=3870 keV 50 (1978Tu04) is the same as that recommended in 2017Wa10.

The adopted decay scheme is that of 1978Ka16; it differs significantly from that of 1974Ka21. The 1147.8 10γ , I γ =1.4 8, placed from the 2159 level by 1974Ka21, is absent in 1978Ka16; consequently, it has been omitted here. E γ and I γ from 1978Ka16 and 1974Ka21 are in satisfactory agreement; however, 1978Ka16 observe many more transitions than 1974Ka21 and report E γ with higher precision.

¹⁷⁰Er Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0^{+}	
78.65 8	2+	
260.22 11	4+	
540.63 15	6+	
934.06? 17	2^{+}	
1010.64 14	(3^{+})	
1103.47 14	4^{+}	
1127.29 15	4^{+}	
1217.48 13	$3^{(+)}$	
1236.7 4	(5^{+})	
1268.80 13	(4 ⁻)	
1304.60 14	(4^{+})	
1372.31 14	(5 ⁻)	
1413.14 19	(5^{+})	
1496.24 15	(6 ⁻)	
1590.94 15	(6 ⁻)	
1746.03? 20	(4 ⁻)	Order of 413 γ and 477 γ unknown; alternative E(level)=1681.8 2. However, a 1746 level is known from $(n,n'\gamma)$.
2159.06 16	(5^+)	

 † From a least-squares fit to Ey, by evaluators.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-‡#}	Log ft	Comments
$(1.71 \times 10^3 5)$	2159.06	64 9	5.08 8	av E β =632 22
				E(decay): others: 1710 <i>50</i> (1978Tu04), 1650 <i>200</i> (1978Ka16), 1500 (1969Sc01). Additional information 1.
$(2.28 \times 10^3 5)$	1590.94	11.7 19	6.31 8	av Eβ=880 23
				E(decay): others: 2300 200 (1978Ka16), 2000 (1969Sc01).
$(2.46 \times 10^3 5)$	1413.14	0.8 4	7.60 22	av E β =959 23
$(2.50 \times 10^3 5)$	1372.31	4.3 24	6.90 25	av E β =977 23
$(2.57 \times 10^3 5)$	1304.60	4.5 19	6.93 19	av $E\beta = 1007 \ 23$ I β may imply additional, as yet unobserved, γ feeding to 1305 level; log <i>ft</i> is low

Continued on next page (footnotes at end of table)

$^{170}\mathrm{Ho}\,\beta^-$ decay (2.76 min) 1978Ka16,1978Tu04,1974Ka21 (continued)

β^- radiations (continued)

E(decay)†	E(level)	Ιβ ^{-‡#}	Log ft	Comments
				for 6^+ to 4^+ transition.
$(2.63 \times 10^3 5)$	1236.7	2.9 5	7.17 9	av Eβ=1038 23
$(3.33 \times 10^3 5)$	540.63	1.8 6	7.79 15	av E β =1352 23

[†] Other data: 1969Sc01, 1974Ka21, 1978Ka16. The E β =3000 300 endpoint reported by 1974Ka21 is attributed to ²⁸Al in 1978Ka16. [‡] From intensity balance, assigning $0.5I\gamma \pm 0.5I\gamma$ whenever γ placement is uncertain. [#] Absolute intensity per 100 decays.

I γ normalization: assuming $\Sigma(I(\gamma+ce) \text{ to g.s.})=100\%$.

Data are from 1978Ka16, except as noted.

%I γ have been deduced by evaluators.

ω

E_{γ}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [‡]	α^{d}	Comments
51.30 10	11.4 8	1268.80	(4 ⁻)	1217.48 3(+)	E1	0.355 6	%Iγ=2.6 4 α (L)=0.278 5; α (M)=0.0619 10; α (N+)=0.01581 24 α (N)=0.01398 21; α (O)=0.00177 3; α (P)=6.14×10 ⁻⁵ 9 α (exp)≤1.0 from intensity balance at 1217 level (1978Ka16).
^x 69.3 [@] 3							From coin spectrum; weak.
78.65 8	52 6	78.65	2+	0.0 0+	E2 ^b	7.47	%Iγ=11.63 <i>18</i> α (K)=1.738 25; α (L)=4.39 7; α (M)=1.069 <i>16</i> ; α (N+)=0.270 4 α (N)=0.242 4; α (O)=0.0281 5; α (P)=7.68×10 ⁻⁵ <i>11</i> α (exp)=7.1 <i>12</i> (1978Ka16) from intensity balance.
87.16 9	4.8 6	1304.60	(4+)	1217.48 3(+)	M1	4.22	% $I_{\gamma}=1.07 \ 19$ $\alpha(K)=3.54 \ 5; \ \alpha(L)=0.533 \ 8; \ \alpha(M)=0.1182 \ 17; \ \alpha(N+)=0.0318 \ 5$ $\alpha(N)=0.0276 \ 4; \ \alpha(O)=0.00398 \ 6; \ \alpha(P)=0.000219 \ 4$ $\alpha(K)\exp=5 \ 3 \ (1978Ka16)$
94.67 8	11.1 9	1590.94	(6 ⁻)	1496.24 (6-) M1	3.33	% $I_{\gamma}=2.5 4$ $\alpha(K)=2.79 4$; $\alpha(L)=0.419 6$; $\alpha(M)=0.0931 14$; $\alpha(N+)=0.0250 4$ $\alpha(N)=0.0217 3$; $\alpha(O)=0.00314 5$; $\alpha(P)=0.0001725 25$ $\alpha(K)\exp=2.7 14 (1978Ka16)$
103.54 8	20.5 15	1372.31	(5 ⁻)	1268.80 (4-) M1	2.58	% I_{γ} =4.6 7 $\alpha(K)$ =2.16 3; $\alpha(L)$ =0.324 5; $\alpha(M)$ =0.0719 11; $\alpha(N+)$ =0.0193 3 $\alpha(N)$ =0.01676 24; $\alpha(O)$ =0.00242 4; $\alpha(P)$ =0.0001333 19 $\alpha(K)$ exp=2.1 8 (1978Ka16)
123.90 14	16 <i>3</i>	1496.24	(6 ⁻)	1372.31 (5-) (M1,E2)	1.44 11	$\%$ I γ =3.6 8 α (K)=1.0 4; α (L)=0.37 18; α (M)=0.09 5; α (N+)=0.022 11 α (N)=0.020 10; α (O)=0.0025 11; α (P)=5.E-5 3 α (K)exp=1.1 9 (1978Ka16)
141.50 9	7.8 10	1268.80	(4-)	1127.29 4+	[E1]	0.1293	%I γ =1.7 3 α (K)=0.1082 16; α (L)=0.01654 24; α (M)=0.00366 6; α (N+)=0.000960 14 α (N)=0.000840 12; α (O)=0.0001146 17; α (P)=5.12×10 ⁻⁶ 8
165.36 8	16.9 <i>15</i>	1268.80	(4 ⁻)	1103.47 4+	(E1)	0.0856	%I γ =3.8 6 α (K)=0.0718 10; α (L)=0.01081 16; α (M)=0.00239 4; α (N+)=0.000629 9 α (N)=0.000550 8; α (O)=7.56×10 ⁻⁵ 11; α (P)=3.47×10 ⁻⁶ 5 α (K)exp≤0.2 (1978Ka16)
181.57 8	108 <i>10</i>	260.22	4+	78.65 2+	E2 ^b	0.348	%I γ =24 4 α (K)=0.215 3; α (L)=0.1029 15; α (M)=0.0246 4; α (N+)=0.00629 9 α (N)=0.00560 8; α (O)=0.000685 10; α (P)=9.88×10 ⁻⁶ 14 α (exp)=0.33 17 (1978Ka16) from intensity balance.

				170 Ho β^- decay (2.76 min)			1978Ka16,1978Tu04,1	974Ka21 (cor	ntinued)				
	$\gamma(^{170}\text{Er})$ (continued)												
E_{γ}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α^{d}	Comments				
218.69 <i>10</i> 227.41 9	5.2 <i>10</i> 16 2	1590.94 1496.24	(6 ⁻) (6 ⁻)	1372.31 1268.80	(5 ⁻) (4 ⁻)	[E2]		0.1650	%Iγ=1.2 3 %Iγ=3.6 6 α (K)=0.1117 16; α (L)=0.0411 6; α (M)=0.00974 14; α (N+)=0.00250 4 α (N)=0.00222 4; α (O)=0.000277 4; α (P)=5.42×10 ⁻⁶ 8				
258.17 9	168 10	1268.80	(4-)	1010.64	(3+)	D+Q ^b			%Iy=38 5				
280.44 11	12 2	540.63	6+	260.22	4+	E2 ^b		0.0849	% $I\gamma$ =2.7 6 $\alpha(K)$ =0.0612 9; $\alpha(L)$ =0.0183 3; $\alpha(M)$ =0.00430 6; $\alpha(N+)$ =0.001112 16 $\alpha(N)$ =0.000984 14; $\alpha(O)$ =0.0001255 18; $\alpha(P)$ =3.11×10 ⁻⁶ 5				
283.42 10	12 2	1217.48	3(+)	934.06?	2+	[M1]		0.1554	%I γ =2.7 6 α (K)=0.1307 19; α (L)=0.0192 3; α (M)=0.00426 6; α (N+)=0.001145 16 α (N)=0.000993 14; α (O)=0.0001439 21; α (P)=7.98×10 ⁻⁶ 12				
413.2 2	14.3 9	2159.06	(5 ⁺)	1746.03?	(4 ⁻)				%Iy=3.2 5				
477.4 ^{<i>a</i>} 2	15.4 ^{<i>a</i>} 10	1746.03?	(4-)	1268.80	(4 ⁻)				Order of 413γ and 477γ undetermined (1978Ka16). %I γ =3.4 5 Order of 413γ and 477γ undetermined (1978Ka16).				
$662.9^{(a)}f$ 3	5.5 7	2159.06	(5+)	1496.24	(6 ⁻)				%Iγ=1.23 <i>21</i>				
746.0 ^w 2	7.0 10	2159.06	(5 ⁺)	1413.14	(5 ⁺)	h			%Iγ=1.6 <i>3</i>				
750.4 2	24.0 13	1010.64	(3+)	260.22	4+	(M1+E2) ⁹	-1.8×10 ² +11-46	0.00621 9	$%_{1}\gamma=5.4$ 7 $\alpha=0.00621$ 9; $\alpha(K)=0.00512$ 8; $\alpha(L)=0.000852$ 12; $\alpha(M)=0.000191$ 3; $\alpha(N+)=5.07\times10^{-5}$ 8 $\alpha(N)=4.43\times10^{-5}$ 7; $\alpha(O)=6.18\times10^{-6}$ 9; $\alpha(P)=2.90\times10^{-7}$ 4				
786.3 5	22 4	2159.06	(5 ⁺)	1372.31	(5 ⁻)				%Iy=4.9 <i>11</i>				
832.5 ^{@f} 10	≈3	1372.31	(5 ⁻)	540.63	6+				%Iy=0.7 4				
843.5 2	11 3	1103.47	4+	260.22	4+	M1+E2 ^b	+2.81 10	0.00532 9	%Iγ=2.5 8 α=0.00532 9; α(K)=0.00443 7; α(L)=0.000693 11; α(M)=0.0001546 23; α(N+)=4.12×10 ⁻⁵ 7 α(N)=3.59×10 ⁻⁵ 6; α(O)=5.08×10 ⁻⁶ 8; α(P)=2.54×10 ⁻⁷ 4				
854.7 ^{e&} f 5	7.3 ^{e&} 13	934.06?	2+	78.65	2+	E2(+M1) ^b	≥14	0.00468 7	%Iγ=1.6 4 α =0.00468 7; α (K)=0.00389 6; α (L)=0.000620 9; α (M)=0.0001386 20; α (N+)=3.69×10 ⁻⁵ 6 α (N)=3.21×10 ⁻⁵ 5; α (O)=4.52×10 ⁻⁶ 7; α (P)=2.21×10 ⁻⁷ 4				

4

From ENSDF

 $^{170}_{68}\mathrm{Er}_{102}$ -4

			1	⁷⁰ Ho β^- d	ecay (2	2.76 min) 1	978Ka16,1978Tu04,	,1974Ka21 (c	ontinued)		
	γ ⁽¹⁷⁰ Er) (continued)										
E_{γ}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α^{d}	Comments		
854.7 <mark>e&</mark> 5	48 ^{e&} 7	2159.06	(5 ⁺)	1304.60	(4^{+})				%Iy=10.7 20		
867.0 2	9.7 8	1127.29	4+	260.22	4+	M1+E2 ^b	-9.8 +22-63	0.00458 7	% $I\gamma=2.2 \ 3$ $\alpha=0.00458 \ 7; \ \alpha(K)=0.00380 \ 6; \ \alpha(L)=0.000603 \ 9;$ $\alpha(M)=0.0001346 \ 20; \ \alpha(N+)=3.58\times10^{-5} \ 6$ $\alpha(N)=3.12\times10^{-5} \ 5; \ \alpha(O)=4.40\times10^{-6} \ 7;$ $\alpha(P)=2.16\times10^{-7} \ 4$		
872.6 [@] <i>f</i> 3	1.7 4	1413.14	(5 ⁺)	540.63	6+	D+Q ^b			%Iy=0.38 <i>10</i>		
890.2 2	100	2159.06	(5 ⁺)	1268.80	(4 ⁻)	b	2		%Iy=22 3		
932.1 2	164 9	1010.64	(3+)	78.65	2+	(M1+E2) ⁰	-1.5×10 ² +8-50	0.00389 6	%Iγ=37 5 α=0.00389 6; $α$ (K)=0.00324 5; $α$ (L)=0.000505 7; α(M)=0.0001125 16; $α$ (N+)=3.00×10 ⁻⁵ 5 α(N)=2.61×10 ⁻⁵ 4; $α$ (O)=3.69×10 ⁻⁶ 6; α(P)=1.84×10 ⁻⁷ 3		
934.10 ^{&} <i>f</i> 16	6.6 ^{&} CA	934.06?	2+	0.0	0 ⁺	E2 ^b		0.00387 6	%Iγ=1.5 8 α =0.00387 6; α (K)=0.00323 5; α (L)=0.000502 7; α (M)=0.0001120 16; α (N+)=2.98×10 ⁻⁵ 5 α (N)=2.60×10 ⁻⁵ 4; α (O)=3.67×10 ⁻⁶ 6; α (P)=1.84×10 ⁻⁷ 3		
941.4 2	94 2	2159.06	(5^+)	1217.48	3(+)	h			$\%1\gamma = 21.0\ 25$		
957.4 <i>3</i>	17.0 9	1217.48	3(+)	260.22	4+	D+Q ^D			$\%1\gamma=3.85$		
976.5 3	13.2 8	1236.7	(5+)	260.22	4+	(M1+E2) ⁰		0.0050 15	%Iγ=3.0 4 α =0.0050 15; α (K)=0.0042 13; α (L)=0.00062 17; α (M)=0.00014 4; α (N+)=3.7×10 ⁻⁵ 10 α (N)=3.2×10 ⁻⁵ 9; α (O)=4.6×10 ⁻⁶ 13; α (P)=2.5×10 ⁻⁷ 9		
1024.7 4	73	1103.47	4+	78.65	2+	E2 ^b		0.00320 5	%Iγ=1.6 7 α =0.00320 5; α (K)=0.00267 4; α (L)=0.000407 6; α (M)=9.05×10 ⁻⁵ 13; α (N+)=2.41×10 ⁻⁵ 4 α (N)=2.10×10 ⁻⁵ 3; α (O)=2.98×10 ⁻⁶ 5; α (P)=1.523×10 ⁻⁷ 22		
1044.2 2	29.2 15	1304.60	(4+)	260.22	4+	(M1+E2) ^b	+6.3 +45-18	0.00314 7	%I γ =6.5 9 α =0.00314 7; α (K)=0.00263 6; α (L)=0.000397 9; α (M)=8.82×10 ⁻⁵ 19; α (N+)=2.35×10 ⁻⁵ 5 α (N)=2.05×10 ⁻⁵ 5; α (O)=2.91×10 ⁻⁶ 7; α (P)=1.50×10 ⁻⁷ 4		
1048.7 8	2 1	1127.29	4+	78.65	2+	E2 ^b		0.00305 5	%I γ =0.45 23 α =0.00305 5; α (K)=0.00255 4; α (L)=0.000387 6; α (M)=8.59×10 ⁻⁵ 13; α (N+)=2.29×10 ⁻⁵ 4 α (N)=1.99×10 ⁻⁵ 3; α (O)=2.84×10 ⁻⁶ 4;		

S

 $^{170}_{68}\mathrm{Er}_{102}$ -5

L

170 Ho β^- decay (2.76 min) 1978Ka16,1978Tu04,1974Ka21 (continued)										
$\gamma(^{170}\text{Er})$ (continued)										
Eγ	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	α^{d}	Comments	
1111.8 <i>3</i> 1138.7 2	9.4 7 93 4	1372.31 1217.48	(5 ⁻) 3 ⁽⁺⁾	260.22 78.65	4+ 2+	(M1+E2) ^b	+14 +7-4	0.00259 4	$\frac{\alpha(P)=1.455\times10^{-7} \ 21}{I_{\gamma}: \text{ note that I}(1049\gamma)/I(867\gamma)=0.21 \ 11 \text{ here but } 0.86 \ 9 \text{ in Adopted Gammas.}} \\ \% I_{\gamma}=2.1 \ 3 \\ \% I_{\gamma}=21 \ 3 \\ \alpha=0.00259 \ 4; \ \alpha(K)=0.00218 \ 4; \ \alpha(L)=0.000324 \ 5; \ \alpha(M)=7.18\times10^{-5} \\ 11: \ \alpha(N+)=2.02\times10^{-5} \ 3 \\ \end{array}$	
1153.0 <i>3</i> 1226.0 <i>3</i> ×1306.9 [@] <i>3</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									
 [†] Relative μ [‡] From α(e intensity b [#] From the [@] Assignme ^{&} If the 934 from the 2 combined 4). Possib ^a In (n,n'γ) 251γ and level, and ^b From the ^c For absolute ^d Total theorem ^e Multiply 	 ¹ Relative photon intensities normalized so I(890.2γ)=100. ² From α(exp) or α(K)exp (1978Ka16). Authors normalized their α(K)exp data assuming mult=E2 for 79γ and 181γ (based on α(exp) deduced by authors from intensity balance at the 79 and 260 levels). [#] From the Adopted Gammas. [@] Assignment uncertain (1978Ka16). ^{&} If the 934γ is correctly assigned, an 855γ of comparable intensity should deexcite the 934 level also; this suggests that the observed 854.7γ (Iγ=55 7), placed from the 2159 level, is in fact a doublet. No β⁻ branch is expected to feed the 934 level (ΔJ=(4)), so intensity balance requires I(934γ)=857γ)=13.9 24 which, combined with adopted branching from 934 level, implies I(855γ)=7.3 13 (leaving Iγ=48 7 deexciting 2159 level) and I(934γ)=6.6 11 (cf. observed I(934γ)=17 4). Possibly the observed 934γ is complex. ^a In (n,n'γ), the 477γ is a doublet deexciting both 1488 and 1746 levels; it is accompanied by a 406γ of at least comparable strength from the 1746 level and by 251γ and 947γ from the 1488 level, none of which is reported in ¹⁷⁰Ho β⁻ decay. In this decay, 477γ-γ coin data strongly favor placement from the 1746 level and by 251γ and 947γ from the 1488 level, none of which is reported in ¹⁷⁰Ho β⁻ decay. In this decay, 477γ-γ coin data strongly favor placement from the 1746 level, and intensity balance at the 1746 level 31. ^b From the Adopted Gammas. ^c For absolute intensity per 100 decays, multiply by 0.22 3. ^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^e Multipulated billing labered with intensity suitebut with intensity with with intensity with the divided. 									

^f Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

6

 $^{170}_{68}\mathrm{Er}_{102}$ -6

¹⁷⁰Ho β⁻ decay (2.76 min) 1978Ka16,1978Tu04,1974Ka21

