Adopted Levels

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	1-Sept-2017

 $S(p) = -3.45 \times 10^3 7$

S(p): from E(3p+¹⁴O)_{rel}=4.85 MeV 6 and S_{2p}(¹⁶Ne)=1.40 MeV 2.

Evidence for resonant structure in ¹⁷Na has been reported in the ⁹Be(¹⁷Ne,¹⁷Na) reaction (2017Br07). The nucleus ¹⁷Na is unbound to proton decay and has been observed in a reconstruction of 3p+¹⁴O events. A broad group is observed in the 3p+¹⁴O invariant mass spectrum at E_{rel}≤4.85 MeV 6; the group is thought to represent either the ¹⁷Na ground state or, more likely, a group of low-lying states. Prior to this discovery information on ¹⁷Na was theoretical in nature. Mass models:

1966Ke16: Developed phenomenological model for predicting the mass of proton-rich nuclides. Deduced a mass excess ΔM =35.61 MeV. See also (1992Av03).

2013Ti01: An improved Kelson-Garvey mass relations model is presented that includes participation of many more relevant masses for the prediction of unmeasured proton-rich nuclear masses. The ¹⁷Na mass excess ΔM =35.346 MeV 23 is predicted. Theoretical analysis:

- 2010Ti02: A microscopic cluster model based on the ¹⁷C mirror nucleus is explored, which includes consideration of excitations of the ¹⁶Ne core. Discussion on seven proton-unbound states, with E_x ranging from 0 to 3.01 MeV and $J^{\pi}=1/2^+$, $3/2^+$, $5/2^+$, $7/2^+$, $(5/2^+ \text{ or } 3/2^+)$, $(3/2^+ \text{ or } 5/2^+)$ and $9/2^+$, respectively, is given. Partial widths are given for decay to either the $J^{\pi}=0^{+-16}$ Neg.s. or $J^{\pi}=2^+$ state at $E_x=1.7$ MeV. The authors suggest the ground state should be a broad resonance with l=0 character.
- 2012Am01: A multichannel algebraic scattering (MCAS) approach is developed, which relates the ¹⁷Na structure with the mirror nuclide ¹⁷C and related n+¹⁶C interactions. Low-lying collective excitations in the core are taken into account and predictions are made for the low-energy levels of ¹⁷Na.
- 2012Am06: The authors evaluate three approaches for predicting the ground state mass: use of mass formulae based on analysis of isobar multiplets, consideration of mirror nuclei structures and spectra, and systematic evaluation of mass values and excited state energy trends in nearby nuclides. Predicted ground-state energies, rangeing from 1 to 4.3 MeV above the the p+¹⁶Ne binding threshold, are discussed within the framework of several models. See also (2013Am01).

2010F006, 2014F023, 2017F018: In 2010F006, predictions for the lowest three levels of 17 Na are obtained based on a 17 Na model where wave function amplitudes are based on those of the bound 17 C states. The wavefunctions are developed by coupling either a *s*- or *d*-wave nucleon with A=16 states whose energies are computed in a core plus two-nucleon space based on the known 16 C levels. Level energies, relative to the p+ 16 Ne threshold, and partial widths for decay to either the ground or first excited state of 16 Ne are given and compared with results from (2010Ti02). In 2014F023, the shell-model is updated results are compared with the prior literature. In 2017F018, a potential model utilizing the earlier shell model results is used to estimate the partial widths for the proton decay of 17 Na to 16 Ne states.

¹⁷Na Levels

E(level)	\mathbf{J}^{π}	Comments
0	$(1/2^+)$	T=3/2
		E(level): from E(3p+ ¹⁴ O) _{rel} =4.85 MeV 6. The group is twice as broad as expected and may represent a collection of unresolved $J^{\pi}=1/2^+$, $3/2^+$ and $5/2^+$ levels.

 J^{π} : from expected systematics.