Mg(p,¹⁷Ne) **1988Bo39**

	History					
Туре	Type Author		Literature Cutoff Date			
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	16-Jan-2018			

1988Bo39: A beam of ¹⁷Ne ions was produced at the CERN/ISOLDE facility, using proton spallation reactions on a MgO target. Neon ions from the target were collected, post-accelerated to 60 keV and magnetically separated to obtain the ¹⁷Ne beam, which was implanted in a 50 μ g/cm² carbon foil. An annular plastic scintillator detector was placed on the upstream side of the target (w.r.t. beam) while a series of different ΔE Si surface-barrier detectors (covering $\approx 0.2\%$ of 4π) were separately placed on the downstream side of the target. The Si detectors ranged had thicknesses of 10, 15, 27 and 1000 μ m and were used to characterize the proton and α groups the delayed particle spectrum. Twenty-eight different groups of β -delayed protons and α s were identified. The lifetime was measured by collecting ¹⁷Ne ions for 0.2 s and counting for 1.0 s. The value T=109.3 ms 6 was obtained. See other results on decay to ¹⁷F in (1993Bo36).

2004Ba12: A beam of 260 keV ¹⁷Ne ions, produced in spallation reactions of protons on a MgO target at the CERN/REX ISOLDE facility, was polarized via the tilted foil technique and implanted in a Pt stopper foil. The induced polarization was 2-3%. Analysis of the β asymmetry, mainly to ¹⁷F*(4700,5520), indicated μ =0.74 *3*.

2005Ge06: A followup of (2004Ba12) measured the magnetic moments of 17,23,25 Ne at CERN/ISOLDE; the 17 Ne production technique is not detailed in the text. The fast-beam collinear laser spectroscopy technique was utilized to analyze the β activity and to deduce the hyperfine structures for the $J^{\pi}=1/2^{-}$ ground state. The value $\mu=0.7873$ 14 was deduced.

2008Ge07: ¹⁷Ne ions, produced via proton spallation of a MgO target at CERN/ISOLDE, were investigated in the ISOLTRAP Penning trap, where the mass was measured. The mass 17.01771475 u 57 was deduced. See also (2006HeZS).

In addition, a collinear laser spectroscopy technique was utilized to study the isotope shifts of ^{17–22}Ne ions; by comparing with the known charge radius of ²⁰Ne, it was possible to deduce r_{charge}(¹⁷Ne)=3.042 fm 21. Using a fermionic molecular dynamics model, r_{matter}=2.75 fm was deduced. See related work reported in (2011Ma48).

¹⁷Ne Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	$1/2^{-}$	109.3 ms 6	μ =+0.7873 14 (2005Ge06)	
			$r_{charge}(^{17}Ne)=3.042 \text{ fm } 21 \text{ (2008Ge07)}.$	

1

¹⁷₁₀Ne₇