	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

 $Q(\beta^{-})=-312.8 \ 18$; $S(n)=7257.9 \ 15$; $S(p)=8600 \ 20$; $Q(\alpha)=51.2 \ 17$ 2017Wa10 $S(2n)=13260.1 \ 15$; $S(2p)=16127 \ 140$; $Q(2\beta^{-})=655.2 \ 16 \ (2017Wa10)$. Other Reactions:

Muonic atoms: 1970Hi03; Measured muonic x ray spectra; deduced isotope shift and intrinsic Q=7.75 *10* (which implies Q(79 level)=2.21 *3* based on rotational model).

Isotope shift measurements: see, e.g., 2000As04, 1992Kr06, 1990Ji07, 1989Kr16, 1987Ah03. Hexadecapole deformation 170 Er(16 O, 16 O): 2014Ji08.

¹⁷⁰Er Levels

For rotational band configurations see, e.g., 1982Bo39, 1985SuZX, 1998GrZV, 2000Gr33, 2000Gr14, 2000Wu01.

Cross Reference (XREF) Flags

			A ¹⁷⁰ Ho / B ¹⁷⁰ Ho / C ¹⁷⁰ Tm D ¹⁷⁰ Er(γ E ¹⁷⁰ Er(n	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
E(level) [†]	J ^{π‡}	T _{1/2} #	XREF	Comments			
0.0 ^b	0^+	stable	ABCDEFGHI	$T_{1/2}$: ≥ 4.1×10 ¹⁷ y (2018Be25) for (2ν+0ν) double β decay to ¹⁷⁰ Yb(2 ⁺ , 84-keV level). Early limit ≥ 3.2×10 ¹⁷ y (1996De60).			
78.590 ^b 22	2+	1.896 ns 23	ABCDEFGHI	 μ=+0.633 13 (1969Wi04) Q=-1.94 23 (1973Lu02) μ: based on g(¹⁷⁰Er, 79)/g(¹⁶⁶Er, 81)=1.002 13 (1969Wi04) from Mossbauer. Other: 0.66 5 (1967Ku07) from time differential perturbed angular distribution. Q: from Coulomb excitation reorientation (1973Lu02). Other: Q/Q(¹⁶⁶Er, 81)=1.05 16 (1969Wi04). J^π: E2 γ to 0⁺. T_{1/2}: from Coulomb excitation. Additional information 1. 			
260.140 ^b 24	4+		AB EFGHI	$\mu = +1.09 \ 15 \ (1968De28)$ $Q = -2.2 \ 10 \ (1970McZQ)$ $B(E4)\uparrow = 0.06 \ +9-5$ $\mu: \text{ from IMPAC} \ (1968De28), \text{ recalculated by } 2014StZZ \text{ using revised value}$ for ¹⁶⁶ Er(265 level) standard. Q: from Coulomb excitation reorientation (1970McZQ). $B(E4)\uparrow: \text{ from Coulomb excitation.}$ $J^{\pi}: \text{ stretched E2 } 182\gamma \text{ to } 2^{+} \ 79.$			
540.68 ^b 3 890.88 ^c 4	6 ⁺ (0 ⁺)		A EFGHI B EF HI	J^{π} : stretched E2 γ to 4 ⁺ ; g.s. band member. J^{π} : (E2) 812 γ to 2 ⁺ 79; E matches that expected for K ^{π} =0 ⁺ bandhead.			
914.97 ^b 5	8+	3.6 ps 3	E GHI	J^{π} : (E2) 374 γ to 6 ⁺ 541; g.s. band assignment. T _{1/2} : from Doppler-broadened lineshape analysis in Coulomb excitation (2011Di07).			
934.023 ^d 24	2+	1.81 ps 6	A EFGHI	Q=2.0 <i>3</i> (1983Hu01) Q: from Coulomb excitation reorientation (1983Hu01).			

¹⁷⁰Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Х	KREF	Comments				
					J^{π} : E2 934 γ to 0 ⁺ g.s				
					T _{1/2} : from B(E2)=0.103 <i>3</i> in Coulomb excitation (1978Mc02, 1974Ba81, 1972Do01).				
959.994 ^c 25	2+	12.1 ps 15	В	EF HI	J^{π} : E2 960 γ to 0 ⁺ g.s T _{1/2} : from B(E2)=0.0079 9 in Coulomb excitation (1978Mc02).				
1010.53 ^d 3	(3 ⁺)		A	E GHI	J^{π} : D+Q γ to 2 ⁺ ; Q(+D) γ to 4 ⁺ ; large $\delta(932\gamma)$ favors π =+; band				
1103.36 ^c 3	4+		A	EFGHI	J^{π} : $\Delta J=2$ E2 1025 γ to 2 ⁺ ; M1+E2 843 γ to 4 ⁺ .				
1127.29 ^{<i>a</i>} 3	4+		Α	EFGHI	J^{π} : $\Delta J=2 E2 1048\gamma$ to 2 ⁺ ; M1+E2 867 γ to 4 ⁺ .				
1217.50 ^e 3	3(+)		Α	E GH	J^{π} : D+Q γ to 2 ⁺ and 4 ⁺ ; large $\delta(1139\gamma)$ favors π =+.				
1236.68 ^d 4	(5 ⁺)		Α	E HI	J ^{π} : D+Q γ to 4 ⁺ ; γ to 6 ⁺ ; possible 5 ⁺ member of K ^{π} =2 ⁺ band.				
1266.63 [†] 3	$(1)^{-}$		В	E	J^{π} : E1 1188 γ to 2 ⁺ 78; K ^{π} =1 ⁻ bandhead.				
1268.68 ⁸ 3	(4 ⁻)	42.8 ns 17	A	E GH	T _{1/2} : from γγ(t) in ¹⁷⁰ Er(²³⁸ U, ²³⁸ U'γ). J ^π : E1 γ to 3 ⁽⁺⁾ ; (E1) 165γ to 4 ⁺ ; possible K ^π =4 ⁻ bandhead.				
1304	(3 ⁻) ^{&}			F					
1304.57 ^e 4	(4^{+})		Α	Е Н	J ^{π} : M1 γ to 3 ⁽⁺⁾ ; D+Q γ to 4 ⁺ ; possible K ^{π} =3 ⁺ band member.				
1305.23 ^f 6	(2^{-})		В	Е	J^{π} : γ to 2 ⁺ ; possible $K^{\pi}=1^{-}$ band member.				
1324.26 ^h 5	(0^{+})		В	Е	J^{π} : γ to 2 ⁺ ; possible $K^{\pi}=0^+$ bandhead.				
1332.0? [@] 7	2+ [@]	4.8 ps 7		I	J^{π} : E2 1332 γ to 0 ⁺ .				
		ine Fe i			$T_{1/2}$: from B(E2)=0.0074 11 in Coulomb excitation.				
1335	(4 ⁺) ^{&}			F					
1340.18 ^{<i>f</i>} 4	3(-)			ΕI	J^{π} : D+O γ to 4 ⁺ and 2 ⁺ ; $K^{\pi}=1^{-}$ band member.				
1350.48 ^c 8	(6 ⁺)			E HI					
1370.6? [@] 10	$(3^{-})^{@}$			fΙ	B(E3)=0.020 3 from Coulomb excitation (1978Mc02).				
1372.11 ^g 6	(5 ⁻)		A	EfGH	J^{π} : apparent direct E3 excitation in Coulomb excitation (1978Mc02). J^{π} : 103 γ to (4 ⁻) 1267 is M1; log <i>ft</i> =6.9 <i>3</i> from (6 ⁺) in ¹⁷⁰ Ho β^{-} decay (2.76 min): possible K ^{π} =4 ⁻ band member.				
1376.6 ^b 4	(10 ⁺)	1.48 ps 10		GHI	J^{π} : multiple Coulomb excitation; probable $K^{\pi}=0^+$ g.s. band member				
					$T_{1/2}$: from Doppler-broadened lineshape analysis in Coulomb (1977Ke06). excitation.				
1385.40 ^h 3	2+			Е	J^{π} : E2 γ to 0 ⁺ .				
1401.92 ^d 7	(6^{+})			EF HI	J^{π} : γ -rays to 6 ⁺ and 4 ⁺ : band assignment in $(^{238}U, ^{238}U'\gamma)$.				
1413.12 ^e 5	(5 ⁺)		A	E	J^{π} : D+Q γ to 6 ⁺ ; γ to 4 ⁺ ; band assignment in (n,n' γ). Note, however, that the 1422 level instead was suggested as this band member in $(^{238}\text{U},^{238}\text{U'}\gamma)$ (2000Si32).				
1416.23 ⁱ 3	(2^{+})		В	ΕI	J^{π} : γ to 2^+ ; γ to 0^+ ; possible $K^{\pi}=2^+$ bandhead.				
1422.1 8	(5 ⁺ ,6 ⁺)			Н	J^{π} : indicated as J=5 member of $K^{\pi}=3^+$ band in $(^{238}U,^{238}U'\gamma)$, but 1413 level is adopted as that member here. γ from (7^+) , γ to 4^+ .				
1432.97 f 4	(4 ⁻)			Е	J^{π} : D(+Q) γ to 4 ⁺ ; γ to (3 ⁺); possible $K^{\pi}=1^{-}$ band member.				
1483.35 ⁱ 4	(3+)			Ef	J ^{π} : D+Q γ to 2 ⁺ ; possible 380 γ to 4 ⁺ ; possible K ^{π} =2 ⁺ band member.				
1483.75 ^f 6	(5^{-})			Ef I	J^{π} : γ to 4^+ : γ to 6^+ : possible $K^{\pi}=1^-$ band member.				
1487.81 12	$(4^+, 5^+)$			Е	J^{π} : 947 γ to 6 ⁺ ; γ -rays to (5 ⁺) and (3 ⁺).				
1496.15 ^g 8	(6 ⁻)		A	E GH	J^{π} : (M1,E2) 124 γ to (5 ⁻); γ to (4 ⁻); possible J=6 member of K ^{π} =4 ⁻ band.				
1500.87 19	≤4		В		J^{π} : γ to 2^+ .				
1506.21 ^j 8	(2-)			E	J ^{π} : D+Q γ to (3 ⁺); 572 γ to 2 ⁺ ; possible K ^{π} =2 ⁻ bandhead.				
1526.34 ^h 7	(4 ⁺)			E	J^{π} : 1448 γ to 2 ⁺ ; 1266 γ to 6 ⁺ .				
1539	(1 ⁻) ^{&}			F					
1543.46 ^e 14	(6 ⁺)			E H					

¹⁷⁰Er Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	Σ	KREF	Comments				
1556.72 ^d 8	(7^{+})			ЕН	J^{π} : γ to 6 ⁺ ; $K^{\pi}=2^+$ band member.				
1572.67 ^{<i>i</i>} 6	(4+)			Е	J ^{π} : D+Q γ to 4 ⁺ ; 638 γ to 2 ⁺ ; possible 336 γ to (5 ⁺); possible K ^{π} =2 ⁺ band assignment.				
1579.16 ^j 4	(3 ⁻)			EF I	J^{π} : (3 ⁻) from $\sigma(\theta)$ in (d,d'); D(+Q) γ to 2 ⁺ ; 1319 γ to 4 ⁺ .				
1590.80 ⁿ 9	(6 ⁻)	4.0 ns 10	A	EG	T _{1/2} : from (¹³⁶ Xe,Xγ). J ^π : M1 95γ to (6 ⁻) 1496; log <i>ft</i> =6.3 from (6 ⁺) ¹⁷⁰ Ho favors configuration=(ν 7/2[633])+(ν 5/2[512]) (2000Gr14).				
1631.00 ^f 8	(6 ⁻)			Е	J^{π} : 1090 γ to 6 ⁺ ; band assignment.				
1640.34 <mark>8</mark> 8	(7 ⁻)			E GH	J^{π} : 1100 γ to 6 ⁺ 541; 725 γ to (8 ⁺) 915; band assignment.				
1676.35 ^j 4	(4 ⁻)			Е	J^{π} : 460 γ to 3 ⁽⁺⁾ 1218; possible gammas to (2 ⁻) and (5 ⁺); band assignment in (n,n' γ).				
1677.3 [°] 6	(8^{+})			Н					
1683.59 ¹ 8	(5 ⁺)			E	J^{π} : γ -rays to 6 ⁺ and 4 ⁺ ; band assignment.				
1689.78 <i>10</i>	(5^+)			E	J^{π} : γ to 4 ⁺ .				
1694./ /	$(/^{+})$			н	π_{-} , π_{-} 0^{+} and $2^{(+)}$, and 2^{+} from $492.(0)$ in $(n - 1)$				
1699.69 4	(1^{-})			E	J^{*} : γ to U^{*} and $3^{*}\gamma$; not 2^{*} from $482\gamma(\theta)$ in (n,n γ).				
1/04.84 19	(/)			E 1	J [*] : band assignment.				
1708.17 ^k 6	(5 ⁻)			EF	J^{π} : γ -rays to 4 ⁺ and (5 ⁻) and (4 ⁻); (5 ⁻) favored by $\sigma(\theta)$ in (d,d') and by band assignment.				
1716.02" 16	(7 ⁻)			G					
1/41.8/ /	(A=)		4.D	E	π , D+O, π = 2 ⁽⁻⁾ , π = 40(π (0) and linear relation involu-				
1745.88? 0	(4)		AD	L	significant mixing for $\Delta J=0$ or J to J-1 transitions; J=4 favored by population probability in $(n,n'\gamma)$; possible $(\pi 7/2[523])+(\pi 1/2[411])$ bandhead (2000Gr14).				
1769.19 6				E	J^{π} : γ to 4^+ .				
1773.1 ^{<i>d</i>} 5	(8^{+})			Н					
1804.26 ⁸ 14	(8^{-})			GH					
1805.23 0	(3',4')			E	J^{*} : γ -rays to 2' and (5').				
1819.11 ^k 19	(6 ⁻)			E	J ^{<i>n</i>} : band assignment.				
1823.23 6	(6 ⁺)			E	J^{n} : band assignment.				
1824.61 ^{<i>i</i>} 6	1-	5.7 fs 5		DE	J^{π} : E1 γ to 0 ⁺ . T _{1/2} : Other: 15.3 fs +14–13 from (n,n' γ). reason for discrepancy unclear (1992Be29)				
1861.13 ⁿ 17	(8 ⁻)			G					
1867.7 ^e 5	(8+)			Н					
1899.7? <i>3</i>				E	J^{π} : γ -rays to (3 ⁺) and 2 ⁺ .				
1918.6 ^b 6	12+	0.57 ps <i>3</i>		HI	J^{π} : multiple Coulomb excitation; $K^{\pi}=0^+$ g.s. band member (1977Ke06). T _{1/2} : from Doppler broadened lineshape analysis in Coulomb excitation (2011Di07).				
1935.50 ¹ 11	(3 ⁻)			EF	J^{π} : D(+Q) γ to 2 ⁺ ; probable γ to 4 ⁺ ; (3 ⁻) from (d,d').				
1943.30° 22	(7)			G	possible K=7 intrinsic state.				
1963.9 <mark>d</mark> 6	(9+)			Н					
1973.04 ^m 8	1 ⁽⁺⁾		В	DE	J^{π} : D 1973 γ to 0 ⁺ g.s.; possibly allowed feeding from (1 ⁺) in ¹⁷⁰ Ho β^{-} decay (43 s).				
1982.61 11	$(1^+, 2^+)$			Е	J^{π} : γ to 0^+ and 3^+ .				
1982.8 <i>3</i>			В		J^{π} : γ to 2 ⁺ ; fed from (1 ⁺) in ¹⁷⁰ Ho β^- decay (43 s).				
1990.81 ⁸ 17	(9^{-})		_	GH					
$2019.07^{m} 17$	(2^{+})		В	EF					
2020.49* 20	(9)	0.10 ns 3	R	DF	I^{π} . D γ to 0^+				
2061.7 ^e 7	(9 ⁺)	0.10 Pb 5	2	Н					

¹⁷⁰Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2071.3 3	$(1,2^+)$		B EF	J^{π} : γ to 0^+ ; D+Q γ to 2^+ .
2080.52 13	2+		Е	J^{π} : E2 γ to 0^+ .
2080.7 [°] 6	(10^{+})		Н	
2106.70 3	(8)		G	
2112.2? 3	(2^{+})	$(2 f_{-} 0)$	EF	J': probable (E2) γ to 0 ⁺ .
2132.97 15	1	62 IS 9	B DE	Other $I_{1/2}$: see comment in (n,n γ).
2150.9 3	(5 ⁻)		E±	XREF: f(2154).
2158 04 12	(5^{+})		۸ f	J^{*} . Danu assignment. YREF: $f(2154)$
2156.94 12	(5)		A I	J^{π} : log ft =5.10 8 from (6 ⁺) in ¹⁷⁰ Ho β^- decay (2.76 min); 941 γ to $3^{(+)}$ 1217. Probable configuration=(ν 5/2[523])+(ν 5/2[512]) (2000Gr14) based on allowed unhindered β^- decay from (6 ⁺) ¹⁷⁰ Ho.
2168.40 15	(7)		G	possible intrinsic state; May be the $K^{\pi}=7^{-}$ (π 7/2[404])+(π 7/2[523]) bandhead (2010Dr02).
2188.45 ^g 24	(10 ⁻)		GH	
2190.17 19	$(4^+, 5, 6^+)$		EF	J^{π} : γ -rays to 6 ⁺ and 4 ⁺ .
2212.01 ^{<i>n</i>} 22	(10^{-})		G	
2223.2 ^{<i>a</i>} 6	(10^+)		Н	
2285.6° 6	(10^{+})		Н	
2289.7° 11	(9)		G	π , α to 0^+ and $2^{(+)}$
2399.04 24 $2407 9^{n} 3$	(1,2)		Er G	\mathbf{J} . γ to 0 and 5^{\times} .
2431.71^{p} 25	(8)		G	possible intrinsic state: May be $K^{\pi} = 8^{-1} (y \ 9/2[624]) + (y \ 7/2[512])$
	(*)		_	bandhead (2010Dr02).
2434.2 ^g 6	(11 ⁻)		Н	
2444.9 ^d 7	(11^{+})		Н	
2451.57 7	(4 ⁺)	76 fs +33–25	E	J^{π} : γ -rays to 2 ⁺ and 3 ⁺ levels; possible candidate for two-phonon excitation state $(4^+_{\gamma\gamma}$ level) from $(n,n'\gamma)$ (1999YoZY).
2518.9 ^e 7	(11^{+})		н	$1_{1/2}$. 110111 (11,11 γ).
2537.2 ^b 11	14+		н	
2551.1 [°] 7	(12^+)		н	
2603.1 ^{<i>p</i>} 4	(9)		G	
2606			F	
2656.5 <mark>8</mark> 3	(12^{-})		GH	
2657.4 5	(1.2+)		EF	J^{π} : γ to 4^+ .
2684.8 3	$(1,2^{+})$	$22 f_{0} 2$	B DE	J^{\prime} : γ to 0° and 2° .
2700.83 24	$(4^+ 5 6^+)$	25 18 5	D DE Ff	I^{π} : γ -rays to 4^+ and 6^+
2720.13? 17	$(3^+, 4^+)$		Ef	J^{π} : γ -rays to (5^+) and 2^+ .
2723.7 ^e 8	(12 ⁺)		Н	
2750.8 7	(1) ^{<i>a</i>}	≈0.15 ps	D	
2753.3 3	$(1,2^{+})$		E	J^{π} : γ to 0 ⁺ and 2 ⁺ . presumed to differ from 2751 level because its strong transition to g.s. is absent here.
2790.3 4	1 ^{+<i>a</i>}	7.7 fs 5	B DE	
2794.1 ^P 11	(10)		G	
2813.3 ^{<i>a</i>} 8	(12^{+})		Н	
2897 I	1 ^u	20.6.6	D	
2929.8 7	$(1, 2^+)$	39 IS 9	D F	Branching differs from that of 2931 level in $(n,n'\gamma)$.
2730.9 3	(1,2)		Ľ.	Branching differs from that for 2930 level in $(\sqrt{\nu'})$
2937.8 7	1 ^{<i>a</i>}	31 fs 5	D	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
2943.0 6	$(1,2^+)$		Е	J^{π} : γ to 0^+ .

¹⁷⁰Er Levels (continued)

E(level) [†]	J ^{π‡}	$T_{1/2}^{\#}$	XREF	Comments
2971.5 6	$1,2^{(+)}$		DE	J^{π} : γ to 0^+ ; J=1,2 from (γ, γ') .
$2973.2^{8} 12$ 2984 4 ^e 9	(13) (13^+)		Н	
2993.5? 5	$(1,2^+)$		Е	J^{π} : γ to 0^+ .
2995 1	1,2 ⁽⁺⁾		D	J^{π} : γ to 0 ⁺ ; J=1,2 from excitation in (γ , γ'). assumed to differ from 2993.5 level because γ deexcitation pattern differs.
3019 1	1 ^{<i>a</i>}		D	
3063.4 9	1^{a}	3.1 fs 4	DE	
3073.5 12 3073.9d 0	(14) (13^+)		п	
3084 1	1^a		D	
3177.8 7	1 ^{<i>a</i>}	7.9 fs 24	D	
3182.8 7	1^{a}	11 fs 4	D	
3189.2^{8} 11	(14)		Н	
3223.1° 14 3237.8 7	10^{-1}	27 fs 6	п	
3242.8 7	1^{a}	4.2 fs 6	D	
3275.9 ^e 12	(14^{+})		Н	
3405.8 7	$1^{(+)a}$	2.09 fs 10	D	Presumed to differ from 3405.9 level in $(n,n'\gamma)$ because γ branching differs.
3405.9 4	$(1,2^{+})$		Е	J^{\prime} : γ to 0^+ . Presumed to differ from 3406 level in (γ, γ') because γ branching differs.
3436.3 ^d 10	(14^{+})		Н	
3540	1 ^a		D	
3554 3566	1 ^a 1 ^a	10 fs 8	ע ת	
3572	1^{a}	4.9 13 0	D	
3583.1 <mark>8</mark> 16	(15 ⁻)		Н	
3584.9 ^e 14	(15^+)		Н	
3606.4 <i>4</i>	$(1^+, 2^+)$		ΒE	J ^{<i>n</i>} : 2715 γ to (0 ⁺) 891; β ⁻ branch from (1 ⁺) in ¹⁷⁰ Ho β ⁻ decay (43 s) is probably allowed unhindered, consistent with configuration=((ν 5/2[523]) \otimes (n 5/2[512]))2 ⁺ suggested in 2000Gr14
3623	1 ^{<i>a</i>}	3.3 fs 12	D	$5/2(525)(8(n-5/2(512)))^2$ suggested in 20000114.
3633.4 ^c 14	(16 ⁺)		Н	
3695	1 ^{<i>a</i>}		D	
3713.1 ^{<i>a</i>} 11	(15^+)		Н	
3792.1° 15 3892.1° 15	(10^{+})		н	
3978.4 ^b 15	18+		н	
4132.5 ^d 12	(16^{+})		Н	
4232.3 ^c 15	(18+)		Н	
4249.9 ^e 17	(17^{+})		Н	
4417.2 ^{<i>a</i>} 15	(17^+)		Н	
4447.78 13 4579.1 ^e 18	(18) (18^+)		H H	
4787.1 ^b 16	20^{+}		н	
4882.6 ^{<i>c</i>} 15	(20^+)		Н	
4888.7 ^d 16	(18 ⁺)		Н	
4978.3 ^e 20	(19 ⁺)		Н	
5206.6 ^d 18	(19^+)		Н	
5334.8° 21	(20^{+})		Н	

¹⁷⁰Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		
5558.9 [°] 17	(22^{+})	Н		
5674.8 ^b 17	22^{+}	Н		
6142.9 ^e 23	(22^{+})	Н		
6586.6 <mark>b</mark> 20	24+	Н		
7531.4 ^b 22	26+	Н		

[†] For states deexcited by γ rays, E(level) values are from least-squares fit to $E\gamma$ (omitting the poorly-fitting, doubly-placed 572 γ from 1676 level), except when level is excited in (γ, γ') alone or $(^{238}\text{U}, ^{238}\text{U}'\gamma)$ alone. ΔE for energies adopted from (d,d') is estimated by the evaluator to be $\leq 7 \text{ keV}$ (authors do not state ΔE).

[‡] Values given without comment are from deduced band structure in ${}^{170}\text{Er}({}^{238}\text{U},{}^{238}\text{U}'\gamma)$, supported by Coulomb excitation strengths, γ decay patterns and strengths, and band-mixing calculations.

[#] From (γ, γ') , except As noted.

- ^(a) Reported in Coulomb excitation only. A level with this J^{π} should have been clearly populated in $(n,n'\gamma)$ but no evidence exists for its excitation in that reaction. Consequently, the existence of this level is considered to be doubtful.
- [&] From $\sigma(\theta)$ and/or $\sigma(90^{\circ})/\sigma(125^{\circ})$, and band configuration analysis in (d,d').
- ^{*a*} From $\gamma(\theta)$ and/or γ linear polarization in (γ, γ') .
- ^b Band(A): $K^{\pi}=0^+$ g.s. band (2000Wu01). Rotational parameters: $\alpha=13.1$, $\beta=-0.007$. Definite J^{π} assigned to band members based on smooth progression of level energies and independently-established $J^{\pi}(g.s.)=0^+$ and mult(79 γ)=E2, unless band membership is uncertain.
- ^{*c*} Band(B): $K^{\pi}=(0)^+$ quasi β vibrational band (2000Wu01). Strongly mixed with γ band at J=4 (where β and γ -band energies are almost degenerate); becomes yrast at J=22 (2000Wu01). Rotational parameters: α =11.6, β =-0.016 (J=0,2,6 members). Note that the J=4 and 6 levels are assigned, instead, to the γ band in (n,n' γ) (2000Gr14), and *vice versa*.
- ^d Band(C): $K^{\pi}=2^+ \gamma$ vibrational band (2000Wu01). See comments on β band and $K^{\pi}=3^+$ band. Rotational parameters: $\alpha=13.4$, B=-0.010 (J=2,6,8); $\alpha=12.8$, B=-0.006 (J odd).
- ^{*e*} Band(D): $K^{\pi}=(3)^+$ band (2000Wu01). Significantly mixed with K=2 γ band as evidenced by strength of Coulomb excitation of a 3^+ band, presence of K-forbidden E2 transitions to g.s. band and repulsion between J=12 and 13 members of this band and the γ band (2000Wu01). Rotational parameters: $\alpha=10.9$, $\beta=-0.002$ (if 1413 level is J=5 member). Configuration=(ν 5/2[512])+(ν 1/2[521]) (2000Gr14).
- ^{*f*} Band(E): $K^{\pi} = (1)^{-}$ band (2000Gr14). Configuration=(ν 7/2[633])-(ν 5/2[512]) (2000Gr14).
- ^{*g*} Band(F): $K^{\pi}=(4^{-})$ band (2000Gr14). Rotational parameter: $\alpha=10.34$. Mixed configuration: comparable contributions from (ν 7/2[633])+(ν 1/2[521]) and (π 7/2[523])+(π 1/2[411]); supported by experimental band properties and expectations from multi-quasiparticle calculations.
- ^{*h*} Band(G): $K^{\pi}=(0^+)$ band (1992Be63). Rotational parameters: $\alpha=10.2$, $\beta=-0.006$. Includes a two-phonon component (2000Gr14). Possibly involves neutron-pair excitation into 7/2[633] orbital or into 1/2[521] orbital (1998GrZV).
- ^{*i*} Band(H): $K^{\pi}=(2^+)$ band (2000Gr14). Rotational parameters: $\alpha=11.2$, $\beta=-0.002$. Possible two-phonon $\beta\gamma$ component (2000Gr14,2000Gr33). Possible configuration=(ν 5/2[512]) $\otimes(\nu$ 3/2[512]) indicated In 1998GrZV appears to be a misprint; 3/2[512] orbital seems unlikely At this energy, and also leads to inconsistent K^{π} .
- ^{*j*} Band(I): $K^{\pi} = (2^{-})$ band (2000Gr14). Rotational parameter: $\alpha = 12.16$. Configuration=($\nu 9/2[624]$)-($\nu 5/2[512]$) (2000Gr14).
- ^k Band(J): $K^{\pi}=(5^{-})$ band (2000Gr14). Configuration=($\nu 9/2[624]$)+($\nu 1/2[521]$) (2000Gr14). Rotational parameter: $\alpha = 9.24$.
- ^{*l*} Band(K): $K^{\pi} = (0^{-})$, $\alpha = 1$ band (2000Gr14). Configuration=($\nu 7/2[514]$)-($\nu 7/2[633]$) (2000Gr14). Rotational parameter: $\alpha = 10.7$, $\beta = +0.032$.
- ^{*m*} Band(L): $K^{\pi}=1^{(+)}$ band (2000Gr14). Rotational parameter: $\alpha=11.5$.
- ^{*n*} Band(M): $K^{\pi}=(6^{-})$ band. possible configuration: $(\nu 7/2[633])+(\nu 5/2[512])$; consistent with observed alignment and In reasonable agreement with expected $g_{K}-g_{R}$. Transition energies are similar to those for the (6⁻) band in ¹⁶⁸Er. A $K^{\pi}=7^{-}$ (ν 7/2[633])+(ν 7/2[633])+(ν 7/2[514]) configuration, predicted At comparable excitation energy, is expected to have significantly smaller $g_{K}-g_{R}$. Note, however, that I(95 γ)/I(218 γ) and absence of a 322 γ to the 4⁻ 1269 level differ from expectations for the K^{π}=6⁻ bandhead

¹⁷⁰Er Levels (continued)

- option. ^o Band(N): K=(7) band. ^p Band(O): K=(8) band.

						Adopted L	evels, Gammas (contin	ued)	
							$\gamma(^{170}\mathrm{Er})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
78.590	2+	78.63 3	100	0.0	0+	E2 ^{&}		7.47	B(E2)(W.u.)=208 4 E_{γ} : weighted average of 78.63 3 (n,n' γ), 78.65 8 (¹⁷⁰ Ho β^{-} decay (2.76 min)). Mult : from $q(axp)$ in ¹⁷⁰ Ho β^{-} decay (2.76 min)
260.140 540.68	4 ⁺ 6 ⁺	181.570 <i>20</i> 280.523 <i>20</i>	100 100	78.590 260.140	2+ 4+	E2 E2		0.348 0.0848	Num.: non $a(exp)$ in $a(exp)$ in $b p$ decay (2.76 mm).
890.88 914.97 934.023	(0^+) 8^+ 2^+	812.29 <i>3</i> 374.27 <i>4</i> 673.72 <i>9</i> 855 445 23	100 100 1.39 <i>21</i> 100 <i>1</i> 5	78.590 540.68 260.140 78.590	2 ⁺ 6 ⁺ 4 ⁺ 2 ⁺	$(E2)^{\&}$ (E2)^{\&} [E2] E2(+M1)^{\&}	>14	0.0360	B(E2)(W.u.)= $3.7 \times 10^2 3$ B(E2)(W.u.)= $0.29 5$ B(M1)(W.u.)= 6.1×10^{-5} ; B(E2)(W.u.)> 5.3
		934.06 5	89.7 24	0.0	2 0 ⁺	E2(+MI)	214		δ : <-70 from Coulomb excitation but +17 +6-3 from (n,n' γ); discrepancy In signs not understood. B(E2)(W.u.)=3.68 <i>11</i>
959.994	2+	69	0.65 13	890.88	(0+)				I_{γ} : from Coulomb excitation. I_{γ} : from Coulomb excitation. E_{γ} : from level energy difference.
		699.870 22	65 <i>3</i>	260.140	4+	E2			B(E2)(W.u.)=1.42 20 I _{γ} : other: 95 from Coulomb Excitation, 71 11 from (n,n' γ).
		881.383 21	100 4	78.590	2+	E2+M1 ^{&}	+0.27 +19-8		B(M1)(W.u.)=0.00108 18; B(E2)(W.u.)= $0.05 + 7-5$ δ : other: +1.7 8 (Coulomb excitation).
1010.53	(3+)	959.96 6 750.379 23	63 6 14.6 8	0.0 260.140	0+ 4+	E2 (M1+E2)	-1.8×10 ² +11-46		B(E2)(W.u.)=0.28 3 I _{γ} : from ¹⁷⁰ Ho β^- decay (2.76 min). Others: 21 3 in (n,n' γ), 3.5 3 in Coulomb Excitation. Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta\pi$ =(no) from magnitude of δ . Other δ : +0.08 +4-3 or (1/ δ)=-0.03 +4-3 in (n,n' γ).
1103.36	4+	931.98 <i>4</i> 843.25 <i>3</i>	100 <i>5</i> 100 <i>6</i>	78.590 260.140	2+ 4+	(M1+E2) ^d M1+E2	-1.5×10 ² +8-50 +2.81 <i>10</i>		Other δ : 1/(-0.11 +11- δ) in (n,n' γ). Mult.: D+Q from (n,n' γ); E2(+M1) from Coulomb excitation. δ : from (n,n' γ). However, $\delta \leq -16$ In Coulomb excitation. Source of discremency In sign not apparent
		1024.69 <i>3</i>	30.1 19	78.590	2+	E2			I _y : weighted average of 29.6 21 from Coulomb excitation and 33 5 from $(n,n'\gamma)$.
1127.29	4+	193.2 ^{<i>c</i>} 586.67 ^{<i>h</i>} 14 867.18 4	13.8 ^h 21 100 7	934.023 540.68 260.140	2 ⁺ 6 ⁺ 4 ⁺	M1+E2 ^{&}	-9.8 +22-63		I _{γ} : from Coulomb excitation. δ : -1.29 +7-12 or -9.8 +22-63 in (n,n' γ), -4.3 +23-99 in Coulomb excitation
		1048.67 4	80 5	78.590	2^{+}	E2			I_{γ} : weighted average of 73 6 from Coulomb excitation,

 ∞

 $^{170}_{68}\mathrm{Er}_{102}\text{--}8$

							Adopted Lev	els, Gammas (contin	nued)	
							$\gamma(^{17}$	⁰ Er) (continued)		
E _i (le	evel)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\mathbf{g}}$	Comments
										86 12 from (n,n' γ). Other: 21 11 in ¹⁷⁰ Ho β^- decay
1217	7.50	3 ⁽⁺⁾	283.457 24	12.9 22	934.023	2+	[M1]		0.1553	(2.76 min). I_{γ} : from ¹⁷⁰ Ho β^- decay (2.76 min). Other: 25 3 in (n,n' γ).
			957.26 7	18.3 10	260.140	4+	D+Q			I_{γ} : from β^- decay. δ : +0.27 +9-6 or +6.6 +40-23 from (n,n' γ).
1236	6 68	(5 ⁺)	1138.99 3 695 92 $\frac{h}{5}$	100 4	78.590 540.68	2^+ 6 ⁺	(M1+E2) ^d	+14 +7-4		I_{γ} : from β^- decay (2.76 min).
1250	0.00	(5)	976 45 8	≤ 20	260 140	4+	$(M1+F2)^{d}$			$\delta + 0.12 \le \delta \le + 0.2$ or $\delta \ge + 10$ in 170 Er(n n'2)
1266	6.63	(1)-	1188.040 21	100 13	78.590	2+	E1			δ: δ(D,Q)=0.00 10 from (n,n'γ).
1268	8.68	(4 ⁻)	51.30 [@] 10	6.8 [@] 5	1217.50	3 ⁽⁺⁾	E1 [@]		0.355 6	B(E1)(W.u.)= $2.06 \times 10^{-6} 20$ E _y : from β^- decay only; γ absent in $(n,n'\gamma)$.
			141.50 [@] 9	4.6 [@] 6	1127.29	4+	[E1]		0.1293	B(E1)(W.u.)=6.7×10 ⁻⁸ 10 E _v : from β^- decay only: γ absent in (n n' γ)
			165.33 4	10.2 7	1103.36	4+	(E1) [@]		0.0856	$B(E1)(W.u.)=9.2\times10^{-8}$ 9
										I _{γ} : weighted average of 10.3 <i>13</i> from (n,n' γ) and 10.1 9 from β^- decay (2.76 min).
			258.136 20	100 5	1010.53	(3+)	D+Q ^f			I _{γ} : from β^- decay (2.76 min). Mult.: $\Delta \pi$ =(yes) from level scheme, but δ =-30 +7-13 in (n,n' γ) is unreasonably large for E1+M2.
			1008.3 3	0.25 8	260.140	4+	0			
1304	4.57	(4^{+})	87.16 [@] 9	16.4 ^{@} 23	1217.50	3 ⁽⁺⁾	M1 [@]		4.22	E_{γ} : absent in (n,n'_{γ}) .
			293.94 10	19 3	1010.53	(3+)	an sad			E_{γ} : absent in ¹⁷⁰ Ho β^- decay (2.76 min).
			1044.404	100	260.140	4 ⁺	(M1+E2) ^a	+6.3 +45-18		
1205	5 00	(2^{-})	1226.0 = 3	48°	/8.590	2+				
1305	5.23	(2)	1226.64 <i>6</i>	3.2 ⁴ 9 100 <i>16</i>	934.023 78.590	2^{+} 2^{+}				E_{γ}, I_{γ} : possible doublet in $(n, n'\gamma)$; intensity suitably divided.
1324	4.26	(0^{+})	390.11 ⁱ 10	16.5 23	934.023	2+				
		. ,	1245.69 4	100 14	78.590	2^{+}				
1332	2.0?	2+	398 ^{&i}	87 &	934.023	2+	M1+E2	-0.40 +15-20	0.059 5	B(M1)(W.u.)=0.028 5; B(E2)(W.u.)=13 9 Mult., δ : $\gamma(\theta)$ in Coulomb excitation; RUL.
			1332 ^{&i}	100&	0.0	0^+	E2 ^{&}			B(E2)(W.u.)=0.26 4
1340	0.18	3(-)	379.99 ^h 7	11.5 ^h 14	959.994	2+	c			
			1080.09 3	100 14	260.140	4+	$(E1+M2)^{f}$	+0.016 +23-17		
			1261.51 6	43 7	78.590	2*	D+Q			I_{γ} : other: <29 from Coulomb Excitation. $\delta_{1} = 0.014 \pm 4.5$ or -3.8 6 in (n n'2)
1350	0.48	(6^{+})	247.4 7	7.6 21	1103.36	4+				E_{α} : other: 247.0 in (²³⁸ U, ²³⁸ U' γ).
1550		(~)	809.78 7	100 17	540.68	6 ⁺				E_{γ} : other: 809.6 in (²³⁸ U, ²³⁸ U' γ).
			1090.6 4	<66	260.140	4+				E_{γ} : other: 1090.1 from (²³⁸ U, ²³⁸ U' γ).
1										

9

I

	Adopted Levels, Gammas (continued)											
					γ (¹⁷⁰ E	r) (continued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f J ²	f Mult. [‡]	δ^{\ddagger}	α^{g}	Comments				
1370.6?	(3 ⁻)	1292 ^{&i}	100&	78.590 2+								
1372.11	(5-)	103.46 10	100	1268.68 (4	-) M1 [@]		2.58					
		831.44 23	23 4	540.68 6+				I _{γ} : other: 15 from ¹⁷⁰ Ho β^- decay (2.76 min).				
		1111.81 <i>11</i>	46 [@] 4	260.140 4+				I_{γ} : other: 78 13 from (n,n' γ).				
1376.6	(10^{+})	461.5 ^{&} 5	100	914.97 8+	(E2) &		0.0203	B(E2)(W.u.)=320 22				
1385.40	2+	1125.28 3	51 7	260.140 4+	E2							
		1306.810 24	100 14	$78.590 2^+$	(M1+E2) ^a E2	-0.74 + 7 - 12						
1401.02	(6^{+})	1385.515 274.43h 21	$< 12^{h}$	1127.20 4+	E2 E2			Mult - from Coulomb excitation				
1401.92	(0)	861.26 6	100 14	540.68 6+	1.2			E_{α} : other: 860.5 in (²³⁸ U, ²³⁸ U' γ).				
		1141.0 ^{<i>c</i>}		260.140 4+				_y				
1413.12	(5 ⁺)	108.32 14	24 4	1304.57 (4	+)							
		195.58 9	14.5 21	$1217.50 3^{(-)}$				Ly unighted average of 22.8 in $(n n'x)$ 10.4 in				
		872.407	22.3	540.68 6	D+Q			1_{γ} : weighted average of 32 8 in (n,n γ), 19 4 in $170 \text{Ho} \beta^{-}$ decay (2.76 min)				
								$\delta: 0.15 + 7 - 6 \text{ or } -30 < \delta < -1.6 \text{ in } (n, n' \gamma).$				
		1153.14 8	100 [@] 9	260.140 4+				E_{γ} : possible multiplet in $(n,n'\gamma)$.				
1416.23	(2^{+})	405.71 ^h 9	≤64 ^h	1010.53 (3	+)							
		456.53 12	19.2 25	959.994 2+				I _{γ} : from I(457 γ)/I(1338 γ) in ¹⁷⁰ Ho β^- decay (43 s).				
		482.200 ^h 23	≤254 ^h	934.023 2+								
		1337.64 3	$100 \ 14$	78.590 2+	D+Q	+4.9 +12-9						
		1415.6" 5	86" 12	0.0 0+				E_{γ}, I_{γ} : other: 1416.23 7, 1(1416 γ)/1(1338 γ)=1.14 17				
1422.1	$(5^+, 6^+)$	1161.9 ^c		260.140 4+								
1432.97	(4 ⁻)	422.63 ^h 14	5.0 ^h 7	1010.53 (3	+)							
	. ,	1172.82 <i>3</i>	100 14	260.140 4+	(E1+M2) ^f	+0.02 +4-3						
1483.35	(3 ⁺)	356.27 ^h 14	9 ^h 4	1127.29 4+								
		379.99 ^h 7	29 ^h 4	1103.36 4+								
		472.84 4	95 12	1010.53 (3	+)							
		549.31 ^h 8	$\leq 68^{h}$	934.023 2+								
		1223.55 ^{hi} 9	≤84 ^{<i>h</i>}	260.140 4+	5.0			δ : δ (D,Q)=-0.06 +3-4 for doubly-placed γ in (n,n'γ).				
1402 75	(5-)	1404.73 4	100 14	78.590 2+	D+Q	+5.1 +15-12						
1483.75	(5)	330.27 ^m 14 943.09.6	19" 8 100 15	1127.29 4 ⁺ 540.68 6 ⁺								
		$122355^{h}9$	<185 ^h	260 140 4+				δ : δ (D O)=-0.06 + 3-4 for doubly-placed γ in (n n' γ)				
1487 81	$(4^+ 5^+)$	250.8^{h} 3	4.5^{h} 12	1236.68 (5)	+)			I_{ν} : relative to I(477 γ doublet)				
1107.01	(1,5)	477.21 ^{<i>hi</i>} 6	100^{h} 14	1010.53 (3)	+)							
		947.19 12	12.9 20	540.68 6+	,			I_{γ} : relative to I(477 γ doublet).				

10

 $^{170}_{68}\mathrm{Er}_{102}\text{--}10$

					Ad	lopted Levels	, Gammas (con	tinued)			
γ ⁽¹⁷⁰ Er) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments		
1496.15	(6 ⁻)	123.90 [@] 14	100 [@] 19	1372.11	(5^{-})	(M1,E2) [@]		1.44 11	$\overline{E_{\gamma}}$: absent in $(n,n'\gamma)$.		
	(-)	227.41 [@] 9	100 [@] 13	1268.68	(4 ⁻)	[E2]		0.1650	E_{γ} : other: 227.21 6 in (n,n' γ).		
1500.87	≤4	540.9 [#] 2	100#	959.994	2+						
1506.21	(2 ⁻)	288.9 <i>3</i>	12.8 23	1217.50	3 ⁽⁺⁾						
		495.67 7	100_16	1010.53	(3+)	D+Q			δ: 0.10 4 or -12 +4-5 in (n,n'γ).		
		572.22 ^h 5	≤377 ^{<i>h</i>}	934.023	2+						
1526.34	(4^{+})	422.63 ^h 14	9.4 ^h 13	1103.36	4+						
		985.80 17	12.5 19	540.68	6^+						
		1200.24δ	100 13	200.140	4 · 2+						
1543 46	(6^{+})	$1447.97^{\circ} 20$ 237 4 [°]	30" 0	1305 23	(2^{-})				F : absent in $(n n' \gamma)$		
1343.40	(0)	1002.63.17	100.15	540.68	(2) 6 ⁺				E_{γ} : absent in (iii, i' γ). E_{γ} : other: 1000.8 in (²³⁸ U). ²³⁸ U' γ).		
		1283.61 20	46 7	260.140	4+				E_{γ} : other: 1281.3 in (²³⁸ U, ²³⁸ U' γ).		
1556.72	(7^{+})	320.2 ^c		1236.68	(5^{+})				E_{γ} : from (²³⁸ U, ²³⁸ U' γ) only.		
		641.71 ^h 22	≤85 ^{<i>h</i>}	914.97	8+						
		1016.04 7	100 15	540.68	6+						
1572.67	(4^{+})	336.05 ^h 10	46 ^h 6	1236.68	(5^{+})						
		445.29 15	24 4	1127.29	4 ⁺						
		469.29 16	20.3	1103.36	4'						
		562.30 ⁿ 12	38" 15	1010.53	(3^+) 2+						
		1312.51 11	100 15	260.140	$\frac{2}{4^{+}}$	D+O			δ : -0.59 +7-8 or +3.5 +10-6 in (n.n' γ).		
1579.16	(3^{-})	274.43^{h} 21	<8.3 ^h	1304.57	(4 ⁺)	2.4			E_{α} : feeds 1304 (3 ⁻), or 1304 (4 ⁺), or both levels.		
1079110	(0)	451.72 6	54 7	1127.29	4 ⁺						
		475.47 7	25 4	1103.36	4+						
		568.65 ^h 9	≤127 ^{<i>h</i>}	1010.53	(3+)						
		645.23 <i>3</i>	100 15	934.023	2+	D(+Q)	-0.07 + 4 - 5				
		1319.1 3	34 5	260.140	4+				E_{γ}, I_{γ} : multiplet; intensity not divided.		
1590.80	(6 ⁻)	94.67 [®] 8	100 8	1496.15	(6 ⁻)	MI		3.33	B(M1)(W.u.)=0.0014 4		
		219 (0.10	4700	1270-11	(5-)				E_{γ} : absent in (n, n' γ).		
		218.09 10	470 9	13/2.11	(5)				E_{γ} : from r_{β} Ho β decay (2.76 min); possible doublet in $(n n' \gamma)$		
1631.00	(6-)	280.523 20	$<6 \times 10^{3}$	1350.48	(6^{+})				$E_{y}I_{y}$; for doublet; intensity not divided.		
	(~)	620.46^{i} 17	100 15	1010.53	(3 ⁺)				<i>i</i> ,		
		1090.6^{h} 4	<203 ^h	540.68	6+						
1640.34	(7^{-})	144.5 10		1496.15	(6 ⁻)				E_{γ} : from (²³⁸ U, ²³⁸ U' γ). Other: 142.9 2 In (¹³⁶ Xe,X γ).		
	. ,								Absent In $(n,n'\gamma)$.		
									I_{γ} : $I_{\gamma}/I(268\gamma)=0.45$ 6 from (¹³⁶ Xe,X γ).		
		268.0 10		1372.11	(5 ⁻)				E_{γ} : from (²³⁸ U, ²³⁸ U'γ). Other: 266.8 2 In (¹³⁶ Xe,Xγ).		

From ENSDF

 $^{170}_{68}\mathrm{Er}_{102}$ -11

Adopted Levels, Gammas (continued)												
	$\gamma(^{170}\text{Er})$ (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments					
							Absent In $(n,n'\gamma)$.					
1640 34	(7^{-})	725 29 8	77 14	914 97	8+		I_{γ} : from (¹³⁰ Xe,X γ).					
10+0.5+	(7)	1099.99 11	100 14	540.68	6 ⁺							
1676.35	(4 ⁻)	370.99 ^h 17	5.6 ^h 15	1305.23	(2 ⁻)							
		439.50 ^h 5	24 ^h 3	1236.68	(5 ⁺)							
		459.55 21	3.5 6	1217.50	3 ⁽⁺⁾							
		549.31 ^h 8	$23^{h} 4$	1127.29	4+							
		572.22 ⁿ 5	100 ⁿ 13	1103.36	4+							
		665.84 ^{<i>n</i>} 5	$20^{n} 3$	1010.53	(3^+)		δ : -6.4< δ (D,Q)<-2.0 if J=4 (for doublet).					
1677.3	(8^{+})	326.9 [°]	4/ /	1350.48	(6^+)		r_{γ} . for doublet, intensity not divided.					
	. ,	762.4 ^c		914.97	8+							
		1136.5 ^C	h	540.68	6+							
1683.59	(5^{+})	447.2 ^{<i>n</i>} 3	$\leq 27''$	1236.68	(5^+)							
		1142.78 9	91.3	540.68	$^{4}_{6^{+}}$							
		1423.4 3	≤109	260.140	4+		E_{γ} : possible multiplet.					
1689.78	(5+)	562.30 ^h 12	50 ^h 20	1127.29	4+							
		586.67 ^h 14	100 ^h 15	1103.36	4+							
1694.7	(7^{+})	272.6 ^C		1422.1	$(5^+, 6^+)$							
1600 60	(1^{+})	1134.0°	<750 ^h	1217 50	0 3(+)							
1099.09	(1)	1699.57 9	100 15	0.0	0^{+}							
1704.84	(7 ⁻)	1164.16 18	100	540.68	6+							
1708.17	(5 ⁻)	336.05 ^h 10	35 ^h 5	1372.11	(5 ⁻)							
		439.50 ^h 5	100 ^h 12	1268.68	(4 ⁻)							
1716.00	(7-)	1447.97 ⁿ 20	56 ⁿ 9	260.140	4^+							
1741 87	(/)	125.5° 2 1663.27.6	100	1590.80	$\binom{6}{2^+}$							
1745.88?	(4^{-})	405.71^{h} 9	$69^h 8$	1340.18	2 3(-)	D+O	E_{ac} : absent in ¹⁷⁰ Ho β^{-} decay (2.76 min).					
	(-)	477.21 ^h 6	100 ^h 14	1268.68	(4 ⁻)		E_{γ} : other: 477.4 2 in ¹⁷⁰ Ho β^- decay (2.76 min).					
1769.19		641.71 ^{<i>h</i>} 22	32 ^h 6	1127.29	4+							
		665.84 ^h 5	100 ^h 14	1103.36	4+							
1773.1	(8+)	371.6 ^c		1401.92	(6+)							
		858.0 ^C		914.97 540.68	8+ 4+							
1804 26	(8^{-})	1252.1° 164 3 ^e 2	24 ^e 3	540.08 1640 34	(7^{-})		F_{x} : other 164.5 10 from $(^{238}\text{U}^{238}\text{U}'\gamma)$					
1001.20		10110 2	2. 5	101010101	(')		I_{γ} : other: 43 9 from (²³⁸ U, ²³⁸ U' γ).					

From ENSDF

 $^{170}_{68}\mathrm{Er}_{102}$ -12

Adopted Levels, Gammas (continued)												
$\gamma(^{170}\text{Er})$ (continued)												
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α ^g	Comments				
1804.26	(8 ⁻)	307.5 ^e 2	100 ^e	1496.15 (6 ⁻)								
1805.23	(3+,4+)	568.65 ^h 9 678.27 16 1544.96 8 1726.1 3	278 ^h 43 22 4 100 15 62 10	$\begin{array}{cccc} 1236.68 & (5^+) \\ 1127.29 & 4^+ \\ 260.140 & 4^+ \\ 78.590 & 2^+ \end{array}$				E_{γ} : multiplet. E_{γ} : possible multiplet; intensity not divided.				
1819.11	(6 ⁻)	447.2 ^h 3 1278.32 23	$ {}^{\leq 170}_{100 \ 40} $	$\begin{array}{rrr} 1372.11 & (5^{-}) \\ 540.68 & 6^{+} \end{array}$								
1823.23	(6 ⁺)	250.8 ^h 3 586.67 ^h 14 695.92 ^h 5 720.6 10	9.6 ^h 26 87 ^h 13 100 ^h 13 11 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				E_{v} , I_{v} : multiplet: intensity not divided.				
		1282.3 4	10.0 17	540.68 6+								
1824.61	1-	1746.01 5	100 ^{<i>a</i>} 3	78.590 2+	(E1)			B(E1)(W.u.)=0.0045 5 Mult.: D from $(n,n'\gamma)$; adopted $\Delta \pi$ =yes. $\delta(D,Q)=-0.1 3$ from $(n,n'\gamma)$.				
		1824.6 <i>3</i>	61.35 ^a	$0.0 0^+$	E1 ^b			B(E1)(W.u.)=0.00242 22				
1861.13	(8 ⁻)	$145.1^{e} 2$ 270.4 ^e 2	100 ^e 15.9 ^e 11	$\begin{array}{ccc} 1716.02 & (7^{-}) \\ 1590.80 & (6^{-}) \end{array}$								
1867.7	(8+)	325.6 ^c 465.9 ^c 952.3 ^c 1326.4 ^c		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$								
1899.7?		889.8 5 1820.9 <i>3</i>	59 <i>16</i> 100 <i>18</i>	$\begin{array}{ccc} 1010.53 & (3^+) \\ 78.590 & 2^+ \end{array}$								
1918.6	12^{+}	541.9 ^{&} 5	100 ^{&}	1376.6 (10^+)	(E2) ^{&}		0.01341	B(E2)(W.u.)=375 20				
1935.50	(3 ⁻)	1675.38 <i>14</i> 1856.88 <i>14</i>	96 <i>17</i> 100 <i>17</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D(+Q)	-0.03 +4-5		E_{γ} , I_{γ} : possible multiplet; intensity not divided.				
1943.30	(7)	352.5° 2	100	$1590.80 (6^{-})$								
1963.9	(9.)	407.0°		1556.72 (7) 014.07 8 ⁺								
1973.04	$1^{(+)}$	1894.43 8 1973.1 <i>3</i>	100 <i>3</i> 81 <i>3</i>	$\begin{array}{c} 78.590 & 2^+ \\ 0.0 & 0^+ \end{array}$	D							
1982.61	(1+,2+)	765.11 <i>10</i> 1090.6 ^{hi} 4	100 <i>15</i> ≤167 ^h	$\begin{array}{ccc} 1217.50 & 3^{(+)} \\ 890.88 & (0^+) \end{array}$								
1982.8		482.0 [#] 3	79 [#] 3	1500.87 ≤4								
		1022.7 [#] 4	100 [#] 5	959.994 2+								
1990.81	(9-)	186.3 ^e 2	50 12	1804.26 (8-)				I_{γ} : from (²³⁸ U, ²³⁸ U' γ).				
		350.7 ^e 2	100	1640.34 (7 ⁻)				I_{γ} : from (²³⁸ U, ²³⁸ U' γ).				
2019.07	(2^{+})	1059.2 <i>3</i> 1940.41 <i>20</i>	8.2 <i>18</i> 100 <i>18</i>	959.994 2 ⁺ 78.590 2 ⁺								

13

 $^{170}_{68}\mathrm{Er}_{102}$ -13

L

From ENSDF

 $^{170}_{68}\mathrm{Er}_{102}$ -13

$\gamma(^{170}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
2026.49	(9 ⁻)	165.4 ^e 2 310.4 ^e 2	100 ^e 46 ^e 3	1861.13 1716.02	(8 ⁻) (7 ⁻)		
2039.31	1	1960.7 [#] 4	93 [#] 10	78.590	2 ⁺	D	I _{γ} : other: 52 8 in (n,n' γ) where 1961 γ is possible doublet.
2061.7	(9 ⁺)	2039.3 3 366.9 ^c 1146.8 ^c	100" 10	0.0 1694.7 914.97	0^+ (7 ⁺) 8 ⁺	D	
2071.3	$(1,2^+)$	1992.8 <i>3</i> 2071 0 5	100 <i>15</i> 21 3	78.590 0.0	$2^+_{0^+}$	D+Q	δ : -0.14 +6-5 or +3.5 +7-6 in (n,n' γ).
2080.52	2+	953.0 <i>3</i> 1070.1 <i>3</i> 2080 53 <i>1</i> 5	3.2 <i>10</i> 4.6 <i>10</i> 100 <i>1</i> 5	1127.29 1010.53	$ \begin{array}{c} 0 \\ 4^+ \\ (3^+) \\ 0^+ \end{array} $	F2	
2080.7	(10 ⁺)	403.5 ^c 704.2 ^c 1165.9 ^c	100 12	1677.3 1376.6 914.97	(8 ⁺) (10 ⁺) 8 ⁺		
2106.7 2112.2?	(8) (2^+)	163.4 ^e 2 1177.8 3	100 11 <i>3</i>	1943.30 934.023	(7) 2 ⁺		
		2034.65	13 <i>3</i> 100 23	78.590	2^+	(E2)	
2132.97	1	2054.37 <i>15</i>	$39^a 10$	78.590	0^{+}	(E2)	I γ :I γ (2133 multiplet)=108 15:100 15 in (n,n' γ), suggesting 2054 γ is multiplet there.
2150.9	(5 ⁻)	2132.9 <i>4</i> 1610.2 <i>7</i> 1890.8 <i>3</i>	100 ^a 54 12 100 19	0.0 540.68 260.140	$0^+ 6^+ 4^+$	D ^D	E_{γ} : multiplet in $(n,n'\gamma)$. E_{γ},I_{γ} : multiplet (1992BE63); intensity not divided.
2158.94	(5 ⁺)	$413.2^{@} 2$ $662.9^{@i} 3$ $746.0^{@i} 2$ $786.3^{@} 5$	14.3 [@] 9 5.5 [@] 7 7.0 [@] 10 22 [@] 4	1745.88? 1496.15 1413.12 1372.11	(4 ⁻) (6 ⁻) (5 ⁺) (5 ⁻)		
		$854.7^{@} 5$ $890.2^{@} 2$	48 [@] 7 100 [@]	1304.57 1268.68	(4^+) (4^-)		E_{γ} , I_{γ} : probable doublet dominated by this transition; divided $I\gamma$ given.
2168.40	(7)	941.4 2 452.7 ^e 2 577.4 ^e 2 672.1 ^e 2	94.0 [©] 20	1217.50 1716.02 1590.80 1496.15	(7^{-}) (6^{-}) (6^{-})		
2188.45	(10 ⁻)	197.1 ^c 10 384 2 ^e 2	23 6 100	1990.81 1804 26	(9^{-}) (8^{-})		L: from $\binom{238}{238} \frac{1}{238} \frac{238}{1} \frac{1}{2} \frac{2}{2}$
2190.17	(4+,5,6+)	885.52 20 1063.8 7 1649.5 5	56 <i>13</i> 100 <i>22</i> 66 <i>1</i> 0	1304.57 1127.29	(4^+) 4^+ 6^+		y. nom (
2212.01	(10 ⁻)	185.5 ^e 2	100 ^e	2026.49	(9 ⁻)		
2223.2	(10 ⁺)	350.9 ^c 2 450.2 ^c	46° 5	1861.13 1773.1	(8^{+}) (8 ⁺)		

14

From ENSDF

	Adopted Levels, Gammas (continued)									
							$\gamma(^{170}\text{Er})$ (continued)			
							<u>y(Li) (continued)</u>			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	Comments			
2223.2	(10 ⁺)	846.5 ^C		1376.6	(10^+)					
2285.6	(10 ⁺)	418.2 [°]		914.97 1867.7	(8^+)					
		512.5 ^C		1773.1	(8^+)					
2289.7	(9)	183 ^e 1	100	2106.7	(8)					
2399.04	$(1^+, 2^+)$	1182.1 4	73 17	1217.50	$3^{(+)}$					
2407.9	(11)	2398.73 381.4^{e} 2	100 17	0.0 2026.49	(9^{-})					
2431.71	(8)	263.3 ^e 2	100	2168.40	(7)					
		716 ^e 1		1716.02	(7-)					
2434.2	(11 ⁻)	244.6 [°] 10	57 15	2188.45	(10 ⁻)					
2444.0	(11+)	443.6° 10	100	1990.81	(9^{-})					
2444.9	(11^{+})	481.0°		1963.9	(9^{+})					
2451 57	(4^+)	1441.03.6		1010 53	(10) (3^+)					
2-131.37	(+)	1518		934.023	2^+					
2518.9	(11^{+})	457.2 ^c		2061.7	(9^+)					
		555.0 ^C		1963.9	(9 ⁺)					
		1142.3 ^c		1376.6	(10^{+})					
2537.2	14+	618.5 ^c	100	1918.6	12+					
2551.1	(12^{+})	470.6 ^c		2080.7	(10^+)					
		032.0°		1918.0	12^{-1}					
2603-1	(9)	1774.0 1714 ^e 2	100	2431 71	(10)					
2656.5	(12^{-})	221.5° 10	34.8	2434.2	(11^{-})					
		468.1 ^e 2	100	2188.45	(10 ⁻)		I_{γ} : from (²³⁸ U, ²³⁸ U' γ).			
2657.4		1352.8 5	100 27	1304.57	(4 ⁺)					
		1530.7 ⁱ 7	40 10	1127.29	4+					
2684.8	$(1,2^{+})$	2606.1 [#] 4	96 <mark>#</mark> 9	78.590	2+		I_{γ} : other: 19 8 in $(n,n'\gamma)$; possibly 2683.6 γ in $(n,n'\gamma)$ is a multiplet.			
		2684.8 [#] 4	100 [#] 7	0.0	0^{+}					
2700.83	1	2622.4 4	48 ^a 6	78.590	2^{+}		I_{γ} : other: 97 15 from $(n,n'\gamma)$.			
		2700.7 <mark>b</mark> 3	100 ^{<i>a</i>}	0.0	0^{+}	D ^b				
2717.2	$(4^+, 5, 6^+)$	1590.2 <i>3</i>	100 22	1127.29	4+					
		1612.5 7	30 8	1103.36	4+					
		2176.6 ¹ 10	64 40	540.68	6+		E_{γ} , I_{γ} : possible multiplet: intensity not divided.			
2720.13?	$(3^+, 4^+)$	1483.38 17	100 14	1236.68	(5^+)					
		1617.3 5	/3	1103.36	4'					
2722 7	(10+)	1786.4 17	196	934.023	2^+		E_{γ}, I_{γ} : possible multiplet; intensity not divided.			
2123.1	(12.)	438.1°		2285.6	(10^{+})					
		500.4		2223.2	(10)					

15

$\gamma(^{170}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
2750.8	(1)	2672 ^b	$\approx 0^{a}$	78.590 2+		
2753.3	(1.2^{+})	2751 ⁶ 1862.6.3	100 ^a 22.8	$0.0 0^+$ 890.88 (0^+)	(D)	
	(-,=)	2673.1 9	100 24	78.590 2+		
2790.3	1+	2711.2 12	$52^{a} 5$	$78.590 \ 2^+$	M1b	$P(M1)(W_{11}) = 0.097.7$
2794.1	(10)	191 ^e 1	100	2603.1 (9)	1111	B(M1)(W.u.)=0.067 /
2813.3	(12^{+})	527.7 ^C		2285.6 (10^+)		
2897	1	2897	100	2223.2 (10 ⁺) 0.0 0 ⁺	D ^b	
2929.8	1	2851 ^b	88 ^{<i>a</i>} 20	78.590 2+	D	
	(1 a 1)	2930 ^b	100 ^{<i>a</i>}	$0.0 0^+$	D ^b	
2930.9	$(1,2^+)$	1996.7 3 2852.6 5	100 <i>16</i> 51 <i>11</i>	934.023 2^+ 78.590 2^+		
2937.8	1	2859 ^b	61 ^{<i>a</i>} 13	78.590 2+		
2042.0	(1.0+)	2938 ^b	100 ^a	$0.0 0^+$	D ^b	
2943.0	$(1,2^{+})$	2051.9 6 2865.1 <i>10</i>	71 21 100 29	890.88 (0 ⁺) 78.590 2 ⁺		
	()	2938 ⁱ 3	71 29	$0.0 0^+$		E_{γ} , I_{γ} : possible multiplet; intensity not divided.
2971.5	$1,2^{(+)}$	2893.4 6 2968 8 13	100 18	$78.590 \ 2^+ \ 0.0 \ 0^+$		E_{γ} : absent In (γ, γ') .
2973.2	(13 ⁻)	539.0 [°] 10	100	2434.2 (11 ⁻)		L_{γ} . outer. 2575 from (γ, γ) .
2984.4	(13+)	465.5 ^C 539.5 ^C		2518.9 (11^+) 2444.9 (11^+)		
2993.5?	$(1,2^+)$	2102.3 5	100 17	$\begin{array}{c} 2444.9 \\ 890.88 \\ (0^{+}) \end{array}$		
2005	1.2(+)	2919.0 <i>18</i>	21 8	78.590 2+		
2995	1,2(1)	2995 ⁰ 3010 ^b	100	$0.0 0^{+}$	D ^b	
3063.4	1	2984.1 <i>15</i>	100^{a} 9	$78.590 2^+$	D	E_{γ} : for possible multiplet.
2072.2	(1.4+)	3063.8 11	41.0 ^{<i>a</i>}	$0.0 0^+$	D ^b	
3073.3 3073.9	(14^{+}) (13^{+})	522.3° 555.0°	100	$\begin{array}{ccc} 2551.1 & (12^{+}) \\ 2518.9 & (11^{+}) \end{array}$		
	. ,	629.0 ^C		2444.9 (11+)	L	
3084	1	3084 ^b	100	$0.0 0^+$	D ^D	
31//.8	1	3099 ⁸ 3178 ^b	$100^{a} 22$ 41^{a}	/8.590 2 ⁺	D ^b	
3182.8	1	3104 ^b	$100^{a} 25$	78.590 2 ⁺	D	
		3183 ^b	45 ^a	0.0 0+	D ^b	
3189.2	(14 ⁻)	532.7 [°] 10	100	2656.5 (12 ⁻)		

Adopted Levels, Gammas (continued)										
						-	$\gamma(^{170}\text{Er})$ (continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	Comments			
3225.7	16+	688.4 ^C	100	2537.2	14+					
3237.8	1	3159 <mark>b</mark>	51 ^a 17	78.590	2^{+}					
		3238 <mark>b</mark>	100 ^a	0.0	0^{+}	D ^b				
3242.8	1	3164 <mark>b</mark>	93 <mark>a</mark> 8	78.590	2+					
		3243 <mark>b</mark>	100 ^a	0.0	0^{+}	D ^b				
3275.9	(14+)	552.2 ^C	100	2723.7	(12^{+})					
3405.8	$1^{(+)}$	3327 <mark>b</mark>	46.1 ^{<i>a</i>} 23	78.590	2^{+}					
3405.9	(1,2+)	3406 ^b 2472.4 6 3326.3 7 3406 2 8	100 ^a 261 <i>50</i> 100 28 78 22	0.0 934.023 78.590	0^+ 2^+ 2^+ 0^+	D ^b	B(M1)(W.u.)=0.175 25 E _{γ} : possible multiplet in (n,n' γ);			
3436.3	(14 ⁺)	623.0 ^c 712.6 ^c	10 22	2813.3 2723.7	(12 ⁺) (12 ⁺)					
3540	1	3540 ^b	100	0.0	0^{+}	D ^b				
3554	1	3554 ^b	100	0.0	0^{+}	D ^b				
3566	1	3487 <mark>b</mark>	42 ^{<i>a</i>} 8	78.590	2+					
		3566 <mark>b</mark>	100 ^a	0.0	0^{+}	D ^b				
3572	1	3572 ^b	100	0.0	0^{+}	D ^b				
3583.1	(15 ⁻)	609.9 [°] 10	100	2973.2	(13 ⁻)					
3584.9	(15^{+})	600.5 ^C	100	2984.4	(13+)		170			
3606.4	$(1^+, 2^+)$	2646.5 # 4	100 8	959.994	2+		I _{γ} : from I γ /I(2715 γ)=1.52 22 in ¹⁷⁰ Ho β^- decay (43 s) γ -ray absent In (n,n' γ).			
		2715.1 8	66# 8	890.88	(0^{+})		$E\gamma = 2716.1 \ 4 \text{ in } (n,n'\gamma).$			
3623	1	3544 ⁰	100 ^{<i>a</i>} 43	78.590	2^{+}	1				
		3623 ^b	71 ^a	0.0	0+	D ^D				
3633.4	(16 ⁺)	560.1	100	3073.3	(14+)					
3695	1	3616 ⁰		78.590	2+	- h				
3713.1	(15 ⁺)	3695 ⁰ 639.2 ^c 728.7 ^c		0.0 3073.9 2984.4	0 ⁺ (13 ⁺) (13 ⁺)	D				
3792.1	(16 ⁻)	602.9 ^c 10	100	3189.2	(14 ⁻)					
3892.1	(16^{+})	616.2 ^C	100	3275.9	(14^+)					
3978.4 4132.5	18^{+}	/52.7°	100	3225.1 3436.3	10^{+} (14 ⁺)					
4132.3	(10)	856.6 ^C		3275.9	(14) (14^+)					
4232.3	(18^{+})	599.0 ^C	100	3633.4	(16 ⁺)					
4249.9	(17^{+})	665.0 ^C	100	3584.9	(15 ⁺)					
4417.2	(17^{+})	704.1 ^c	100	3713.1	(15 ⁺)					
4447.7	(18^{-})	655.6° 10	100	3792.1	(16^{-})					
4379.1	(10)	087.0-	100	3092.1	(10.)					

From ENSDF

 $^{170}_{68}\mathrm{Er}_{102}$ -17

 $^{170}_{68}\mathrm{Er}_{102}$ -17

$\gamma(^{170}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
4787.1	20+	808.7 ^C	100	3978.4 18+	5558.9	(22^{+})	676.4 ^C		4882.6 (20 ⁺)
4882.6	(20^{+})	650.3 ^C		4232.3 (18+)			771.8 ^C		4787.1 20+
		904.1 ^C		3978.4 18+	5674.8	22^{+}	792.3 ^C		4882.6 (20+)
4888.7	(18^{+})	756.2 ^C	100	4132.5 (16 ⁺)			887.7 ^C		4787.1 20+
4978.3	(19^{+})	728.4 ^C	100	4249.9 (17 ⁺)	6142.9	(22^{+})	808.1 ^C	100	5334.8 (20 ⁺)
5206.6	(19^{+})	789.4 ^C	100	4417.2 (17 ⁺)	6586.6	24+	911.7 ^C	100	5674.8 22+
5334.8	(20^{+})	755.7 ^c	100	4579.1 (18+)	7531.4	26^{+}	944.8	100	6586.6 24+

[†] From ¹⁷⁰Er(n,n' γ), except as noted.

[±] From $\gamma(\theta)$ and/or γ linear polarization in $(n,n'\gamma)$, except as noted.

[#] From ¹⁷⁰Ho β^- decay (43 s). [@] From ¹⁷⁰Ho β^- decay (2.76 min).

[&] From Coulomb excitation.

^{*a*} From $\Gamma_{\gamma 0}/\Gamma$ in (γ, γ') .

18

^{*b*} From (γ, γ') . ^{*c*} From $(^{238}\text{U}, ^{238}\text{U}'\gamma)$.

^d D+Q or D(+Q) in $(n,n'\gamma)$; adopted $\Delta \pi = no$.

^{*e*} From ¹⁷⁰Er(¹³⁶Xe,X γ).

^{*f*} D+Q in (γ, γ') ; adopted $\Delta \pi$ =yes.

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with undivided intensity.

^{*i*} Placement of transition in the level scheme is uncertain.

 $^{170}_{68}{\rm Er}_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{170}_{68}\mathrm{Er}_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁷⁰₆₈Er₁₀₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{170}_{68}{\rm Er}_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁷⁰₆₈Er₁₀₂

 $^{170}_{68}\mathrm{Er}_{102}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁷⁰₆₈Er₁₀₂

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁷⁰₆₈Er₁₀₂

¹⁷⁰₆₈Er₁₀₂

 $^{170}_{68}\mathrm{Er}_{102}$

From ENSDF

30

 $^{170}_{68}\mathrm{Er}_{102}\text{--}30$

 $^{170}_{68}{\rm Er}_{102}$

 $^{170}_{68}{\rm Er}_{102}$

¹⁷⁰₆₈Er₁₀₂