¹H(¹⁷Ne,¹⁵O2p) 2018Wa07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	16-Jan-2018

2018Wa07: XUNDL dataset compiled by TUNL, 2018. Includes ¹H, ¹²C, ²⁰⁸Pb(¹⁷Ne, ¹⁵O+2p).

A beam of 500 MeV/nucleon ¹⁷Ne ions, produced by fragmentation of a ²⁰Ne beam at GSI facility, impinged on either a 213 mg/cm² polyethylene (CH₂), 370 mg/cm² carbon or 199 mg/cm² lead target that was placed at the ALADIN-R3B setup target position. The complete kinematics of breakup protons and ^{14,15}O reaction products was determined using a series of Si strip detectors, the ALADIN dipole magnet and two other Δ E-E arrays centered at θ =16.7° and θ =31° with respect to the analyzing magnet exit, to detect ^{14,15}O and proton reaction products, respectively.

Events with one or two protons detected in coincidence with oxygen isotopes were analyzed; the ¹⁵O+2p relative energy spectra were deduced for each target along with the 2p correlations. Considering the 1p and 2p separation energies are S_{1p} =1470 keV and S_{2p} =933 keV, the correlations are important for disentangling the reaction mechanism.

The aim of the analysis focused on understanding the dynamics of nuclear breakup and Coulomb dissociation of ¹⁷Ne for

 17 Ne \rightarrow^{15} O+2p reaction on ¹H, C and Pb targets. The decay mechanism was analyzed for broad regions of excitation. The evaluator deduced excitation energies of states visible in figures 7a, 7b and 7c. Some discussion refers to previously reported states

at E_{res} =0.83, 1.76 and 2.48 MeV from analysis of the same data set reported in (2016Ma42).

The momentum distributions for the ¹⁴O and ¹⁵O recoils were also analyzed, for events with one or two coincident protons.

¹⁷Ne Levels

E(level)	\mathbf{J}^{π}	Comments
1764 ^{†‡#@} 12	5/2-†	From $E_{res} \approx 0.83$ MeV.
2692 ^{†‡#@} 21	$(3/2^{-})^{\dagger}$	From $E_{res} \approx 1.76$ MeV.
3415 ^{†‡#} 38	$(5/2^{-})^{\dagger}$	From $E_{res} \approx 2.48$ MeV.
5.3×10 ^{3‡#@}		From $E_{res} \approx 4.4$ MeV.
9.9×10 ^{3‡#}		From $E_{res} \approx 9.0$ MeV.

[†] From (2016Ma42).

[‡] Populated in ¹H+¹⁷Ne \rightarrow ¹⁵O+2p.

[#] Populated in ${}^{12}C+{}^{17}Ne\rightarrow{}^{15}O+2p$.

^(a) Populated in ${}^{208}\text{Pb}+{}^{17}\text{Ne}\rightarrow{}^{15}\text{O}+2p$.

¹⁷₁₀Ne₇