History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	01-May-2017	

2001Au04,2002Pr10: The authors probed the dipole excitation strength function by measuring the Coulomb dissociation of ${}^{17}C$ into ${}^{16}C+n$ on a 1.8 g/cm² lead target using a \approx 500 MeV/nucleon beam from the GSI/FRS. The Coulomb excitation energy spectrum was reconstructed from a measurements of the ${}^{16}C+n$ momenta. Neutrons were detected using the LAND array, ${}^{16}C$ ions were momentum analyzed using a dipole magnet, and events with γ rays were determined using the 160 element NaI 4π Crystal Ball array. A sizeable l=0 component to ${}^{16}C^*(1.77 \text{ MeV};J^{\pi}=2^+)$ was observed, which implies $J^{\pi}=(3/2,5/2)^+$.

In (2001Pr09,2001Pr18,2002Da30,2003Pr01), the authors report further analysis of the γ -ray data where the cross sections feeding the ${}^{16}C_{g.s.}$ (9 mb +15-9), ${}^{16}C^*(1.77 \text{ MeV};J^{\pi}=2^+)$ (62 mb 7) and ${}^{16}C^*(\approx 3-4 \text{ MeV};J^{\pi}=4^+)$ (25 mb 7) are discussed. The results suggest a (64 9)% ${}^{17}C_{g.s.}$ configuration of ${}^{16}C(2^+) \otimes v_{s,d}$, with $J^{\pi}=3/2^+$ preferred.

See also theoretical analysis in (2004Ta31).

¹⁷C Levels

E(level)	\mathbf{J}^{π}		
0	(3/2,5/2)+		