${}^{1}\mathrm{H}({}^{17}\mathrm{C},{}^{16}\mathrm{Cn}),{}^{1}\mathrm{H}({}^{19}\mathrm{C},{}^{16}\mathrm{Cn})$ 2008Sa03

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	01-May-2017			

Beam= ${}^{17}C$ and ${}^{19}C$, target=liquid H₂.

2008Sa03:

XUNDL set compiled by S. Geraedts and B. Singh (McMaster) Feb 2008.

Beams of E=70 MeV/nucleon ¹⁷C and ¹⁹C were separately produced at the RIKEN/RIPS facility by fragmenting a 110 MeV/nucleon ²²Ne in a thick target. The beams impinged on a 3 cm diameter cryogenic hydrogen target with 120 mg/cm² areal density. The γ -rays from reactions in the target were detected using 48 NaI(Tl) scintillators while charged particles were detected with a plastic counter hodoscope. Neutrons, from ¹⁷C breakup, were detected using a neutron hodoscope consisting of two walls of plastic scintillator array.

The authors measured (charged fragments)(neutron) coin, (γ) (charged particles) coin, angular distributions of charged particles. DWBA analysis. The inclusive ${}^{17}C \rightarrow {}^{16}C+n$ and exclusive $\rightarrow {}^{16}C+n+\gamma [{}^{16}C^*(2^+)=1.77 \text{ MeV}]$ spectra were analyzed. A resonance at E(rel)=1.47 MeV 2 was observed in the inclusive spectrum, but absent in the exclusive γ -ray coincidence events; evidence the state decays to ${}^{16}C_{g.s.}$. Other resonances at E_{res}=0.55 and 3.63 MeV were observed in coincidence with the ${}^{16}C^*(2^+)=1.77 \text{ MeV}$ de-excitation γ ray.

The angular distributions of the $E_x=2.2$ and 3.1 MeV resonances were analyzed and compared with DWBA calculations.

1999He33: A theoretical analysis of the ¹⁶C+n astrophysical neutron capture reaction rate given.

See also discussions in (2008Ka39,2008Sa39).

¹⁷C Levels

E(level) [†]	J^{π}	Γ (MeV)	σ (mb) ^{<i>a</i>}	Comments
	3/2+ 7/2+‡	0.53 MeV 4	3.8 2	Resonance energy (c.m.)=1470 20 (g.s. in 16 C).
3050 ^{@&} 30	9/2+‡		0.40 4	Resonance energy (c.m.)=550 20 (1770 10, 2^+ excitation energy in 16 C).
6130 ^{@&} 90	5/2+	0.26 MeV +40-26	0.8 1	J^{π} : from comparisons with structure calculations. Resonance energy=3630 90 (1770 10, 2 ⁺ excitation energy in ¹⁶ C).

[†] Excitation energy=resonance energy+S(n)+excitation energy of the daughter nucleus 16 C.

[‡] From comparison of $\sigma(\theta)$ distributions with DWBA calculations for ¹⁷C(p,p') reaction.

[#] Observed in ${}^{1}H({}^{17}C, {}^{16}C_{g.s.}n)$ reactions.

[@] Observed in ${}^{1}H({}^{17}C, {}^{16}C^{*}(1.77 \text{ MeV})n)$ reactions.

& Observed in ${}^{1}\text{H}({}^{19}\text{C}, {}^{16}\text{C}^{*}(1.77 \text{ MeV})n)$ reactions.

^{*a*} Experimental cross-sections.