17 **B** β^- decay:5.08 ms **2013Ue01**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	01-May-2017

Parent: ¹⁷B: E=0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=5.08$ ms 5; $Q(\beta^{-})=2274\times10^{1}$ 17; $\%\beta^{-}$ decay=100.0

¹⁷B-Q(β^{-}): From 2012Wa38.

 ${}^{17}\text{B-J}^{\pi}$, $T_{1/2}$: From ${}^{17}\text{B}$ Adopted Levels in ENSDF database.

 $^{17}\text{B-P}_{0n}{=}0.22$ 4, $P_{1n}{=}0.63$ 5, $P_{2n}{=}0.12$ 2 $P_{3n}{=}0.035$ 7 and $P_{4n}{=}0.004$ 3 (1988Du09, 2013Ue01).

- 1988Du09,1987DuZU,1988DuZT,1989MuZU: ¹⁷B was produced by fragmentation of a 60 MeV/n ²²Ne beam impinging on either a tantalum or a carbon target and was selected using the LISE spectrometer. The β -particles were detected by a plastic scintillator while the delayed neutrons were detected through the Gd(n, γ) reaction in a 500 liter 4 π neutron ball. T_{1/2}=5.08 ms 5, P_{0n}=0.21 2, P_{1n}=0.63 *I*, P_{2n}=0.11 7, P_{3n}=0.035 7 and P_{4n}=0.004 *3* were measured. See also (1989Le16).
- 1991Re02,1995ReZZ,2008ReZZ: Spallation products from 800 MEV proton bombardment of a ²³²Th target were captured by a transport line with a mass-to-charge filter and transferred to the TOFI spectrometer at LAMPF. The beamline was separately tuned to transport a number of different nuclides. The neutrons were detected in a polyethylene moderate ³He counter, and standard techniques were implemented. The β -delayed neutron probabilities were deduced from analysis of the number of implanted ions (per beam pulse) and the rate of β -delayed neutrons detected in the zero-threshold counter. In (1991Re02) the β -delayed neutron probability P_n(=P_{1n}+2P_{2n}+3P_{3n}+...)=(65 35)% and T_{1/2}=5.9 ms 30 were deduced. In later publication, such as (P.L. Reeder et al., Int. Conf. on Nucl. Data for Science and Technology, May 9-13, 1994, Gatlinburg, Tennessee), and (1995ReZZ,2008ReZZ) P_n=(104 26)% and T_{1/2}=5.20 ms 45 were deduced.
- 1996Ra02: A beam of ¹⁷B ions was produced by fragmenting a ²²Ne beam on a ⁹Be target. The beam was magnetically separated, degraded to lower energies, and finally stopped In a plastic scintillator. The implantation detector was sandwiched between four other scintillator β -ray detectors. A valid ¹⁷B decay event required a coincidence between three ajacent detectors. Three neutron walls surrounded the implantation target and covered about 1.4 sr. The decay neutron energy was deduced by the time of flight between the implantation detector and the neutron wall detectors.
- The measured neutron spectrum shows two prominent decay groups of ¹⁷B β delayed neutrons at E_n=2.91 and 1.80 MeV, as well as a strong peak at E_n=0.82 MeV from the ¹⁶N daughter decay. A full analysis of the neutron energy spectrum revealed two neutron groups corresponding to known branches In ¹⁶N decay and four groups at E_n=0.42, 1.43, 1.80 and 2.91 MeV that are attributed to neutron decay from ¹⁷C to ¹⁶C_{g.s.}. In later works, the E_n=1.43 MeV branch is attributed to decay to ¹⁶C*(1766) while the E_n=0.42 MeV branch is not found. In 1996Ra02, the results are presented by normalizing to $\%\beta^{-1}n=(63 \ 1)\%$ from (1988Du09).
- 2013Ue01,1997YaZX: An E(²²Ne)=110 MeV/nucleon beam was fragmented in a 1.07 g/cm² ⁹³Nb target and the ¹⁷B ions at $\theta_{lab}=1.5^{\circ}-5.0^{\circ}$ were accepted in the RIKEN/RIPS fragment separator. The ¹⁷B beam was then implanted at the center of a stack of four 100 μ m thick Pt stopper foils which were held in a 50 mT magnetic field. A β -NMR technique was implemented to maximize the sensitivity to spin dependent observables.
- Two plastic scintillators were placed in positions above and below the Pt foil stack and were used to detect β -rays from decays in the foil. Coincidences among the two foils were used to reject events, for example, from cosmic-ray events.
- Neutron bound and neutron unbound states in ${}^{17}C$ could be populated in the decay, and furthermore the neutron-unbound levels can decay with low-energy or high-energy neutron emission. A 12 element plastic scintillator high-energy neutron detector array ($E_n \approx 0.5$ -10 MeV) covered $\Omega_n = 0.21 \times 4\pi$ sr with a 5.6% efficiency for detecting 1 MeV neutrons. The neutron energies were determined by time-of-flight where the β -ray signal provided a start signal and the neutron array provided the stop signal (1.5 m flight path). A 10 element plastic scintillator low-energy neutron detector array ($E_n \ge 0.01$ MeV) covered $\Omega_n = 0.037 \times 4\pi$ sr with a 0.5 m flight path.
- A HPGe clover detector and four NaI(Tl) detectors measured the emitted γ -rays. Plastic scintillator detectors covered the front faces of the detectors and helped reject β -rays entering the γ -ray detectors. The plastic scintillators plus NaI(Tl) detectors were also used to measure the β -ray energy spectrum.
- The decay curve of photopeak counts is evaluated and constraints are placed to guide consideration of transitions resulting from levels fed by ¹⁷B β -decay or ¹⁷B β^- Xn decay. In the case of 0-n decay to neutron bound levels of ¹⁷C, the γ -ray transitions with energies below the neutron separation energy, Sn \approx 730 keV (2012Wa38), were evaluated. Transitions with E γ =217, 295 and 331 keV were identified as possible decays in ¹⁷C. However because feeding to low-lying states of ¹⁷C can be connected with emission of high energy β -rays the γ -ray spectra were analyzed with the condition of a coincident E $\beta \ge 10$ MeV β -ray; only peaks corresponding to E γ =217 and 331 keV were found. Analysis of β - γ - γ coincidences yielded no results, so the ¹⁷B 0n- β decay is found to decay to ¹⁷C*(217, 331) which then γ -decay to the ¹⁷C ground state.

¹⁷**B**β⁻ decay:5.08 ms 2013Ue01 (continued)

Numerous other time correlated γ -ray transitions (connected with decay of levels fed by β -xn decay) and time uncorrelated γ -transitions (connected with subsequent β -decay of daughters) are characterized.

The $E_n=0.82$ MeV neutron group is correlated with the neutron emission group from ${}^{16}N*(3353) \rightarrow {}^{15}N_{g.s.}$ that is populated in 84.4% (1976Al02) of ${}^{16}C$ decay events. This branching ratio is used with the presently observed intensity of the $E_n=0.82$ MeV neutron group to obtain $\%\beta^-1n=(67\ 7)\%$ for ${}^{17}B$ decay.

The E γ =5299 keV transition is identified in the γ -ray spectrum and is connected with β^- 2n decay to ¹⁵C, which then β -decays to ¹⁵N. The E γ =5299 keV γ -ray is populated in 63.2% of ¹⁵C decays (1984Wa07); this branching ratio is used with the presently observed %I γ (5290)=(7.5 11)% to deduce % β^- 2n=(12 2)%.

¹⁷C Levels

E(level)	$J^{\pi \dagger}$	Г	Comments
0 217 2 331 2	$3/2^+$ $1/2^+$ $5/2^+$		
2710 20	1/2-	0.04 MeV 1	E(level),Γ: from $E_n=1.86$ MeV <i>1</i> that populated ${}^{16}C_{g.s.}$ (2013Ue01). See also $E_n=1.80$ MeV 2 (1996Ra02).
3930 20	3/2-	0.16 MeV 4	E(level), Γ : from E _n =3.01 MeV <i>1</i> that populated ¹⁶ C _{g.s.} (2013Ue01). See also E _n =2.91 MeV 5 (1996Ra02).
4050 20 4780 20 6080 30	(5/2 ⁻)	0.06 MeV 6 0.3 MeV 3 2.5 MeV 7	E(level), Γ : from E _n =1.46 MeV <i>1</i> that populated ¹⁶ C*(1766). E(level), Γ : from E _n =3.81 MeV <i>1</i> that populated ¹⁶ C _{g.s.} . E(level), Γ : from E _n =5.04 MeV <i>2</i> that populated ¹⁶ C _{g.s.} .

[†] From (2013Ue01) for levels above 1 MeV. Below this energy assignments are from (2008Su12).

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1.666×10 ⁴ 17)	6080	4 1	5.31 11	av E β =8069 86
(1.796×10 ⁴ 17)	4780	0.9 1	6.12 6	av Eβ=8714 85
(1.869×10 ⁴ 17)	4050	1.5 2	5.98 7	av E β =9076 85
				β asymmetry parameter $A_{\beta} = -4$ 15.
(1.881×10 ⁴ 17)	3930	20 3	4.87 7	av E β =9135 85
				β asymmetry parameter A _{β} =+0.04 99.
$(2.003 \times 10^4 \ 17)$	2710	33 4	4.78 6	av E β =9740 85
				β asymmetry parameter A _{β} =-1.0 5.
(2.241×10 ⁴ 17)	331	2.1 2	6.22 5	av E β =10917 85
(2.252×10 ⁴ 17)	217	2.8 11	6.1 2	av Eβ=10974 85
(2.274×10 ⁴ 17)	0	17 4	5.34 11	av Eβ=11081 84
				$I\beta^-$: using the known ¹⁷ N*(1373, 1849) γ-transition intensities following ¹⁷ C decay (1993Ti03) permitted normalization of the present 0-n emission results so that $\%\beta^-$ 0n=(22 4)% was deduced from the weighted average of ($\%\beta^-$ 0n:

from 1382)=(25 9)% and (% β -0n: from 1855)=(21 5)%. Then I β (g.s.)=(22 4)% – (summed β feeding=(4.9 11)% to 217+331 levels)=(17 4)%.

[†] Absolute intensity per 100 decays.

17 B β^{-} decay:5.08 ms **2013Ue01** (continued)

$\gamma(^{17}C)$

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
217 2	2.8 11	217	$1/2^{+}$	0	3/2+
331 2	2.1 2	331	$5/2^{+}$	0	$3/2^{+}$

[†] Absolute intensity per 100 decays.

17 B β^- decay:5.08 ms 2013Ue01

Decay Scheme

 ${}^{17}_{6}C_{11}$