		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008

Parent: ¹⁶⁹Lu: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=34.06$ h 5; $Q(\varepsilon)=2293$ 3; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0

Others: 1957Bo61, 1958Ke88, 1959Dz01, 1959Ha09, 1960Dz02, 1960Ha18, 1960Io01, 1960Io02, 1961Me05, 1961Pl02, 1962Dz05, 1963Tu01, 1964Dz02, 1964Dz06, 1968Lo10, 1969Ar23, 1970Ba09, 1970Bo06, 1970Dz11, 1971Ma74, 1972Dz02, 1973Bo38, 1977Ar17, 1977Bo31, 1980DuZP, 1980Bu24, 1991Dz04, 1982Da23.

1980Ba07: measured ce-y coin; Ge(Li) detector (FWHM=3.5 keV At Ey=1332) and toroidal magnetic spectrometer.

1978Ba73: measured E γ , I γ , $\gamma\gamma$ coin using Ge(Li) detectors (FWHM=0.5 keV at \approx 100 keV, 0.9 keV at \approx 200 keV, 2.1-2.7 keV at E \approx 1 MeV), and ce data using a Si(Li) detector.

1977Bo31: measured β^+ and ce spectra using iron-free toroidal spectrometer, resolution=1.1%.

1977Ar17: magnetic spectrometer, 0.17% resolution; measured ce spectra.

¹⁶⁹Lu sources for γ and ce studies were from spallation of tantalum by protons (E(p)=660-680 MeV); chemical and mass separation.

The decay scheme is largely from 1978Bo39, incorporating photon data from 1977Ar17 and 1978Ba73 and β^+ data from 1977Bo31. Additions and refinements to the scheme from 1978Bo39, based on ce- γ coin, were introduced by 1980Ba07 (16 additional levels, 5 levels from 1978Bo39 eliminated); the evaluation by 1988DzZW then proposed an additional 9 levels, along with the omission of 8 of the levels newly proposed by 1980Ba07 and an additional 5 of the levels proposed by 1978Bo39 (1541, 1566, 1707, 1708, 1954). Small changes have been made based on data of 1982Da23 (nuclear orientation) and several other studies; additional changes accommodate some of the recommendations from 1991DzZY or 1992Dz03.

For discussion of band structure and other possible levels of ¹⁶⁹Yb that May Be deduced from earlier decay data, see 1988DzZW, 1989Dz05, 1991Dz04, 1991DzZY, 1992Dz03, 1993Dz02 and 1995Dz02.

¹⁶⁹Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	7/2+	32.018 d 5	$T_{1/2}$: from Adopted Levels.
24.210 [@] 8	$1/2^{-}$	46 s 2	$T_{1/2}$: from Adopted Levels.
70.880 [#] 5	9/2+		
86.927 [@] 7	3/2-		
99.250 [@] 6	5/2-		
161.645 [#] 6	$11/2^+$		
191.216 5	5/2-	3.35 ns 15	$T_{1/2}$: from $\gamma\gamma(t)$ (1968Lo10).
243.827 [@] 7	7/2-		
264.272 [@] 8	9/2-		
269.628 [#] 19	$13/2^{+}$		
278.594 ^{&} 6	7/2-		
389.523 7	9/2-		
487.031 ^{<i>a</i>} 14	$(11/2^{-})$		
512.039 [@] 17	$(13/2)^{-}$		
523.066 [°] 7	11/2-		
569.837^{a} 10	5/2		
$590.67^{\circ} 3$	$(5/2)^{+}$		
$647.34^{\circ} 3$ $647.847^{\circ} 11$	7/2" 7/2-		
659.52 [°] 12	$3/2^{-}$		
707.03 ^b 5	9/2 ⁺		
720.00 ^d 8	$3/2^{+}$		
722.21 ^c 5	5/2-		

¹⁶⁹Yb Levels (continued)

748.923 ⁶ 23 (9/2) ⁻ 761.822 ^d 18 (5/2) ⁺ 807.079 ^c 16 (7/2) ⁻ 832.083 ^d 20 (7/2) ⁺ 851.77.5 tentative level proposed In 1988DzZW. 886.80 ^d 4 9/2 ⁺ 911.38 ^c 5 (5/2) ⁻ 919.80 ^c 5 (9/2) ⁻ 106.12.3 level proposed In 1988DzZW. 1070.778 3 7/2 ⁺ 1070.778 4 (7/2,9/2) ⁻ 1141.44 ^g 7 (9/2) ⁺ 1204.55 17 level not included In 1988DzZW. 1177.01 6 (7/2,9/2) ⁺ 1283.282 20 (7/2,9/2) ⁻ 1420.31 13 (5 ² , 7/2,9/2 ⁻) 1420.31 13 (5 ² , 7/2,9/2 ⁻) 1420.455 17 level not included In 1988DzZW. 1420.31 13 (7/2,9/2) ⁻ 1420.31 13 (5 ² , 7/2,9/2 ⁻) 1420.455 4 9/2 ⁻ 1421.12 10 (7/2,9/2) ⁻ 1427.12 10 (7/2,9/2) ⁻ 1444.75 5 7/2 ⁻ ,9/2 ⁻ 1444.75 5 7/2 ⁻ ,9/2 ⁻ 1444.75 5 7/2 ⁻ ,9/2 ⁻ 1444.75 5 9/2 ⁻ <	s absent
761.822 ^d 18 (52) ⁺ 807.079 ^c 16 (72) ⁺ 832.085 ^d 20 (72) ⁺ 832.085 ^d 20 (72) ⁺ 831.77 5 tentative level proposed In 1988DzZW. 886.80 ^d 9/2 ⁺ 911.38 ^c 5 919.80 ^c 5 (9/2) ⁻ 929.17 4 11/2 ⁻ 960.612 ^f 14 7(2 ⁻ 1061.2 1 level proposed In 1988DzZW. 1070.77 ^g 7/2 ⁺ 1071.78 7/2 ⁺ 1072.72 level not included In 1988DzZW. 1177.01 (7/2,9/2) ⁻ 1141.44 ^g (9/2) ⁺ 1204.55 17 level not included In 1988DzZW. 1283.282.20 (7/2,9/2) ⁻ 1244.25 11 7/2 ⁻ 1240.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) 1242.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) 1244.75 7 7/2 ⁻ 1243.872 24 9/2 ⁻ 1244.75 7 7/2 ⁻ 1244.75 7 7/2 ⁻ 1244.75 7 7/2 ⁻ 1244.75 7	s absent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s absent
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.s absent
303.103 20 (7/2) 886.80 ^d 9/2 ⁺ 911.38 ^c 5 (5/2) ⁻ 918.06 ^f 9/2) ⁺ 11/2 ⁻ 960.612 ^f 14 7/2 ⁻ 1061.2 12 level proposed In 1988DzZW. 1070.77 ^g 7/2 ⁺ 1070.77 ^g 9/2 ⁻ 1141.44 ^g (9/2) ^p 1204.55 17 level proposed In 1988DzZW. and 1993Dz02. 1283.282 20 (7/2,9/2) ⁻ 1440.35 4 9/2 ⁻ 1420.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) 1420.41 13 7/2 ⁻ 14249.781 13 7/2 ⁻ 1424.72 6 7/2 ⁻ 1424.74 6 9/2 ⁻ 154.876 24 9/2 ⁻ 154.866 24 9/2 ⁻	.s absent
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	s absent
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.s absent
$\begin{array}{llllllllllllllllllllllllllllllllllll$	s absent
919.80° 5 (9/2) 929.17 4 11/2° 960.612 f 14 1070.78 3 level proposed In 1988DzZW. 1070.778 3 7/2* 1078.335 f 9/2° 1141.448 7 (9/2)* 1167.74 8 (7/2.9/2)* 1167.74 8 (7/2.9/2)* 1177.01 6 (7/2.9/2)* 1204.55 17 level proposed In 1988DzZW and 1993Dz02. 1283.282 20 (7/2.9/2)* 1240.31 13 (5/2°.7/2.9/2°) 1420.31 13 (5/2°.7/2.9/2°) 1420.31 13 (5/2°.7/2.9/2°) 1427.12 10 (7/2.9/2)° 1444.75 5 7/2° 1444.75 5 7/2° 1444.75 7 7/2° 1444.76 24 9/2° 1444.75 7 7/2° 1444.76 24 9/2° 154.86 24 9/2° 1554.86 24 9/2° 1565.55 (7/2°) 168.04 (1/2*.3/2.5/2*) 1656.22 5/2* 1688.02 5/2* 1688.03 5/2* 1689.290 23 <td>s absent</td>	s absent
$\begin{array}{llllllllllllllllllllllllllllllllllll$.s absent
960.612 ^j 14 7/2 ⁻ 1061.2 <i>j</i> level proposed In 1988DzZW. 1070.77 ^k <i>j</i> 7/2 ⁺ 1078.335 ^{<i>j</i>} 19 9/2 ⁻ 1141.44 ^k <i>7</i> (9/2) ⁺ 1167.74 <i>8</i> (7/2.9/2) ⁻ level not included In 1988DzZW. 1177.01 <i>6</i> (7/2.9/2) ⁺ 1243.57 <i>i</i> level proposed In 1988DzZW and 1993Dz02. 1283.282 20 (7/2.9/2) ⁻ 1343.57 <i>4</i> (7/2) ⁻ 1406.35 <i>4</i> 9/2 ⁻ level not included In 1988DzZW. 1420.31 <i>13</i> (5/2 ⁻ ,7/2,9/2 ⁻) proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW. 1427.12 10 (7/2.9/2) ⁻ 1444.75 <i>5</i> 7/2 ⁻ ,9/2 ⁻ level not included In 1988DzZW. 1427.13 7/2 ⁻ 1443.412 <i>16</i> 7/2 ⁻ 1540.69 <i>4</i> 9/2 ⁻ level not included In 1988DzZW. 1554.876 24 9/2 ⁻ 1555.65 (7/2 ⁻) level not included In 1988DzZW. 1565.62 <i>9</i> 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ level not included In 1988DzZW. 1658.10 <i>3</i> 5/2 ⁺ 1689.290 2 <i>3</i> 7/2 ⁻ 1689.486 6 5/2 ⁺ level not included In 1988DzZW. 1707.71 8 (7/2.9/2) ⁺ level not included In 1988DzZW. 1707.71 8 (7/2.9/2) ⁺ level not included In 1988DzZW. 1708.02 <i>3</i> 7/2 ⁺	s absent
1061.2.3 level proposed in 1988DzZW. 1070.77 ^g 3 7/2 ⁺ 1078.335 ^f 19 9/2 ⁻ 1141.44 ^g 7 (9/2) ⁺ 1167.74 8 (7/2.9/2) ⁻ 1204.55 17 level proposed In 1988DzZW and 1993Dz02. 1283.282 20 (7/2.9/2) ⁻ 1343.57 4 (7/2) ⁻ 1406.35 4 9/2 ⁻ 1420.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) 1420.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) 1427.12 10 (7/2,9/2) ⁻ 1424.75 5 7/2 ⁻ ,9/2 ⁻ 1424.75 7 level not included In 1988DzZW. 1433.412 16 7/2 ⁻ 1540.69 4 9/2 ⁻ 1555.65 5 (7/2 ⁻) 1668.04 (1/2 ⁺ , 3/2, 5/2 ⁺) 1656.22 9 5/2 ⁻ , 7/2 ⁻ , 9/2 ⁻ 1689.290 23 7/2 ⁻ 1689.290 23 7/2 ⁻ 1694.48 6 5/2 ⁺ 1694.48 6 5/2 ⁺ 1694.48 6 5/2 ⁺ 16vel not included In 1988DzZW. 1707.71 8 (7/2,9/2) ⁺ 16vel not included In 1988DzZW. 1707.71 8 (7/2,9/2) ⁺	s absent
$\begin{array}{llllllllllllllllllllllllllllllllllll$	s absent
1078.335 J 19 9/2 ⁻ 1141.44 g 7 (9/2) ⁺ 1167.74 8 (7/2.9/2) ⁻ level not included In 1988DzZW. 1177.01 6 (7/2.9/2) ⁺ level proposed In 1988DzZW and 1993Dz02. 1283.282 20 (7/2.9/2) ⁻ level not included In 1988DzZW. 1406.35 4 9/2 ⁻ level not included In 1988DzZW. 1420.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW. 1427.12 10 (7/2,9/2) ⁻ level not included In 1988DzZW. 1444.75 5 7/2 ⁻ ,9/2 ⁻ level not included In 1988DzZW. 1445.81 13 7/2 ⁻ level not included In 1988DzZW. 154.876 24 9/2 ⁻ level not included In 1988DzZW. 1554.876 24 9/2 ⁻ level not included In 1988DzZW. 1616.80 4 (1/2 ⁺ ,3/2,5/2 ⁺) level not included In 1988DzZW. 1658.02 9 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ level not included In 1988DzZW. 1688.10 3 5/2 ⁺ level not included In 1988DzZW. 1694.48 6 5/2 ⁺ level not included In 1988DzZW. 1707.71 8 (7/2,9/2) ⁺ level not included In 1988DzZW.	s absent
1141.448 7 $(9/2)^+$ 1167.74 8 $(7/2,9/2)^-$ level not included In 1988DzZW. 1177.01 6 $(7/2,9/2)^+$ level proposed In 1988DzZW and 1993Dz02. 1283.282 20 $(7/2,9/2)^-$ level not included In 1988DzZW. 1406.35 4 9/2 ⁻ level not included In 1988DzZW. 1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW. 1427.12 10 $(7/2,9/2)^-$ level not included In 1988DzZW. 1444.75 5 $7/2^-,9/2^-$ level not included In 1988DzZW. 1444.75 7 $7/2^-,9/2^-$ level not included In 1988DzZW. 1444.75 7 $7/2^-,9/2^-$ level not included In 1988DzZW. 1444.75 7 $7/2^-,9/2^-$ level not included In 1988DzZW. 1540.69 4 $9/2^-$ level not included In 1988DzZW. 1554.876 24 $9/2^-$ level not included In 1988DzZW. 1616.80 4 $(1/2^+,3/2,5/2^+)$ level not included In 1988DzZW. 1658.10 3 $5/2^+$ level not included In 1988DzZW. 1689.209 23 $7/2^-$ level not included In 1988DzZW. 1694.48 6 $5/2^+$ level not included In 1988DzZW.<	s absent
1167.74 8 $(7/2,9/2)^-$ level not included In 1988DzZW.1177.01 6 $(7/2,9/2)^+$ level proposed In 1988DzZW and 1993Dz02.1283.282 20 $(7/2,9/2)^-$ level proposed In 1988DzZW.1406.35 4 $9/2^-$ level not included In 1988DzZW.1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW.1427.12 10 $(7/2,9/2)^-$ level not included In 1988DzZW.1444.75 5 $7/2^-$ level not included In 1988DzZW.1443.412 16 $7/2^-$ level not included In 1988DzZW.1546.69 4 $9/2^-$ level not included In 1988DzZW.1554.876 24 $9/2^-$ level not included In 1988DzZW.1616.80 4 $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW.1658.10 3 $5/2^+$ level not included In 1988DzZW.1658.10 3 $5/2^+$ level not included In 1988DzZW.1689.290 23 $7/2^-$ level not included In 1988DzZW.1707.71 8 $(7/2,9/2)^+$ level not included In 1988DzZW.1706.02 3 $7/2^+$ level not included In 1988DzZW.	s absent
1177.01 6 $(7/2,9/2)^+$ 1204.55 17 level proposed In 1988DzZW and 1993Dz02. 1283.282 20 $(7/2,9/2)^-$ 1343.57 4 $(7/2)^-$ 1406.35 4 9/2 ⁻ 1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW. 1427.12 10 $(7/2,9/2)^-$ 1444.75 5 $7/2^-$ 1443.412 16 $7/2^-$ 1540.69 4 9/2 ⁻ 1540.69 4 9/2 ⁻ 1540.69 4 9/2 ⁻ 1616.80 4 $(1/2^+, 3/2, 5/2^+)$ 1656.22 9 $5/2^-, 7/2^-, 9/2^-$ 1689.10 3 $5/2^+$ 1689.290 23 $7/2^-$ 1648.46 $5/2^+$ 1694.48 6 $5/2^+$ 1694.48 6 $5/2^+$ 1604.03 $7/2^-$ 1707.71 8 $(7/2,9/2)^+$ 1707.71 8 $(7/2,9/2)^+$ 1706.03 $7/2^+$	s absent
1204.55 1/level proposed In 1988DzZW and 1993Dz02.1283.282 20 $(7/2,9/2)^-$ 1343.57 4 $(7/2)^-$ 1406.35 4 $9/2^-$ 1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As $J=7/2$ member of $1/2[521] \beta$ vibration band by 1980Ba07. however, level1427.12 10 $(7/2,9/2)^-$ 1444.75 5 $7/2^-,9/2^-$ 1444.75 7 $7/2^-,9/2^-$ 1449.781 13 $7/2^-$ 1463.412 16 $7/2^-$ 1540.69 4 $9/2^-$ 1554.876 24 $9/2^-$ 1616.80 4 $(1/2^+,3/2,5/2^+)$ 1656.22 9 $5/2^-,7/2^-,9/2^-$ 16vel not included In 1988DzZW.1658.10 3 $5/2^+$ 1694.48 6 $5/2^+$ 1694.48 6 $5/2^+$ 16vel not included In 1988DzZW.1707.71 8 $(7/2,9/2)^+$ 1202 271203 271204 281204 291204 291204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201204 201205 201204 201204 201204 201205 201204 201204 201204 201205 201204 201205 201204 201205 201205 201205 201205 201205 20 <td>s absent</td>	s absent
1283.282 (1/2,9/2) 1343.57 4 (7/2) ⁻ 1406.35 4 9/2 ⁻ 1420.31 13 (5/2 ⁻ ,7/2,9/2 ⁻) proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW. 1427.12 10 (7/2,9/2) ⁻ 1444.75 5 7/2 ⁻ ,9/2 ⁻ 1444.75 7 7/2 ⁻ ,9/2 ⁻ 1449.781 13 7/2 ⁻ 1463.412 16 7/2 ⁻ 1540.69 4 9/2 ⁻ 16vel not included In 1988DzZW. 1554.876 24 9/2 ⁻ 1616.80 4 (1/2 ⁺ ,3/2,5/2 ⁺) 1658.10 3 5/2 ⁺ 1689.290 23 7/2 ⁻ 1694.48 6 5/2 ⁺ 1694.18 6 5/2 ⁺ 1694.18 6 5/2 ⁺ 1694.18 6 5/2 ⁺ 1694.24 7/2 ⁻ level not included In 1988DzZW. 1708.52 4 7/2 ⁻ 1604.02 3 7/2 ⁺	is absent
1343.5/4 $(7/2)$ 1406.35 49/2 ⁻ level not included In 1988DzZW.1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW.1427.12 10 $(7/2,9/2)^-$ level not included In 1988DzZW.1444.75 5 $7/2^-,9/2^-$ level not included In 1988DzZW.1445.412 16 $7/2^-$ level not included In 1988DzZW.1540.69 49/2^-level not included In 1988DzZW.1554.876 249/2^-level not included In 1988DzZW.1616.80 4 $(1/2^+,3/2,5/2^+)$ level not included In 1988DzZW.1658.10 3 $5/2^+$ level not included In 1988DzZW.1694.48 6 $5/2^+$ level not included In 1988DzZW.1708.52 4 $7/2^-$ level not included In 1988DzZW.1708.52 4 $7/2^-$ level not included In 1988DzZW.1716.02 3 $7/2^+$ level not included In 1988DzZW.	is absent
1406.35 49/2level not included in 1988DzZW.1420.31 13 $(5/2^-,7/2,9/2^-)$ proposed As J=7/2 member of 1/2[521] β vibration band by 1980Ba07. however, level from 1988DzZW.1427.12 10 $(7/2,9/2)^-$ level not included In 1988DzZW.1444.75 5 $7/2^-,9/2^-$ level not included In 1988DzZW.1449.781 13 $7/2^-$ level not included In 1988DzZW.1540.69 4 $9/2^-$ level not included In 1988DzZW.1554.876 24 $9/2^-$ level not included In 1988DzZW.1616.80 4 $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW.1658.10 3 $5/2^+$ level not included In 1988DzZW.1694.48 6 $5/2^+$ level not included In 1988DzZW.1708.52 4 $7/2^-$ level not included In 1988DzZW.	is absent
1420.31 15 $(3/2, 1/2, 9/2)^{-}$ proposed As $3=1/2$ member of $1/2(321)$ by vibration band by 1930Ba07. Nowever, level from 1988DzZW. 1427.12 10 $(7/2, 9/2)^{-}$ level not included In 1988DzZW. 1444.75 5 $7/2^{-}, 9/2^{-}$ level not included In 1988DzZW. 1449.781 13 $7/2^{-}$ level not included In 1988DzZW. 1540.69 4 $9/2^{-}$ level not included In 1988DzZW. 1554.876 24 $9/2^{-}$ level not included In 1988DzZW. 1616.80 4 $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW. 1658.10 3 $5/2^{+}$ level not included In 1988DzZW. 1694.48 6 $5/2^{+}$ level not included In 1988DzZW. 1707.71 8 $(7/2,9/2)^{+}$ level not included In 1988DzZW. 1708.52 4 $7/2^{-}$ level not included In 1988DzZW. 1708.52 4 $7/2^{-}$ level not included In 1988DzZW.	is absent
1427.1210 $(7/2,9/2)^-$ 1444.75 $7/2^-,9/2^-$ level not included In 1988DzZW.1449.78113 $7/2^-$ 1463.41216 $7/2^-$ 1540.69 $9/2^-$ level not included In 1988DzZW.1554.876 24 $9/2^-$ 1565.65 $(7/2^-)$ level not included In 1988DzZW.1616.80 $(1/2^+,3/2,5/2^+)$ level not included In 1988DzZW.1656.22 $5/2^-,7/2^-,9/2^-$ level not included In 1988DzZW.1658.10 $5/2^+$ level not included In 1988DzZW.1689.29023 $7/2^-$ 1694.48 $5/2^+$ level not included In 1988DzZW.1707.71 $(7/2,9/2)^+$ level not included In 1988DzZW.1708.52 $7/2^-$ level not included In 1988DzZW.	
1444.75 5 $7/2^-, 9/2^-$ level not included In 1988DzZW.1449.781 13 $7/2^-$ 1463.412 16 $7/2^-$ 1540.69 4 $9/2^-$ 1554.876 24 $9/2^-$ 1565.65 5 $(7/2^-)$ 1616.80 4 $(1/2^+, 3/2, 5/2^+)$ 1656.22 9 $5/2^-, 7/2^-, 9/2^-$ 1689.290 23 $7/2^-$ 1694.48 6 $5/2^+$ 1697.71 8 $(7/2, 9/2)^+$ 1608.24 $7/2^-$ 1609.25 $7/2^-$ 1609.271000000000000000000000000000000000000	
1449.781 13 $7/2^-$ 1463.412 16 $7/2^-$ 1540.69 9/2^- level not included In 1988DzZW. 1554.876 24 9/2^- 1565.65 $(7/2^-)$ level not included In 1988DzZW. 1616.80 $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW. 1656.22 $5/2^-, 7/2^-, 9/2^-$ level not included In 1988DzZW. 1658.10 $5/2^+$ level not included In 1988DzZW. 1689.290 23 $7/2^-$ 1694.48 $5/2^+$ level not included In 1988DzZW. 1707.71 $(7/2,9/2)^+$ level not included In 1988DzZW. 1708.52 $7/2^-$ level not included In 1988DzZW. 1706.52 $7/2^-$ level not included In 1988DzZW.	
1463.412 16 $7/2^-$ 1540.69 4 $9/2^-$ 1554.876 24 $9/2^-$ 1565.65 5 $(7/2^-)$ 1616.80 4 $(1/2^+, 3/2, 5/2^+)$ 1656.22 9 $5/2^-, 7/2^-, 9/2^-$ 1658.10 3 $5/2^+$ 1689.290 23 $7/2^-$ 1694.48 6 $5/2^+$ 1607.71 8 $(7/2,9/2)^+$ 1707.71 8 $(7/2,9/2)^+$ 1708.52 4 $7/2^-$ 16vel not included In 1988DzZW.	
$1540.69 4$ $9/2^-$ level not included In 1988DzZW. $1554.876 24$ $9/2^ 1565.65 5$ $(7/2^-)$ level not included In 1988DzZW. $1616.80 4$ $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW. $1656.22 9$ $5/2^-, 7/2^-, 9/2^-$ level not included In 1988DzZW. $1658.10 3$ $5/2^+$ level not included In 1988DzZW. $1689.290 23$ $7/2^-$ level not included In 1988DzZW. $1694.48 6$ $5/2^+$ level not included In 1988DzZW. $1707.71 8$ $(7/2,9/2)^+$ level not included In 1988DzZW. $1708.52 4$ $7/2^-$ level not included In 1988DzZW. $1716.02 3$ $7/2^+$	
$1554.876\ 24$ $9/2^ 1565.65\ 5$ $(7/2^-)$ level not included In 1988DzZW. $1616.80\ 4$ $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW. $1656.22\ 9$ $5/2^-, 7/2^-, 9/2^-$ level not included In 1988DzZW. $1658.10\ 3$ $5/2^+$ level not included In 1988DzZW. $1689.290\ 23$ $7/2^-$ level not included In 1988DzZW. $1694.48\ 6$ $5/2^+$ level not included In 1988DzZW. $1707.71\ 8$ $(7/2,9/2)^+$ level not included In 1988DzZW. $1708.52\ 4$ $7/2^-$ level not included In 1988DzZW. $1708.52\ 4$ $7/2^+$ level not included In 1988DzZW.	
1565.65 5 $(7/2^-)$ level not included In 1988DzZW. 1616.80 4 $(1/2^+, 3/2, 5/2^+)$ level not included In 1988DzZW. 1656.22 9 $5/2^-, 7/2^-, 9/2^-$ level not included In 1988DzZW. 1658.10 3 $5/2^+$ level not included In 1988DzZW. 1689.290 23 $7/2^-$ level not included In 1988DzZW. 1694.48 6 $5/2^+$ level not included In 1988DzZW. 1707.71 8 $(7/2,9/2)^+$ level not included In 1988DzZW. 1708.52 4 $7/2^-$ level not included In 1988DzZW. 1716.02 3 $7/2^+$ level not included In 1988DzZW.	
1616.80 4 $(1/2^+, 3/2, 5/2^+)$ 1656.22 9 $5/2^-, 7/2^-, 9/2^-$ 1658.10 3 $5/2^+$ 1689.290 23 $7/2^-$ 1694.48 6 $5/2^+$ 1697.71 8 $(7/2, 9/2)^+$ 1707.71 8 $(7/2, 9/2)^+$ 1708.52 4 $7/2^-$ 16vel not included In 1988DzZW. 1716.02 3 $7/2^+$	
$1656.22 \ 9$ $5/2^-, 7/2^-, 9/2^-$ level not included In 1988DzZW. $1658.10 \ 3$ $5/2^+$ $1689.290 \ 23$ $7/2^ 1694.48 \ 6$ $5/2^+$ $1707.71 \ 8$ $(7/2, 9/2)^+$ level not included In 1988DzZW. $1708.52 \ 4$ $7/2^-$ level not included In 1988DzZW. $1716.02 \ 3$ $7/2^+$	
1658.10^{-3} $5/2^+$ 1689.290^{-23} $7/2^ 1694.48^{-6}$ $5/2^+$ level not included In 1988DzZW. 1707.71^{-8} $(7/2,9/2)^+$ level not included In 1988DzZW. 1708.52^{-4} $7/2^-$ level not included In 1988DzZW. 1716.02^{-3} $7/2^+$ level not included In 1988DzZW.	
1689.290 23 $7/2$ 1694.48 $5/2^+$ level not included In 1988DzZW. 1707.71 $(7/2,9/2)^+$ level not included In 1988DzZW. 1708.52 $7/2^-$ level not included In 1988DzZW. 1716.02 $7/2^+$ level not included In 1988DzZW.	
1694.48 6 $5/2^{-1}$ level not included in 1988DZZW. 1707.71 8 $(7/2,9/2)^{+}$ level not included In 1988DzZW. 1708.52 4 $7/2^{-1}$ level not included In 1988DzZW. 1716.02 3 $7/2^{+}$ level not included In 1988DzZW.	
1707.718 $(7/2, 9/2)^{-1}$ level not included in 1988DzZW. 1708.524 $7/2^{-1}$ level not included In 1988DzZW. 1716.023 $7/2^{+1}$	
1/08.324 $1/2$ level not included in 1988DZZ w. 1716.02.3 $7/2^+$	
1781.66.22 7/2-	
1888 00 6 $(7/2^+ 9/2^+)$ level not included In 1988DzZW	
$1908 63 3 5/2^+$	
1954.504 $5/2^{-}.7/2^{-}$ level not included In 1988DzZW.	
1972.35 8 9/2 ⁻ level not included In 1988DzZW.	
1973.97 <i>3</i> 7/2 ⁻	
2029.87 4 7/2-	
2065.04 11 7/2+	
2101.03 7 (5/2,7/2) ⁻	
2135.4 4	
2287.23 5 $7/2^{-}$ % $\varepsilon + \%\beta^{+} = 0.281$ 11 implied; however decay energy too low for K or L1 or L2 capture.	
2296.78? 15 $5/2^-,7/2,9/2^ \%\epsilon+\%\beta^+=0.083$ 14 implied; however level energy $\geq Q$ value. Consequently, level is indi uncertain. As are the placements of all transitions deexciting IT	

¹⁶⁹Yb Levels (continued)

[†] From least-squares fit to $E\gamma$, excluding all questionably or multiply-placed transitions As well As the 761 γ (from 832 level), 908.64 γ (from 1070 level), 1151.70 γ (from 1541 level) and 1676.46 γ (from 1954 level), each of which fits its placement poorly. however, even with these exclusions, three $E\gamma$ are 4σ from their expected values and four deviate by 3σ . almost certainly, some transitions are misplaced In this decay scheme.

- [‡] From Adopted Levels.
- # Band(A): 7/2[633] band.
- [@] Band(B): 1/2[521] band.
- & Band(C): 5/2[512] band.
- ^a Band(D): 5/2[523] band.
- ^b Band(E): 5/2[642] band.
- ^c Band(F): 3/2[521] band + K-2 γ vibration built on 1/2[521].
- ^d Band(G): 3/2[651] band + K-2 γ vibration built on 7/2[633].
- ^e Band(H): 1/2[510] band + K-2 γ vibration built on 5/2[512].

^f Band(I): 7/2[514] band.

^g Band(J): β vibration band. Built on 7/2[633] g.s.; band assignment from 1988DzZW.

ε, β^+ radiations

 $\varepsilon + \beta^+$ feedings to excited states are from intensity imbalance at each level; see comment on I γ normalization for calculation of g.s. feeding. the allowed, $\Delta N=2$ feeding from a 7/2[404] parent to the 7/2[633] g.s. of ¹⁶⁹Yb is expected to Be strongly inhibited. feeding to members of the 1/2[521] band (K-forbidden) is expected to Be weak also. For questionable placements and for multiply-placed transitions with undivided intensity, intensities of $1/2I\gamma \pm 1/2I\gamma$ have been assumed for each placement. There is apparent and unexpected feeding of 0.25% 11 to 161.7 level, 0.23% 9 to 269.7 level, 0.17% 8 to 486.9 level, and 0.19% 2 to 720.0 level. This might be attributable to an incomplete decay scheme (2.7% of γ intensity is unplaced).

β^+ spectrum (1977Bo31):

Other β^+ spectrum: 1981By04 (used total-absorption γ -ray spectroscopy to measure strength function).

$E\beta$	$\mathrm{I}\beta$ (relative to Ice(K)=1 for	191.2γ)
1271 3 900 +100-60 670 50 310 +60-40	0.55 5 0.028 11 0.028 6 0.006 +4-3	

The 1271 β^+ group feeds the ground state.

E(decay)	E(level)	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(158 3)	2135.4	0.0070 11	8.46 8	0.0070 11	εK=0.678 5; εL=0.241 4; εM+=0.0803 14
(192 3)	2101.03	0.072 5	7.68 4	0.072 5	εK=0.720 3; εL=0.2114 20; εM+=0.0690 8
(228 3)	2065.04	0.0125 11	8.64 4	0.0125 11	εK=0.7447 17; εL=0.1931 13; εM+=0.0622 5
(263 3)	2029.87	1.14 6	6.84 <i>3</i>	1.14 6	εK=0.7607 12; εL=0.1815 9; εM+=0.0579 3
(319 3)	1973.97	1.02 9	7.09 4	1.02 9	εK=0.7770 7; εL=0.1695 5; εM+=0.05345 19
(321 3)	1972.35	0.41 6	7.49 7	0.41 6	εK=0.7774 7; εL=0.1693 5; εM+=0.05335 19
(339 3)	1954.50	0.57 4	7.40 4	0.57 4	εK=0.7812 6; εL=0.1665 5; εM+=0.05234 16
(384 3)	1908.63	2.12 9	6.960 20	2.12 9	εK=0.7889 5; εL=0.1608 4; εM+=0.05026 12
(405 3)	1888.00	0.35 <i>3</i>	7.79 4	0.35 <i>3</i>	εK=0.7917 4; εL=0.1588 3; εM+=0.04951 11
(511 3)	1781.696	3.25 8	7.055 13	3.25 8	εK=0.8021 3; εL=0.15121 17; εM+=0.04674 6
(577 3)	1716.02	1.69 7	7.455 19	1.69 7	εK=0.8063 2; εL=0.1481 2; εM+=0.04561 5

Continued on next page (footnotes at end of table)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}eta^+$ †	$\mathrm{I}arepsilon^\dagger$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(584 3)	1708.52		0.84 7	7.77 4	0.84 7	εK=0.8067 2; εL=0.1478 2; εM+=0.04550 5
(585 3)	1707.71		0.410 19	8.084 21	0.410 19	εK=0.8067 2; εL=0.1478 2; εM+=0.04549 5
(599 3)	1694.48		0.121 8	8.64 <i>3</i>	0.121 8	εK=0.8075 2; εL=0.1472 2; εM+=0.04530 5
(604 3)	1689.290		1.62 5	7.517 15	1.62 5	εK=0.8077 2; εL=0.1470 2; εM+=0.04523 4
(635 3)	1658.10		4.86 13	7.087 13	4.86 13	εK=0.8092 2; εL=0.1460 1; εM+=0.04484 4
(637 3)	1656.22		0.44 5	8.13 5	0.44 5	εK=0.8093 2; εL=0.1459 1; εM+=0.04481 4
(676 3)	1616.80		0.407 15	8.224 17	0.407 15	εK=0.8110 2; εL=0.14467 9; εM+=0.04437 4
(727 3)	1565.65		0.37 4	8.33 5	0.37 4	εK=0.8128 1; εL=0.14330 8; εM+=0.04388 3
(738 3)	1554.876		1.63 15	7.70 4	1.63 15	εK=0.8132 1; εL=0.14304 8; εM+=0.04378 3
(752 3)	1540.69		0.69 9	8.09 6	0.69 9	εK=0.8136 1; εL=0.14271 7; εM+=0.04366 3
(830 3)	1463.412		5.07 17	7.319 15	5.07 17	εK=0.8158; εL=0.14112 6; εM+=0.04309 2
(843 3)	1449.781		15.8 4	6.841 <i>12</i>	15.8 4	εK=0.8161; εL=0.14088 6; εM+=0.04300 2
(848 3)	1444.75		0.245 25	8.66 5	0.245 25	εK=0.8162; εL=0.14079 6; εM+=0.04297 2
(866 3)	1427.12		0.36 12	8.51 15	0.36 12	εK=0.8167; εL=0.14048 5; εM+=0.04286 2
(873 <i>3</i>)	1420.31		0.22 4	8.73 8	0.22 4	ε K=0.8168; ε L=0.14037 5; ε M+=0.04282 2
(887 3)	1406.35		0.69 9	8.25 6	0.69 9	εK=0.8171; εL=0.14014 5; εM+=0.04274 2
(949 3)	1343.57		1.38 6	8.009 20	1.38 6	εK=0.8184; εL=0.13921 5; εM+=0.04240 2
(1010 3)	1283.282		2.15 11	7.873 23	2.15 11	εK=0.8194; εL=0.13843 4; εM+=0.04212 2
(1116 3)	1177.01		0.283 21	8.84 4	0.283 21	εK=0.8210; εL=0.13728 3; εM+=0.04171 1
(1125 3)	1167.74		0.41 4	8.69 5	0.41 4	εK=0.8211; εL=0.13719 3; εM+=0.04167 1
(1152 3)	1141.44		0.111 11	9.28 5	0.111 11	εK=0.8215; εL=0.13694 3; εM+=0.04158 1
(1215 3)	1078.335		3.14 10	7.877 14	3.14 10	εK=0.8222; εL=0.13639 3; εM+=0.041388 9
(1222 3)	1070.77		0.67 5	8.55 4	0.67 5	ε K=0.8223; ε L=0.13633 3; ε M+=0.041366 9
(1332 3)	960.612	0.0058 3	25.2 7	7.056 13	25.2 7	av E β =156.0 <i>14</i> ; ε K=0.8232; ε L=0.13550 <i>3</i> ; ε M+=0.041067 <i>8</i>
(1364 3)	929.17		0.33 7	9.78 ¹ 10	0.33 7	εK=0.8100; εL=0.14533 5; εM+=0.04467 2
(1382 3)	911.38		0.145 17	9.33 5	0.145 17	εK=0.8235; εL=0.13515 2; εM+=0.040944 8
(1406 3)	886.80		0.495 20	8.812 18	0.495 20	εK=0.8236; εL=0.13498 2; εM+=0.040884 8
(1441 [‡] 3)	851.7?		0.09 9	9.6 5	0.09 9	εK=0.8236; εL=0.13474 2; εM+=0.040800 8
(1486 3)	807.079	0.00079 9	0.62 7	8.76 5	0.62 7	av Eβ=225.3 14; εK=0.8236; εL=0.13444 2; εM+=0.040694 8
(1531 3)	761.822	0.0010 2	0.54 11	8.85 9	0.54 11	av Eβ=245.4 14; εK=0.8234; εL=0.13412 2; εM+=0.040587 8
(1544 3)	748.923	0.0014 2	0.67 10	8.77 7	0.67 10	av E β =251.1 14; ε K=0.8234; ε L=0.13403 3; ε M+=0.040556.8
(1586 3)	707.03	0.0022 5	0.80 16	8.71 9	0.80 16	av E β =269.7 16; ε K=0.8230; ε L=0.13374 3; ε M+=0.040454 8
(1633 3)	659 52		0 27 15	$10 \ 19^{1u} \ 25$	0 27 15	$\kappa K = 0.8141$; $\kappa I = 0.14185.4$; $\kappa M + = 0.04340.2$
(1645 3)	647.847	0.0085 3	2.05 7	8.335 15	2.06 7	av $E\beta$ =295.6 15; ε K=0.8223; ε L=0.13329 3; ε M=-0.040305 8
(1646 3)	647.34	0.0022 3	0.53 7	8.93 6	0.53 7	av $E\beta$ =295.9 <i>15</i> ; ε K=0.8223; ε L=0.13329 <i>3</i> ; ε M=-0.040304 <i>8</i>
(1702 3)	590.67	0.0025 5	0.43 8	9.05 8	0.43 8	av $E\beta$ =321.0 <i>14</i> ; ε K=0.8212; ε L=0.13284 <i>3</i> ; sM+=0.040154.9
(1723 3)	569.837	0.0065 5	1.00 8	8.69 4	1.01 8	av $E\beta$ =330.2 <i>14</i> ; ε K=0.8208; ε L=0.13266 <i>3</i> ; ε M=-0.040097.9
(1903 3)	389.523	0.012 3	0.78 20	8.89 11	0.79 20	av $E\beta$ =409.3 <i>I</i> 4; ε K=0.8147 <i>2</i> ; ε L=0.13091 <i>4</i> ; ε M=-0.03953 <i>I</i>
(2014 3)	278.594	0.02 1	0.8 4	8.94 22	0.8 4	av $E\beta$ =458.0 <i>14</i> ; ε K=0.8088 <i>2</i> ; ε L=0.12957 <i>4</i> ; ε M+=0.03911 <i>2</i>
(2029 [‡] 3)	264.272	< 0.0090	< 0.37	>9.3	<0.38	av E β =464.3 <i>14</i> ; ε K=0.8079 <i>2</i> ; ε L=0.12939 <i>4</i> ; ε M+=0.03905 <i>2</i>
(2049 [‡] 3)	243.827	< 0.012	<0.46	>9.2	<0.47	av E β =473.3 <i>14</i> ; ε K=0.8066 <i>2</i> ; ε L=0.12911 <i>5</i> ; ε M+=0.03896 <i>2</i>
(2102 3)	191.216	0.048 18	1.6 6	8.68 17	1.6 6	av E β =496.4 <i>14</i> ; ε K=0.8030 <i>3</i> ; ε L=0.12835 <i>5</i> ; ε M+=0.03873 <i>2</i>

Continued on next page (footnotes at end of table)

			¹⁶⁹ Lu	ε decay (3	34.06 h)	1978Ba73,1978Bo39,1980Ba07 (continued)
$E(decay) = E(level) = I\beta^+^{\dagger}$		أعا	Log ft	$\frac{\epsilon,\beta^+}{I(\epsilon+\beta^+)}$	radiations (continued)	
2293 3	0.0	0.54 5	10.0 9	7.95 5	10.5 10	av E β =580.6 <i>14</i> ; ε K=0.7860 <i>4</i> ; ε L=0.12513 6; ε M+=0.03773 2 E(decay): from E β +=1271 <i>3</i> (1977Bo31). I(ε + β ⁺),I ε : deduced from I β (1271 β)/Ice(K)(191.2 γ)=0.55 5 (1977Bo31).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{169}\text{Yb})$

I γ normalization: from total I(γ +ce) (to g.s. plus 24.2 level) less Ti(24.2 γ)=89.5% 10; this follows from ($\%\epsilon$ + $\%\beta^+$ to g.s.)=10.5 *10* based on measured I(β^+ to g.s.)/I(191 ce(K))=0.55 5 (1977Bo31) and I(ϵ)/I(β^+)=18.6 from theory for this allowed transition. Using this normalization, the decay-scheme value for Σ I γ (K x ray) is 526 6 compared with Σ I γ (K x ray)(exp)=503 6.

I γ (K x ray) (relative to I γ (960.6 γ)=100 (1978Ba73)).

6

 α (K)exp data given in comments are from 1978Ba73, unless indicated to the contrary.

Εγ	Ιγ(Κ	x ray)								
51.354 52.389 59.4 61.0	146 254 82 2 20.7	5								
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	$I_{(\gamma+ce)}f$	Comments
12.31 [@] 2	0.078 ^{&} 17	99.250	5/2-	86.927	3/2-	M1+E2	0.026 +6-4	307 23		$\alpha(L)=238\ 17;\ \alpha(M)=54\ 5;\ \alpha(N+)=14.5\ 11$ $\alpha(N)=12.7\ 10;\ \alpha(O)=1.76\ 11;\ \alpha(P)=0.0825\ 13$ $E_{\gamma}:\ from\ 1973Bo38.$ $I_{\gamma}:\ deduced\ from\ Lce(L)=19.3\ 43\ (1977Ar17)\ and\ \alpha(L)(theory).$ Mult.: from ce subshell ratios: L1:L2:L3:M1:M2:M3:N1:N2:O=\ 350\ 100:60\ 15:55 $25570\ 16:12\ 2:10\ 2:17\ 2:2\ 12\ 2\ 10\ (1077Ar17)$
14.22 4		278.594	7/2-	264.272	9/2-				<1.8	E_{γ} : from 1973Bo38. Ti(14.2 γ) cannot exceed 0.9 9 and Ti(34.8 γ) cannot exceed 1.5 7 based on intensity balances at the
20.44 2	0.035 6	264.272	9/2-	243.827	7/2-	M1		59.0		24.3.8 and 264.3 levels. $\alpha(L)=45.9$ 7; $\alpha(M)=10.30$ 15; $\alpha(N+)=2.78$ 4 $\alpha(N)=2.42$ 4; $\alpha(O)=0.344$ 5; $\alpha(P)=0.0183$ 3 E_{γ} : from 1973Bo38. I_{γ} : deduced from Ice(M1)=0.33 6 (1977Ar17) and $\alpha(M1)$ (theory).
24.20 2		24.210	1/2-	0.0	7/2+	E3		2.58×10 ⁵	60.0 22	Mult.: from ce subshell ratios (1977Ar17); M1+E2 with δ <0.055 (nuclear orientation, 1982Da23). L1:M1:M2=36 6:8.0 13:≤1.6 (1977Ar17). ce(L)/(γ +ce)=0.717 8; ce(M)/(γ +ce)=0.225 5; ce(N+)/(γ +ce)=0.0580 12 ce(N)/(γ +ce)=0.0526 11; ce(O)/(γ +ce)=0.00541 12; ce(P)/(γ +ce)=2.64×10 ⁻⁶ 6

				¹⁶⁹ Lu ε (lecay (34.06	h) 1978Ba73,19	78Bo39,19	80Ba07 (co	ontinued)		
γ ⁽¹⁶⁹ Yb) (continued)											
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{g}	$I_{(\gamma+ce)}f$	Comments		
									E _γ : from 1970Ba09. I _(γ+ce) : from intensity balance at 24.2 level; ε+β ⁺ feeding to this level is not expected (ΔJ=3, Δπ=yes). Mult.: from ce subshell ratios: L1:L2:L3:M1:M2:M3:(M4+M5):N:O=≤50:500 50:600 50:<8:140 15:160 15:29 3:71 7:6 2 (1977Ar17).		
34.79 4		278.594	7/2-	243.827 7/2	- M1+E2	≈0.022 ^b	≈12.36	<2.2	ce(L)/(γ+ce)≈0.720; ce(M)/(γ+ce)≈0.162; ce(N+)/(γ+ce)≈0.0436 ce(N)/(γ+ce)≈0.0379; ce(O)/(γ+ce)≈0.00539; ce(P)/(γ+ce)≈0.000283 Eγ: from 1973Bo38. I(γ+ce): See comment with 14.2γ. Mult.: from ce subshell ratios (1977Ar17). L1:L2=11.6 13:≈1.2 (1977Ar17).		
62.730 [@] 14	2.79 11	86.927	3/2-	24.210 1/2	⁻ M1+E2	0.60 ^b 3	15.1 3		$\begin{array}{l} \alpha(\mathrm{K}){=}8.22\ 22;\ \alpha(\mathrm{L}){=}5.3\ 3;\ \alpha(\mathrm{M}){=}1.27\ 7;\\ \alpha(\mathrm{N}{+}){=}0.326\ 18\\ \alpha(\mathrm{N}){=}0.291\ 16;\ \alpha(\mathrm{O}){=}0.0348\ 17;\ \alpha(\mathrm{P}){=}0.000523\ 13\\ \alpha(\mathrm{L}){\exp}{=}4.7\ 3\ (1977\mathrm{Ar17});\\ \mathrm{L}1{:}\mathrm{L}2{:}\mathrm{L}3{:}\mathrm{M}1{:}\mathrm{M}2{:}\mathrm{M}3{:}\mathrm{N}{=}\ 75\ 7{:}130\ 15{:}130\\ 10{:}\approx20{:}\approx40{:}\approx40{:}19\ 2\ (1977\mathrm{Ar17});\\ \mathrm{L}1{:}\mathrm{L}2{:}\mathrm{L}3{=}100{:}161\ 5{:}164\ 5\ (1987\mathrm{BaZB}). \end{array}$		
70.880 [@] 6	7.27 13	70.880	9/2+	0.0 7/2	+ M1+E2	-0.31 ^c +15-26	9.4 6		α (K)=7.1 <i>10</i> ; α (L)=1.8 <i>12</i> ; α (M)=0.4 <i>3</i> ; α (N+)=0.11 <i>8</i> α (N)=0.10 <i>7</i> ; α (O)=0.013 <i>8</i> ; α (P)=0.00043 <i>6</i> α (K)exp=6.4 <i>9</i> (1978Ba73), 7.2 <i>11</i> (1977Ar17); K:L1:L2:L3:M1:M2:M3= 1220 <i>150</i> :170 <i>20</i> :80 <i>15</i> :50 <i>10</i> :37 <i>7</i> :19 <i>3</i> :11.5 <i>20</i> (1977Ar17); L1:L2:L3=100:46.9 <i>13</i> :34.4 7 (1987Ba7B).		
75.036 6	1.30 3	99.250	5/2-	24.210 1/2	- E2		10.05		$\begin{aligned} &\alpha(\text{K})=1.619\ 23;\ \alpha(\text{L})=6.44\ 9;\ \alpha(\text{M})=1.591\ 23;\\ &\alpha(\text{N}+)=0.404\ 6\\ &\alpha(\text{N})=0.362\ 5;\ \alpha(\text{O})=0.0412\ 6;\ \alpha(\text{P})=8.18\times10^{-5}\ 12\\ &\text{Mult.: from ce subshell ratios (1973Bo38,1977Ar17).}\\ &\alpha(\text{K})\text{exp}=1.4\ 3\ (1978Ba73);\\ &\text{K:L1:L2:L3:M1:M2:M3:N:O=}\ 50\\ &9:5.0:83:85:1.33:26.6:26.6:13.3:3.3\ (1973Bo38);\\ &\text{K:L1:L2:L3=}{\leq}50:5.5\ 5:95\ 3:100\ (1977Ar17). \end{aligned}$		
87.377 [@] 4	10.50 <i>19</i>	278.594	7/2-	191.216 5/2	⁻ M1+E2	-0.23^{b} 2	5.00		$ \begin{aligned} &\alpha(\mathbf{K}) = 4.01 \ 7; \ \alpha(\mathbf{L}) = 0.763 \ 24; \ \alpha(\mathbf{M}) = 0.175 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0465 \ 15 \\ &\alpha(\mathbf{N}) = 0.0407 \ 14; \ \alpha(\mathbf{O}) = 0.00556 \ 16; \ \alpha(\mathbf{P}) = 0.000245 \ 4 \\ &\delta: \ \text{sign from } \delta = -0.14 \ +7-24 \ \text{from } \gamma\gamma(\theta) \\ &(1980\mathrm{Bu}24). \end{aligned} $		

 \neg

From ENSDF

				¹⁶⁹ Lu ε	decay ((34.06 h)	1978Ba73,1978Bo3	9,1980Ba0	7 (continued)
						<u> </u>	¹⁶⁹ Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
									α(K)exp=3.5 5 (1978Ba73), 4.0 5 (1977Ar17); K:L1:L2:L3:M1:M2:M3= 1050 <i>100</i> :160 <i>12</i> :32 <i>3</i> :24 <i>3</i> :32 <i>3</i> :8.7 7:5.7 <i>10</i> (1977Ar17); L1:L2:L3=100:21.3 <i>9</i> :16.4 5 (1987BaZB).
90.764 [@] 4	2.38 5	161.645	11/2+	70.880	9/2+	M1+E2	-0.26 ^b 3	4.47	$\begin{aligned} &\alpha(\mathbf{K}) = 3.57 \ 7; \ \alpha(\mathbf{L}) = 0.70 \ 3; \ \alpha(\mathbf{M}) = 0.161 \ 8; \ \alpha(\mathbf{N}+) = 0.0428 \\ &20 \\ &\alpha(\mathbf{N}) = 0.0375 \ 18; \ \alpha(\mathbf{O}) = 0.00509 \ 20; \ \alpha(\mathbf{P}) = 0.000217 \ 4 \\ &\delta: \ \text{sign from nuclear orientation} \ (\delta = -0.3 \ +3 - 6, \ 1982\text{Da23}); \\ &\delta < 0 \ \text{supported by } \delta = -0.40 \ 9 \ \text{from } \ ^{167}\text{Er}(\alpha, 2n\gamma)). \\ &\alpha(\mathbf{K}) \text{exp} = 3.0 \ 3 \ (1978\text{Ba73}), \ 3.0 \ 6 \ (1977\text{Ar17}); \\ &\text{K:L1:L2:L3:M1:M2:N:O} = 66 \\ &11:10:2.5:<0.83:2.5:0.66:0.83:0.17 \ (1973\text{Bo38}); \\ &\text{K:L1:L2:L3} = 190 \ 15:27 \ 2:8.1 \ 10:4.5 \ 7 \ (1977\text{Ar17}). \end{aligned}$
91.965 [@] 3	2.56 5	191.216	5/2-	99.250	5/2-	M1(+E2)	$-0.2^{c} + 4 - 3$	4.30 7	$ \begin{aligned} &\alpha(\text{K}) = 3.5 \ 4; \ \alpha(\text{L}) = 0.6 \ 3; \ \alpha(\text{M}) = 0.14 \ 8; \ \alpha(\text{N}+) = 0.038 \ 20 \\ &\alpha(\text{N}) = 0.033 \ 18; \ \alpha(\text{O}) = 0.0046 \ 19; \ \alpha(\text{P}) = 0.00021 \ 3 \\ &\alpha(\text{K}) \exp = 3.63 \ 8 \ (1977\text{Ar17}); \ \text{K:L1:L2:L3:M1:M2:N=133} \\ &20:16.6:3.3:<0.66:5.0:0.83:1.33 \ (1973\text{Bo38}); \\ &\text{K:L1:L2=240} \ 30:31 \ 4:4.3 \ 15 \ (1977\text{Ar17}). \end{aligned} $
104.293 [@] 9	2.04 7	191.216	5/2-	86.927	3/2-	M1(+E2)	-0.55° +65-20	2.93 7	$\alpha(K)=2.1 4; \alpha(L)=0.61 23; \alpha(M)=0.14 6; \alpha(N+)=0.038 14$ $\alpha(N)=0.033 13; \alpha(O)=0.0043 14; \alpha(P)=0.00013 3$ Mult.: from ce subshell ratios (1977Ar17). $\alpha(K)exp=2.0 4$ (1978Ba73), 1.9 3 (1977Ar17); K:L1:L2:M= 140 10:18.3 14:1.7 3:≈4.6 (1977Ar17); K:L1:L2:L3:M1:M2:N:O= 108 20:19.9:2.0:0.20:6.64:0.66:1.66:0.50 (1973Bo38).
108.004 [@] 25	0.353 18	269.628	13/2+	161.645	11/2+	M1+E2	-1.0^{b} +6-4	2.55 12	α (K)=1.6 5; α (L)=0.8 3; α (M)=0.18 8; α (N+)=0.047 19 α (N)=0.042 18; α (O)=0.0051 19; α (P)=9.E-5 4 δ : sign from Adopted Gammas. α (K)exp=1.6 3 (1978Ba73); K:L1:L2:L3:M1:M2:N= 150 23:23.2:8.3:2.3:6.6:1.7:1.7 (1973Bo38).
110.924 [@] 4	7.48 18	389.523	9/2-	278.594	7/2-	M1+E2	-0.17 ^C +7-8	2.50	$\begin{aligned} &\alpha(\mathbf{K}) = 2.06 \ 5; \ \alpha(\mathbf{L}) = 0.341 \ 23; \ \alpha(\mathbf{M}) = 0.077 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0207 \ 15 \\ &\alpha(\mathbf{N}) = 0.0180 \ 13; \ \alpha(\mathbf{O}) = 0.00253 \ 14; \ \alpha(\mathbf{P}) = 0.000125 \ 4 \\ &\delta: \ \text{other values:} \ -0.28 \ +9 - 8 \ (\gamma\gamma(\theta), \ 1980\text{Bu}24), \ -0.11 \\ &+ 16 - 25 \ (\text{from} \ ^{167}\text{Er}(\alpha, 2n\gamma)). \\ &\alpha(\mathbf{K}) \text{exp} = 1.55 \ 25 \ (1978\text{Ba}73); \\ &\text{K:L1:L2:L3:M1:M2:M3:N:O} = \ 32 \\ &5:4.2:0.75:0.22:1.0:0.18:0.07:0.25:0.066 \ (1973\text{Bo}38). \end{aligned}$
133.540 5	0.843 22	523.066	11/2-	389.523	9/2-	M1+E2	-0.20 +10-12	1.46 3	$\alpha(K)=1.21 5; \alpha(L)=0.198 15; \alpha(M)=0.045 4;$ $\alpha(N+)=0.0120 10$ $\alpha(N)=0.0105 9; \alpha(O)=0.00147 9; \alpha(P)=7.3\times10^{-5} 4$ δ : from Adopted Gammas; other value: -0.02 22 (nuclear

 ∞

				¹⁶⁹ Luε	decay (34.06	5 h) 197 8	3Ba73,1978Bo39,2	1980Ba07 (co	ntinued)
						γ (¹⁶⁹ Y	b) (continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^g	Comments
					<u> </u>				orientation, 1982Da23). α(K)exp=1.3 2 (1978Ba73); K:L1:L2:L3:M1:M2:N= 300 50:36:6.6:1.3:8.3:1.7:2.5 (1973Bo38).
144.576 [@] 7	2.41 6	243.827	7/2-	99.250	5/2-	M1+E2	+0.52 ^{<i>c</i>} +12-9	1.10 4	$\alpha(K)=0.86\ 5;\ \alpha(L)=0.186\ 14;\ \alpha(M)=0.043\ 4;\ \alpha(N+)=0.0114\ 9$ $\alpha(N)=0.0100\ 8;\ \alpha(O)=0.00133\ 8;\ \alpha(P)=5.1\times10^{-5}\ 4$
									Other δ : 0.42 3 (ce subshell ratios, 198/BaZB). α (K)exp=0.80 15 (1978Ba73); K:L1:L2:L3:M1:M2:N= 515 90:73:11.6:5:18.3:3.3:5.0 (1973Bo38); L1:L2:L3=100:27.0 22:16.7 22 (1987BaZB).
156.901 4	6.01 11	243.827	7/2-	86.927	3/2-	E2		0.616	$\alpha(K)=0.326\ 5;\ \alpha(L)=0.222\ 4;\ \alpha(M)=0.0541\ 8;$ $\alpha(N+)=0.01385\ 20$ $\alpha(N)=0.01238\ 18;\ \alpha(O)=0.001461\ 21;$ $\alpha(P)=1.443\times10^{-5}\ 21$ Mult : from as subshall ratios (1072Po28)
161 650 15	0.74.4	161 645	11/2+	0.0	7/2+	E2		0.555	α (K)exp=0.28 5 (1978Ba73), 0.30 4 (1977Ar17); K:L1:L2:L3:M1:M2:M3:N:O= 432 83:50:99.6:66.4:11.6:2.5:16.6:13.3:3.3 (1973Bo38).
161.659 15	0.74 4	161.645	11/2	0.0	1/2*	E2		0.555	$\begin{array}{l} \alpha(\mathbf{K}) = 0.300 \ 3; \ \alpha(\mathbf{L}) = 0.195 \ 3; \ \alpha(\mathbf{M}) = 0.0475 \ 7; \\ \alpha(\mathbf{N}+) = 0.01217 \ 17 \\ \alpha(\mathbf{N}) = 0.01087 \ 16; \ \alpha(\mathbf{O}) = 0.001287 \ 18; \\ \alpha(\mathbf{P}) = 1.337 \times 10^{-5} \ 19 \end{array}$
									Mult.: from ce subshell ratios (1973Bo38). α(K)exp=0.38 10 (1978Ba73); K:L1:L2:L3:M1:M2:M3:N= 76 16:6.6:20:15:1.7:5:3.3:2.5 (1973Bo38).
165.020 7	8.41 16	264.272	9/2-	99.250	5/2-	E2		0.517	$\alpha(K)=0.284 \ 4; \ \alpha(L)=0.1783 \ 25; \ \alpha(M)=0.0434 \ 6; \\ \alpha(N+)=0.01114 \ 16 \\ \alpha(N)=0.00995 \ 14; \ \alpha(O)=0.001179 \ 17; \\ \alpha(P)=1.268\times10^{-5} \ 18$
									Mult.: from ce subshell ratios (1973Bo38). α(K)exp=0.24 5 (1978Ba73), 0.28 4 (1977Ar17); K:L1:L2:L3:M1:M2:M3:N:O= 531 90:55:222:178:13.3:56.4:50:25.0:6.6 (1973Bo38).
166.509 <i>19</i>	0.546 25	1449.781	7/2-	1283.282	(7/2,9/2)-	M1+E2	+0.5 ^c 3	0.73 6	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.59 \ 8; \ \alpha(\mathbf{L}) = 0.115 \ 14; \ \alpha(\mathbf{M}) = 0.026 \ 4; \\ &\alpha(\mathbf{N}+) = 0.0070 \ 9 \\ &\alpha(\mathbf{N}) = 0.0062 \ 9; \ \alpha(\mathbf{O}) = 0.00083 \ 8; \ \alpha(\mathbf{P}) = 3.5 \times 10^{-5} \ 6 \end{aligned} $
· · · · - @			- 15		= /a ±		0.01-0.55	0.075.5	α(K)exp=0.52 <i>14</i> (1978Ba73); K:L1:L2:L3:M1:M2:M3= 75 <i>17</i> :10:26.6:21.6:2.5:6.6:5 (1973Bo38).
191.217 ^{^w 5}	88 2	191.216	5/2-	0.0	7/2+	E1+M2	-0.017° 16	0.0631 25	α (K)=0.0527 20; α (L)=0.0081 5; α (M)=0.00181 10; α (N+)=0.00048 3

From ENSDF

 $^{169}_{70}{
m Yb}_{99}$ -9

			1	¹⁶⁹ Lu ε de	cay (34.0	06 h) 1978	3Ba73,1978Bo39,19	980Ba07 (c	ontinued)			
γ ⁽¹⁶⁹ Yb) (continued)												
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments			
									$ α(N)=0.000419 24; α(O)=5.7×10^{-5} 4; α(P)=2.57×10^{-6} $ <i>l6</i> Mult.: from α(K)exp=0.046 <i>l0</i> (1978Ba73) and K:L1:L2:L3:M1:M2:M3:N:O= 108 <i>20</i> :18.6:2.7:2.7:5:0.7:0.7:0.15:0.35 (1973Bo38). α(K)exp=0.59 9 (1977Ar17) is presumed to Be erroneous. δ: -0.058 9 from nuclear orientation (1982Da23) but <0.042 from α(K)exp=0.046 <i>l0</i> (1978Ba73). B(M2)(W.u.)≤1.0 (from RUL) implies δ≤0.033, so evaluator adonts δ=-0.017 <i>l6</i>			
198.26 <i>12</i>	3.28 11	389.523	9/2-	191.216	5/2-	E2		0.276	$\alpha(K)=0.1690\ 24;\ \alpha(L)=0.0823\ 12;\ \alpha(M)=0.0199\ 3;\alpha(N+)=0.00512\ 8\alpha(N)=0.00457\ 7;\ \alpha(O)=0.000550\ 8;\ \alpha(P)=7.88\times10^{-6}\ 11\alpha(K)exp=0.13\ 3\ (1978Ba73);\ K:L2:L3:M1:M2=\ 11120:30:21.6:8.3:5\ (1973Bo38).$			
198.727 [@] 25	0.18 ^{&} 4	269.628	13/2+	70.880	9/2+	[E2]		0.274	$\alpha(K)=0.1679\ 24;\ \alpha(L)=0.0815\ 12;\ \alpha(M)=0.0197\ 3;\ \alpha(N+)=0.00508\ 8$ $\alpha(N)=0.00452\ 7;\ \alpha(O)=0.000545\ 8;\ \alpha(P)=7.84\times10^{-6}\ 11\ \alpha(K)\exp=0.032\ 15,\ deduced\ from\ I\gamma\ and\ I(ce(K))=0.0058\ 25\ (1978Ba73);\ inconsistent\ with\ \alpha(K)(theory)=0.168\ for\ required\ E2\ multipolarity.$			
207.727 [@] 25	1.84 6	278.594	7/2-	70.880	9/2+	E1(+M2)	-0.09 ^c +14-16	0.07 11	$\begin{aligned} &\alpha(K) = 0.06 \; 9; \; \alpha(L) = 0.009 \; 19; \; \alpha(M) = 0.002 \; 5; \\ &\alpha(N+) = 0.0006 \; 12 \\ &\alpha(N) = 0.0005 \; 11; \; \alpha(O) = 7.E - 5 \; 15; \; \alpha(P) = 3.E - 6 \; 8 \\ &\alpha(K) \exp = 0.034 \; 17 \; (1978Ba73). \end{aligned}$			
$222.70^{\#} 6$	$0.14^{\#}$ 7	487.031	$(11/2^{-})$	264.272	$9/2^{-11/2^{-1}}$				α (K)exp=0.07 5 (1978Ba73).			
227.892 18	0.92 17	389.523	(9/2) 9/2 ⁻	161.645	11/2 11/2 ⁺	[E1]		0.0396	$\alpha(\mathbf{K}) \exp = 0.06 \ 5.$ $\alpha(\mathbf{K}) = 0.0332 \ 5; \ \alpha(\mathbf{L}) = 0.00499 \ 7; \ \alpha(\mathbf{M}) = 0.001113 \ 16;$ $\alpha(\mathbf{N}+) = 0.000296 \ 5$ $\alpha(\mathbf{N}) = 0.000259 \ 4; \ \alpha(\mathbf{O}) = 3.55 \times 10^{-5} \ 5;$			
243.207 12	0.92 20	487.031	(11/2 ⁻)	243.827	7/2-	(E2)		0.1420	$\alpha(P)=1.637\times10^{-6} 23$ $\alpha(K)=0.0948 14; \ \alpha(L)=0.0362 5; \ \alpha(M)=0.00869 13; \ \alpha(N+)=0.00225 4$ $\alpha(N)=0.00200 3; \ \alpha(O)=0.000246 4; \ \alpha(P)=4.64\times10^{-6} 7$			
244.474 [@] 5	0.82 15	523.066	11/2-	278.594	7/2-	(E2)		0.1395	$\alpha(K) \exp = 0.074 \ 20.$ $\alpha(K) = 0.0934 \ 13; \ \alpha(L) = 0.0355 \ 5; \ \alpha(M) = 0.00850 \ 12; \ \alpha(N+) = 0.00220 \ 3$ $\alpha(N) = 0.00196 \ 3; \ \alpha(O) = 0.000240 \ 4; \ \alpha(P) = 4.57 \times 10^{-6} \ 7$			
247.2 3	0.24 8	1167.74	(7/2,9/2)-	919.80	(9/2)-	M1+E2	1.0 +28-8	0.20 6	$\alpha(\mathbf{K}) \exp[=0.12 \ J.$ $\alpha(\mathbf{K}) = 0.16 \ 7; \ \alpha(\mathbf{L}) = 0.0338 \ 6; \ \alpha(\mathbf{M}) = 0.0078 \ 4;$ $\alpha(\mathbf{N}+) = 0.00207 \ 5$			

From ENSDF

 $^{169}_{70}\mathrm{Yb}_{99}$ -10

				169 Lu ε dec	ay (34.	.06 h) 197	8Ba73,1978Bo3	39,1980Ba07	7 (continued)				
	γ ⁽¹⁶⁹ Yb) (continued)												
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments				
247.766 [#] 15	0.15 3	512.039	(13/2)-	264.272	9/2-	E2 ^a		0.1337	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0899 \ 13; \ \alpha(\mathrm{L}) = 0.0337 \ 5; \ \alpha(\mathrm{M}) = 0.00806 \ 12; \\ \alpha(\mathrm{N}+) = 0.00209 \ 3 \\ \alpha(\mathrm{N}) = 0.00186 \ 3; \ \alpha(\mathrm{O}) = 0.000228 \ 4; \ \alpha(\mathrm{P}) = 4.42 \times 10^{-6} \ 7 \end{array}$				
258.331 19	1.45 6	647.847	7/2-	389.523	9/2-	M1+E2	+1.6 +33-7	0.15 4	I _γ : see comment with 247.2γ from 1168 level. $\alpha(K)=0.11 4$; $\alpha(L)=0.0289 5$; $\alpha(M)=0.00679 11$; $\alpha(N+)=0.00178 3$ $\alpha(N)=0.001572 23$; $\alpha(O)=0.000203 9$; $\alpha(P)=6.2\times10^{-6} 22$ δ: sign from $\delta=+0.12 + 25 - 21$ in nuclear orientation (1982Da23).				
272 66 ^{i@} 16	0.12i&	010.80	$(0/2)^{-}$	647 34	7/2+				$\alpha(K) \exp [-0.12] 3.$				
272.66 ^{<i>i</i>} 16	0.12^{i} 0.25^{i} 8	1343.57	$(7/2)^{-}$	1070.77	7/2 ⁺				I_{γ} : deduced from $I_{\gamma}(272.1\gamma+272.7\gamma)=0.37$ 6 and $I_{\gamma}(272.1\gamma)=0.12$ 4.				
278.60 4	0.56 4	278.594	7/2-	0.0	7/2+	(E1)		0.0239	$\alpha(\mathbf{K}) = 0.0201 \ 3; \ \alpha(\mathbf{L}) = 0.00298 \ 5; \ \alpha(\mathbf{M}) = 0.000663 \ 10; \alpha(\mathbf{N}+) = 0.0001765 \ 25 \alpha(\mathbf{N}) = 0.0001542 \ 22; \ \alpha(\mathbf{O}) = 2.13 \times 10^{-5} \ 3; \alpha(\mathbf{P}) = 1.011 \times 10^{-6} \ 15 \alpha(\mathbf{K}) = 0.022 \ 11 \ (1978Ba73).$				
291.234 [@] 19	1.90 7	569.837	5/2-	278.594	7/2-	M1+E2	-0.10 ^c 9	0.170 4	$\alpha(K) = 0.142 \ 3; \ \alpha(L) = 0.0214 \ 4; \ \alpha(M) = 0.00479 \ 7; \alpha(N+) = 0.001294 \ 19 \alpha(N) = 0.001124 \ 16; \ \alpha(O) = 0.0001608 \ 25; \ \alpha(P) = 8.58 \times 10^{-6} 19 \delta: sign from \delta = -0.17 + 6-8 from \ \gamma\gamma(\theta) \ (1980Bu24). Other \ \delta: +0.10 \ 9 \ (1982Da23, nuclear orientation). \alpha(K) = x_0 = 0.18 \ 4.$				
318.70 7	0.384 18	389.523	9/2-	70.880	9/2+	(E1)		0.01720	$\alpha(\mathbf{R}) \exp^{-5.16} 4$, $\alpha(\mathbf{K}) = 0.01447 \ 21; \ \alpha(\mathbf{L}) = 0.00212 \ 3; \ \alpha(\mathbf{M}) = 0.000473 \ 7; \ \alpha(\mathbf{N}+) = 0.0001261 \ 18 \ \alpha(\mathbf{N}) = 0.0001101 \ 16; \ \alpha(\mathbf{O}) = 1.528 \times 10^{-5} \ 22; \ \alpha(\mathbf{P}) = 7.37 \times 10^{-7} \ 11 \ \alpha(\mathbf{K}) \exp^{-0.024} \ 12 \ (1072 \mathbb{P}_{0} 73)$				
x357.10 20 359.38 7	0.20 <i>10</i> 0.71 <i>4</i>	748.923	(9/2)-	389.523	9/2-	(M1+E2)	1.5 +15-6	0.060 14	$\alpha(K) \exp [=0.024 \ 12 \ (1976Ba75).$ $\alpha(K) \exp [=0.024 \ 17.$ $\alpha(K) = 0.048 \ 12; \ \alpha(L) = 0.0097 \ 9; \ \alpha(M) = 0.00223 \ 18;$ $\alpha(N+) = 0.00059 \ 6$ $\alpha(N) = 0.00052 \ 5; \ \alpha(O) = 6.9 \times 10^{-5} \ 8; \ \alpha(P) = 2.7 \times 10^{-6} \ 8$ $\delta: \text{ other value: } -0.44 \le \delta \le +2.04 \text{ (nuclear orientation, } 1982Da23).$ $\alpha(K) \exp [=0.049 \ 11.$				

				169 Lu ε de	cay (34.06 h)	1978Ba '	73,1978Bo39	,1980Ba07 (continued)
						$\gamma(^{169}$ Yb) (continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
369.251 [@] 15	3.58 9	647.847	7/2-	278.594	7/2-	M1+E2	$-0.02^{c} 5$	0.0904	$\alpha(K)=0.0759 \ 11; \ \alpha(L)=0.01131 \ 16; \ \alpha(M)=0.00253 \ 4; \\ \alpha(N+)=0.000683 \ 10 \\ \alpha(N)=0.000593 \ 9; \ \alpha(O)=8.50\times10^{-5} \ 12; \\ \alpha(P)=4.57\times10^{-6} \ 7 \\ \alpha(K)=p=0.076 \ 6.$
378.632 [@] 11	9.01 23	569.837	5/2-	191.216	5/2-	M1(+E2)	-0.04 ^C 6	0.0845 13	$\alpha(K) = 0.0710 \ 11; \ \alpha(L) = 0.01057 \ 15; \ \alpha(M) = 0.00236 \ 4; \alpha(N+) = 0.000638 \ 9 \alpha(N) = 0.000555 \ 8; \ \alpha(O) = 7.95 \times 10^{-5} \ 12; \alpha(P) = 4.27 \times 10^{-6} \ 7 \alpha(K) = 0.065 \ 5.$
383.59 5	0.32 5	647.847	7/2-	264.272	9/2-	[M1,E2]		0.059 23	$\alpha(K)=0.048\ 21;\ \alpha(L)=0.0085\ 17;\ \alpha(M)=0.0019\ 4;\ \alpha(N+)=0.00052\ 10$
389.57 5	0.63 3	389.523	9/2-	0.0	7/2+	(E1)		0.01066	$\alpha(N)=0.00045 \ 9; \ \alpha(O)=6.2\times10^{-5} \ 15; \ \alpha(P)=2.8\times10^{-6} \ 14$ $\alpha(K)=0.00899 \ 13; \ \alpha(L)=0.001303 \ 19; \ \alpha(M)=0.000290$ $4; \ \alpha(N+)=7.74\times10^{-5} \ 11$ $\alpha(N)=6.75\times10^{-5} \ 10; \ \alpha(O)=9.43\times10^{-6} \ 14;$ $\alpha(P)=4.66\times10^{-7} \ 7$ Mult.: $\delta=+0.03 \ 21$ (nuclear orientation, 1982Da23) suggests possible M2 admixture. $\alpha(K)=xp=0.013 \ 2 \ (1978Ba73)$
403.98 4	0.53 4	647.847	7/2-	243.827	7/2-	(M1)		0.0714	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0519 \ 9; \ \alpha(\mathbf{L}) = 0.00890 \ 13; \ \alpha(\mathbf{M}) = 0.00199 \ 3; \\ &\alpha(\mathbf{N}+) = 0.00057 \ 8 \\ &\alpha(\mathbf{N}) = 0.000467 \ 7; \ \alpha(\mathbf{O}) = 6.69 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) = 3.60 \times 10^{-6} \ 5 \\ &\alpha(\mathbf{K}) \exp = 0.056 \ 6. \end{aligned}$
406.03^{h} 7 406.03^{h} 7 419.39 8	0.181 ^{<i>h</i>} 16 0.181 ^{<i>h</i>} 16 0.155 14	929.17 1689.290 1973.97	11/2 ⁻ 7/2 ⁻ 7/2 ⁻	523.066 1283.282 1554.876	11/2 ⁻ (7/2,9/2) ⁻ 9/2 ⁻				α (K)exp=0.051 7 for doublet. α (K)exp=0.0051 7 for doublet.
423.53 [@] 6	0.121 14	1070.77	7/2+	647.34	7/2+	M1		0.0630	$\alpha(K)=0.0529 \ 8; \ \alpha(L)=0.00786 \ 11; \ \alpha(M)=0.001754 \ 25; \ \alpha(N+)=0.000474 \ 7 \ \alpha(N)=0.000412 \ 6; \ \alpha(O)=5.90\times10^{-5} \ 9; \ \alpha(P)=3.18\times10^{-6} \ 5 \ C = 0.000000000000000000000000000000000$
^x 427.81 <i>3</i>	0.251 <i>16</i>					M1		0.0614	α(K)exp=0.066 <i>14</i> . α(K)=0.0516 8; α(L)=0.00765 <i>11</i> ; α(M)=0.001708 24; α(N+)=0.000462 7 α(N)=0.000401 6; α(O)=5.75×10 ⁻⁵ 8; α(P)=3.10×10 ⁻⁶ 5 α(K)exp=0.049 <i>10</i> . placed by 1992Dz03 from 1071 level to an otherwise unknown 643 level deexcited only by two γ's already placed elsewhere.

			1	⁶⁹ Lu ε deca	ny (34.06	5 h) 1978	3a73,1978Bo39	,1980Ba07 (c	ontinued)
						$\gamma(^{169}$ Yb) (continued)		
${\rm E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	a ^g	Comments
432.27 7	0.118 13	1343.57	(7/2)-	911.38	(5/2)-	M1+E2	1.2 +43-7	0.040 14	$\alpha(K)=0.032 \ 12; \ \alpha(L)=0.0058 \ 11; \ \alpha(M)=0.00132 \ 23;$
									$\alpha(N+)=0.000357$ $\alpha(N)=0.000316; \alpha(O)=4.2\times10^{-5}9; \alpha(P)=1.9\times10^{-6}8$
^x 452.42 8	0.29 4								α (K)exp=0.033 <i>12</i> . placed by 1992Dz03 from 1071 level to an otherwise unknown 618 level deexcited by two γ 's already
									placed elsewhere.
456.621 [@] 27	3.05 14	647.847	7/2-	191.216	5/2-	M1(+E2)	-0.09 [°] 9	0.0516 10	α (K)=0.0433 9; α (L)=0.00642 11; α (M)=0.001434 24; α (N+)=0.000387 7
									α (N)=0.000337 6; α (O)=4.82×10 ⁻⁵ 9; α (P)=2.60×10 ⁻⁶ 6
									δ: other value: -0.24 +10-9 (γγ(θ), 1980Bu24). α(K) exp=0.038 6
466.93 21	0.20 5	1427.12	(7/2,9/2)-	960.612	7/2-	(E2)		0.0213	$\alpha(\mathbf{K}) \approx 0.01658\ 24;\ \alpha(\mathbf{L}) = 0.00363\ 6;\ \alpha(\mathbf{M}) = 0.000843\ 12;\ \alpha(\mathbf{N} +) = 0\ 000222\ 4$
									$\alpha(N)=0.000196 \ 3; \ \alpha(O)=2.58\times10^{-5} \ 4; \ \alpha(P)=9.03\times10^{-7}$
									$\alpha(K) \exp = 0.020 \ 10.$
470.47 ^{<i>i</i>} 3	0.46 ^{<i>i</i>} 5	569.837	5/2-	99.250	5/2-				I _{γ} : deduced from total I γ =2.33 <i>13</i> and requirement that I(470 γ from 570 level)/I(379 γ) and I(470 γ from 749 level)/I(360 γ) should be identical In ε decay and (n z) E-thermal
									$\alpha(K)\exp=0.042$ 10 for doublet.
470.47 ^{<i>i</i>} 3	1.87 ⁱ 26	748.923	(9/2)-	278.594	7/2-	M1		0.0479	α (K)=0.0403 <i>6</i> ; α (L)=0.00596 <i>9</i> ; α (M)=0.001329 <i>19</i> ; α (N+)=0.000359 <i>5</i>
									α (N)=0.000312 5; α (O)=4.48×10 ⁻⁵ 7; α (P)=2.41×10 ⁻⁶ 4
176 38 15	0.13.3	1783 787	$(7/2 0/2)^{-}$	807 070	$(7/2)^{-}$				See comment on 470γ from 570 level.
480.00 8	0.68 8	1070.77	(7/2+) 7/2 ⁺	590.67	$(7/2)^+$ $(5/2)^+$	(M1)		0.0455	$\alpha(\mathbf{K}) = 0.0382 \ 6; \ \alpha(\mathbf{L}) = 0.00565 \ 8; \ \alpha(\mathbf{M}) = 0.001261 \ 18; \ \alpha(\mathbf{M} + \cdot) = 0.000341 \ 5$
									$\alpha(N)=0.000296\ 5;\ \alpha(O)=4.25\times10^{-5}\ 6;\ \alpha(P)=2.29\times10^{-6}$
102 01 1	0.62.2	560 927	5/2-	96 007	2/2-	M1		0.0449	α (K)=0.050 8. α (K)=0.0277 6. α (L)=0.00556 8. α (M)=0.001241 18.
402.04 4	0.03 3	309.837	3/2	80.927	5/2	IVI I		0.0448	$a(\mathbf{K})=0.05776$, $a(\mathbf{L})=0.003568$, $a(\mathbf{M})=0.00124178$, $a(\mathbf{N}+)=0.0003365$
									α (N)=0.000292 4; α (O)=4.18×10 ⁻⁵ 6; α (P)=2.26×10 ⁻⁶ 4
484.65 4	0.70 3	748.923	(9/2)-	264.272	9/2-	(M1)		0.0444	α (K)exp=0.038 7. α (K)=0.0373 6; α (L)=0.00551 8; α (M)=0.001230 18;
									α (N+)=0.000332 5 α (N)=0.000289 4: α (O)=4.14×10 ⁻⁵ 6: α (P)=2.23×10 ⁻⁶
484.65 <i>4</i>	0.70 <i>3</i>	748.923	(9/2)-	264.272	9/2-	(M1)		0.0444	4 α (K)exp=0.038 7. α (K)=0.0373 6; α (L)=0.00551 8; α (M)=0.001230 α (N+)=0.000332 5 α (N)=0.000289 4; α (O)=4.14×10 ⁻⁵ 6; α (P)=2.23×

 $^{169}_{70} Yb_{99}$ -13

			¹⁶⁹ Lu	ε decay (3	4.06 h) 1978B a	173,1978Bo3	9,1980Ba07 (continued)
						$\gamma(^{169}{ m Yb})$	(continued)	
${\rm E_{\gamma}}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{g}	Comments
489.25 6	0.60 7	1449.781	7/2-	960.612	7/2-	M1	0.0433	$\begin{array}{l} 4 \\ \alpha(\text{K}) \exp = 0.032 \ 7. \\ \alpha(\text{K}) = 0.0364 \ 5; \ \alpha(\text{L}) = 0.00538 \ 8; \ \alpha(\text{M}) = 0.001200 \ 17; \\ \alpha(\text{N}+) = 0.000324 \ 5 \end{array}$
x 492.25 26 502.8 <i>3</i>	0.20 <i>10</i> 0.59 <i>9</i>	1463.412	7/2-	960.612	7/2-	[M1,E2]	0.029 12	α (N)=0.000282 4; α (O)=4.04×10 ⁻⁵ 6; α (P)=2.18×10 ⁻⁶ 3 α (K)exp=0.045 7. α (K)exp=0.043 25. α (K)=0.024 10; α (L)=0.0040 11; α (M)=0.00089 23; α (N+)=0.00024 7
505.10 17	0.59 9	748.923	(9/2)-	243.827	7/2-	M1	0.0399	$\alpha(N)=0.00021 \ 6; \ \alpha(O)=2.9\times10^{-5} \ 9; \ \alpha(P)=1.4\times10^{-6} \ 7$ $I_{\gamma}: \text{ combined value for } 502.8\gamma+505.4\gamma.$ $\alpha(K)=0.0335 \ 5; \ \alpha(L)=0.00495 \ 7; \ \alpha(M)=0.001104 \ 16;$ $\alpha(N+)=0.000298 \ 5$
								$\alpha(N)=0.000259 4$; $\alpha(O)=3.72\times10^{-5} 6$; $\alpha(P)=2.01\times10^{-6} 3$ $\alpha(K)\exp\geq0.028 9$. For 505.4 γ +502.8 γ ; component from 1463 level, suggested by 1978Ba73, very weak. Relative branchings from 749 level in ¹⁶⁸ Yb(n, γ) E=thermal imply more than I γ =0.59 intensity here from this level if all I γ for a 505.4 γ in that data set deexcites the 749 level and evaluator presumes that the 504 γ is a doublet In that reaction.
519.788 ^{i@} 15	0.080 ^{i&} 15	590.67	(5/2)+	70.880	9/2+	[E2]	0.01617	I_{γ} : combined value for 502.8γ+505.4γ. $\alpha(K)=0.01278 \ 18; \ \alpha(L)=0.00262 \ 4; \ \alpha(M)=0.000606 \ 9; \ \alpha(N+)=0.0001602 \ 23$ $\alpha(N)=0.0001408 \ 20; \ \alpha(O)=1.88\times10^{-5} \ 3; \ \alpha(P)=7.03\times10^{-7} \ 10$ $\alpha(K)\exp=0.0096 \ 28 \ for \ doublet.$
520.02 ^{<i>i</i>} 6	0.21 ^{<i>i</i>} 3	1167.74	(7/2,9/2) ⁻	647.847	7/2-	(E2)	0.01617	
529.7 5	0.20 10	919.80	(9/2)-	389.523	9/2-			591-level placement. $\alpha(K)\exp=0.0096\ 28$ for doublet dominated by this transition. Alternative placement from 1177 level, as suggested by 1980Ba07 and 1993Dz02, not likely. Relative branchings from 920 level in ¹⁶⁸ Yb(n, γ) E=thermal require more than I γ =0.20 here. $\alpha(K)\exp=0.043\ 25$
539.37 <i>15</i> 542.91 <i>13</i>	0.40 <i>6</i> 0.31 <i>4</i>	929.17 807.079	11/2 ⁻ (7/2) ⁻	389.523 264.272	9/2 ⁻ 9/2 ⁻	(M1)	0.0331	$\alpha(K)=0.0279 \ 4; \ \alpha(L)=0.00410 \ 6; \ \alpha(M)=0.000915 \ 13; \\ \alpha(N+)=0.000247 \ 4 \\ \alpha(N)=0.000215 \ 3; \ \alpha(O)=3.08\times10^{-5} \ 5; \ \alpha(P)=1.666\times10^{-6} \ 24 \\ \alpha(K)\exp=0.045 \ 10.$

From ENSDF

				,1980Ba07 (continued)									
	γ ⁽¹⁶⁹ Yb) (continued)													
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
545.43 [@] 7	1.57 10	707.03	9/2+	161.645	11/2+	M1+E2	-0.12 ^{<i>c</i>} 7	0.0325 6	$\alpha(K)=0.0273 \ 5; \ \alpha(L)=0.00402 \ 7; \ \alpha(M)=0.000898 \ 15; \\ \alpha(N+)=0.000243 \ 4 \\ \alpha(N)=0.000211 \ 4; \ \alpha(O)=3.02\times10^{-5} \ 6; \ \alpha(P)=1.63\times10^{-6} \\ 3 \\ \alpha(K)=0.027 \ 3 \\ \alpha(K$					
548.70 [@] 5	1.46 8 0.30 <i>15</i>	647.847	7/2-	99.250	5/2-	M1+E2	+0.53 ^c +13-10	0.0283 16	$\alpha(\mathbf{K}) \approx p = 0.027 \ 3.$ $\alpha(\mathbf{K}) = 0.0237 \ 14; \ \alpha(\mathbf{L}) = 0.00361 \ 16; \ \alpha(\mathbf{M}) = 0.00081 \ 4; \ \alpha(\mathbf{N}+) = 0.000218 \ 10 \ \alpha(\mathbf{N}) = 0.000190 \ 8; \ \alpha(\mathbf{O}) = 2.69 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 1.40 \times 10^{-6} \ 9 \ \alpha(\mathbf{K}) \approx p = 0.027 \ 3. \ \alpha(\mathbf{K}) \approx p = 0.024 \ 14.$					
560.73 ^{<i>i</i>} 7	0.42 ^{<i>i</i>&} 3	647.847	7/2-	86.927	3/2-	(E2)		0.01342	α(K)=0.01070 15; α(L)=0.00211 3; α(M)=0.000485 7;					
560.73 ^{i@} 7	0.115 ^{i&} 26	659.52	3/2-	99.250	5/2-	(M1)		0.0305	α(K)=0.0257 4; α(L)=0.00378 6; α(M)=0.000842 12; α(N+)=0.000228 4 α(N)=0.000198 3; α(O)=2.84×10-5 4; α(P)=1.534×10-6 22 Mult.: from Adopted Gammas. α(K)exp=0.021 2 for doublet.					
563.243 15	1.71 10	807.079	(7/2)-	243.827	7/2-	(E2)		0.01326	$\alpha(K)=0.01058\ 15;\ \alpha(L)=0.00208\ 3;\ \alpha(M)=0.000478\ 7;\ \alpha(N+)=0.0001266\ 18$ $\alpha(N)=0.0001111\ 16;\ \alpha(O)=1.492\times10^{-5}\ 21;\ \alpha(P)=5.85\times10^{-7}\ 9$ $E_{\gamma}:\ from\ Adopted\ Gammas.\ E_{\gamma}=562.98\ 5\ In\ 1978Ba73.\ \alpha(K)=p=0.0140\ 15.$					
569.79 4	0.62 3	569.837	5/2-	0.0	7/2+	[E1]		0.00457	$\alpha(K)=0.00387 \ 6; \ \alpha(L)=0.000547 \ 8; \ \alpha(M)=0.0001213$ 17; \ \alpha(N+)=3.25\times10^{-5} \ 5 \alpha(N)=2.83\times10^{-5} \ 4; \ \alpha(O)=4.00\times10^{-6} \ 6; \\ \alpha(P)=2.05\times10^{-7} \ 3 \alpha(K)exp=0.008 \ 4.					
572.59 [@] 12	0.46 6	659.52	3/2-	86.927	3/2-	M1+E2	-0.7^{c} +4-6	0.024 5	α (K)=0.020 5; α (L)=0.0030 5; α (M)=0.00068 11; α (N+)=0.00018 3					

¹⁶⁹₇₀Yb₉₉-15

				169 Lu ε d	ecay (34	.06 h) 197	8Ba73,1978Bo3	9,1980Ba07	(continued)
						$\gamma(^{169})$	Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
576.42 [@] 4	3.01 25	647.34	7/2+	70.880	9/2+	M1+E2	+0.09 ^c 4	0.0283 5	$\begin{aligned} \alpha(N) = 0.000160 \ 25; \ \alpha(O) = 2.3 \times 10^{-5} \ 4; \ \alpha(P) = 1.2 \times 10^{-6} \ 3\\ \alpha(K) \exp = 0.023 \ 6. \\ \alpha(K) = 0.0238 \ 4; \ \alpha(L) = 0.00350 \ 5; \ \alpha(M) = 0.000780 \ 12; \\ \alpha(N+) = 0.000211 \ 3\\ \alpha(N) = 0.000183 \ 3; \ \alpha(O) = 2.63 \times 10^{-5} \ 4; \end{aligned}$
587.44 6	0.27 5	1658.10	5/2+	1070.77	7/2+	M1		0.0271	$\alpha(P)=1.420\times10^{-6}22$ $\alpha(K)\exp=0.025 3.$ $\alpha(K)=0.0228 4; \ \alpha(L)=0.00334 5; \ \alpha(M)=0.000746 11;$ $\alpha(N+)=0.000202 3$ $\alpha(N)=0.0001751 25; \ \alpha(O)=2.51\times10^{-5} 4;$ $\alpha(P)=1.359\times10^{-6} 19$ $\alpha(K)\exp=0.023 5.$
590.66 [@] 3	3.00 16	590.67	(5/2)+	0.0	7/2+	M1+E2	+0.34 ^C +8-7	0.0252 8	placement from 1992Dz03; based on energy. $\alpha(K)=0.0211$ 7; $\alpha(L)=0.00314$ 9; $\alpha(M)=0.000702$ 18; $\alpha(N+)=0.000190$ 5 $\alpha(N)=0.000165$ 5; $\alpha(O)=2.36\times10^{-5}$ 7; $\alpha(P)=1.26\times10^{-6}$ 5
613.9 <i>3</i>	0.15 8	1204.55		590.67	(5/2)+				α (K)exp=0.024 3. α (K)exp=0.015 11.
617.682 25	1.01 8	1449.781	7/2-	832.085	(7/2)+	E1		0.00386	placement from 1993Dz02. $\alpha(K)=0.00327 5; \alpha(L)=0.000460 7; \alpha(M)=0.0001019$ $15; \alpha(N+)=2.73\times10^{-5} 4$ $\alpha(N)=2.38\times10^{-5} 4; \alpha(O)=3.36\times10^{-6} 5;$ $\alpha(P)=1.735\times10^{-7} 25$ $\alpha(K)=0.0040 22$
622.96 5	0.71 <i>6</i>	722.21	5/2-	99.250	5/2-	M1(+E2)		0.017 ^e 7	α (K)exp=0.0040 22. α (K)=0.014 6; α (L)=0.0022 7; α (M)=0.00050 15; α (N+)=0.00013 4 α (N)=0.00012 4; α (O)=1.6×10 ⁻⁵ 6; α (P)=8.E-7 4 Mult.: α (K)exp consistent with pure M1; $-0.10 \le \delta \le +2.07$ (nuclear orientation, 1982Da23) suggests E2 admixture.
^x 632.8 <i>3</i>	0.20 10								 α(K)exp=0.022 3. α(K)exp=0.012 8. 1978Ba73 proposed placement from 720 level, but transition is not seen in ¹⁶⁸Yb(n,γ) E=thermal despite intense population of the 720 level in that reaction.
632.8 [@] 3	0.34 ^{&} 4	911.38	(5/2)-	278.594	7/2-				α (K)exp=0.012 8. L ₂ : 0.20 10 from 1978Ba73.
635.410 ^{<i>h</i>} 15	<1.3 ^h	659.52	3/2-	24.210	1/2-	M1		0.0222	$\alpha(\mathbf{K})=0.0187 \ 3; \ \alpha(\mathbf{L})=0.00273 \ 4; \ \alpha(\mathbf{M})=0.000609 \ 9; \\ \alpha(\mathbf{N}+)=0.0001647 \ 23 \\ \alpha(\mathbf{N})=0.0001430 \ 20; \ \alpha(\mathbf{O})=2.05\times10^{-5} \ 3;$

¹⁶⁹ Lu ε decay (34.06 h) 1978Ba73,1978Bo39,1980Ba07 (continued)														
	$\gamma(^{169}\text{Yb})$ (continued)													
$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
									$\alpha(P)=1.112\times10^{-6}$ 16 E_{γ} : from Adopted Gammas. I_{γ} : deduced from $I_{\gamma}(635.4\gamma+636.1\gamma)=2.72$ 9 and $I_{\gamma}(636.1\gamma)=2.1$ 7. $\alpha(K)\exp>0.03$ from I(ce(K)) (1978Ba73) and I γ here.					
635.410 ^h 15	<1.3 ^h	722.21	5/2-	86.927	3/2-	M1		0.0222	$\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00273 \ 4; \ \alpha(M)=0.000609 \ 9; \\ \alpha(N+)=0.0001647 \ 23 \\ \alpha(N)=0.0001430 \ 20; \ \alpha(O)=2.05\times10^{-5} \ 3; \\ \alpha(P)=1.112\times10^{-6} \ 16 $					
636.11 [@] 7	2.1 ^{&} 7	707.03	9/2+	70.880	9/2+	(M1+E2)	≈0.91	≈0.01659	E_{γ} : from Adopted Gammas. α (K)≈0.01381; α (L)≈0.00216; α (M)≈0.000486; α (N+)≈0.0001306					
642.65 8	0.24 4	1449.781	7/2-	807.079	(7/2)-	(M1)		0.0216	$\alpha(N) \approx 0.0001138; \ \alpha(O) \approx 1.605 \times 10^{-5}; \ \alpha(P) \approx 8.09 \times 10^{-7}$ E_{γ} : from Adopted Gammas. $\alpha(K) \exp = 0.008$ from I(ce(K)) (1978Ba73) and I γ here. $\alpha(K) = 0.0181 \ 3; \ \alpha(L) = 0.00265 \ 4; \ \alpha(M) = 0.000592 \ 9;$ $\alpha(N+) = 0.0001600 \ 23$ $\alpha(N) = 0.0001389 \ 20; \ \alpha(O) = 1.99 \times 10^{-5} \ 3;$					
									$\alpha(P) = 1.081 \times 10^{-6} \ 16$ $\alpha(K) \exp = 0.036 \ 11.$					
647.33 [®] 18	1.23 9	647.34	7/2+	0.0	7/2+	M1+E2	+0.5° +6-4	0.019 4	$\alpha(K)=0.016 \ 4; \ \alpha(L)=0.0024 \ 5; \ \alpha(M)=0.00053 \ 9; \\ \alpha(N+)=0.000143 \ 25 \\ \alpha(N)=0.000124 \ 22; \ \alpha(O)=1.8\times10^{-5} \ 4; \ \alpha(P)=9.3\times10^{-7} \ 22 \\ \alpha(K)\exp=0.016 \ 2. $					
649.72 <i>12</i> 655.61 <i>13</i>	0.24 <i>3</i> 0.69 <i>8</i>	748.923 919.80	(9/2) ⁻ (9/2) ⁻	99.250 264.272	5/2 ⁻ 9/2 ⁻	(M1)		0.0205	α (K)exp \leq 0.012. α (K)=0.01725 25; α (L)=0.00252 4; α (M)=0.000562 8; α (N+)=0.0001520 22 α (N)=0.0001320 19; α (O)=1.89×10 ⁻⁵ 3; α (P)=1.027×10 ⁻⁶ 15 α (K)exp=0.0164 23.					
657.9 ^{#j} 3		929.17	11/2-	269.628	13/2+	(E1) [#]		0.00338	$\alpha(K)=0.00287 \ 4; \ \alpha(L)=0.000402 \ 6; \ \alpha(M)=8.91\times10^{-5} \ 13; \\ \alpha(N+)=2.39\times10^{-5} \ 4 \\ \alpha(N)=2.08\times10^{-5} \ 3; \ \alpha(O)=2.95\times10^{-6} \ 5; \\ \alpha(P)=1.528\times10^{-7} \ 22 \\ L_{2}: \ 0.81 \ 10 \ for \ 657.9\times1660.5\times \ doublet.$					
657.9 3	0.81 10	1406.35	9/2-	748.923	(9/2)-				$\alpha(K)\exp \ge 0.016 \ 9.$ I _{γ} : combined intensity for 657.9 γ +660.5 γ .					
660.5 ^{hd J} 5	0.81 ^{<i>h</i>} 10	851.7?		191.216	5/2-				I_{γ} : combined intensity for 657.9 γ +660.5 γ .					
664.69 ^{hd} 8	0.52 ^h 5	929.17	11/2-	264.272	9/2-	[E2(+M1)]		0.014 6	$\begin{aligned} &\alpha(\text{K}) = 0.012 \ 5; \ \alpha(\text{L}) = 0.0019 \ 6; \ \alpha(\text{M}) = 0.00042 \ 13; \\ &\alpha(\text{N}+) = 0.00011 \ 4 \\ &\alpha(\text{N}) = 0.00010 \ 3; \ \alpha(\text{O}) = 1.4 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 7.\text{E-}7 \ 3 \\ &\alpha(\text{K}) \exp = 0.009 \ 3 \ (\text{MULT.} = \text{E2}(+\text{M1})) \ \text{for doubly-placed} \\ &\text{G.} \end{aligned}$					

From ENSDF

17

 $^{169}_{70} \mathrm{Yb}_{99}$ -17

				¹⁶⁹ Lu ε d	ecay (34	.06 h) 1978	Ba73,1978Bo	39,1980Ba 0	7 (continued)					
	γ ⁽¹⁶⁹ Yb) (continued)													
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
664.69 ^{hd} 8	0.52 ^{<i>h</i>} 5	1427.12	(7/2,9/2)-	761.822	(5/2)+				α (K)exp=0.009 3 (MULT.=E2(+M1)) for doubly-placed G.					
667.59 [@] 7	0.31 5	911.38	(5/2)-	243.827	7/2-	M1 [@]		0.0196	$\alpha(K)=0.01647\ 23;\ \alpha(L)=0.00241\ 4;\ \alpha(M)=0.000536\ 8;\ \alpha(N+)=0.0001449\ 21$ $\alpha(N)=0.0001259\ 18;\ \alpha(O)=1.81\times10^{-5}\ 3;\ \alpha(P)=0\ 80\times10^{-7}\ 14$					
670.39 <i>3</i>	0.90 9	832.085	(7/2)+	161.645	11/2+	E2		0.00878	$\alpha(I) = 0.00712 \ I0; \ \alpha(L) = 0.001288 \ I8; \ \alpha(M) = 0.000294$ 5; $\alpha(N+) = 7.82 \times 10^{-5} \ I1$ $\alpha(N) = 6.85 \times 10^{-5} \ I0; \ \alpha(O) = 9.33 \times 10^{-6} \ I3;$ $\alpha(P) = 3.98 \times 10^{-7} \ 6$ $\alpha(K) = 0.0070 \ 27$					
675.90 11	0.32 4	919.80	(9/2)-	243.827	7/2-	M1		0.0190	$\alpha(\mathbf{K}) = 0.0079 \ 27.$ $\alpha(\mathbf{K}) = 0.01598 \ 23; \ \alpha(\mathbf{L}) = 0.00233 \ 4; \ \alpha(\mathbf{M}) = 0.000520 \ 8; \ \alpha(\mathbf{N}+) = 0.0001406 \ 20 \ \alpha(\mathbf{N}) = 0.0001221 \ 18; \ \alpha(\mathbf{O}) = 1.753 \times 10^{-5} \ 25; \ \alpha(\mathbf{P}) = 9.51 \times 10^{-7} \ 14 \ \alpha(\mathbf{K}) = 0.022 \ 8.$					
682.1 <i>3</i> 687.93 <i>4</i>	0.09 <i>4</i> 1.15 <i>6</i>	960.612 1449.781	7/2 ⁻ 7/2 ⁻	278.594 761.822	7/2 ⁻ (5/2) ⁺	(E1(+M2))	+0.01 ^c 8	0.0031 4	α(K) exp=0.007 4. α(K)=0.0026 4; α(L)=0.00037 6; α(M)=8.1×10-5 12; α(N+)=2.2×10-5 4 α(N)=1.9×10-5 3; α(O)=2.7×10-6 4; α(P)=1.40×10-7 21 Mult.: from nuclear orientation, with $ \Delta \pi$ =yes from					
690.87 <i>3</i>	2.05 10	761.822	(5/2)+	70.880	9/2+	(E2)		0.00820	decay scheme. $\alpha(K)=0.00667 \ 10; \ \alpha(L)=0.001190 \ 17; \ \alpha(M)=0.000271$ $4; \ \alpha(N+)=7.22\times10^{-5} \ 11$ $\alpha(N)=6.32\times10^{-5} \ 9; \ \alpha(O)=8.63\times10^{-6} \ 12;$ $\alpha(P)=3.73\times10^{-7} \ 6$ $\alpha(K)=x_{0}=0.0078 \ 7.$					
701.04 24 703.33 10	0.25 <i>5</i> 0.52 <i>6</i>	1449.781 1781.696	7/2 ⁻ 7/2 ⁻	748.923 1078.335	(9/2) ⁻ 9/2 ⁻	M1		0.01716	$\alpha(K)=0.01446\ 21;\ \alpha(L)=0.00211\ 3;\ \alpha(M)=0.000470\ 7;\alpha(N+)=0.0001270\ 18\alpha(N)=0.0001103\ 16;\ \alpha(O)=1.584\times10^{-5}\ 23;\alpha(P)=8.59\times10^{-7}\ 12\alpha(K)exp=0.019\ 7.$					
707.94 [@] 6	1.48 9	807.079	(7/2) ⁻	99.250	5/2-	M1+E2	+0.30 ^c 13	0.0161 7	$\alpha(K)=0.0136 7; \alpha(L)=0.00200 8; \alpha(M)=0.000445 17; \alpha(N+)=0.000120 5 \alpha(N)=0.000104 4; \alpha(O)=1.50\times10^{-5} 6; \alpha(P)=8.1\times10^{-7} 4$					
720.00 8	0.89 8	720.00	3/2+	0.0	7/2+	E2		0.00747	α (K)exp=0.016 4. α (K)=0.00609 9; α (L)=0.001070 15; α (M)=0.000243 4; α (N+)=6.48×10 ⁻⁵ 9					

From ENSDF

 $^{169}_{70} \mathrm{Yb}_{99}$ -18

				¹⁶⁹ Lu ε de	cay (34	.06 h) 19	978Ba73,1978Bo39	,1980Ba07 (c	ontinued)
						$\gamma(^{16}$	⁹ Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
725.07 7	1.40 7	886.80	9/2+	161.645	11/2+	M1+E2	1.1 3	0.0112 14	$\begin{aligned} &\alpha(\mathrm{N}) = 5.67 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 7.77 \times 10^{-6} \ 11; \\ &\alpha(\mathrm{P}) = 3.41 \times 10^{-7} \ 5 \\ &\alpha(\mathrm{K}) \exp = 0.0077 \ 10. \\ &\alpha(\mathrm{K}) = 0.0093 \ 12; \ \alpha(\mathrm{L}) = 0.00146 \ 15; \ \alpha(\mathrm{M}) = 0.00033 \ 4; \\ &\alpha(\mathrm{N}+) = 8.8 \times 10^{-5} \ 9 \\ &\alpha(\mathrm{N}) = 7.7 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 1.08 \times 10^{-5} \ 12; \ \alpha(\mathrm{P}) = 5.4 \times 10^{-7} \\ &8 \end{aligned}$
728.73 6	1.04 6	1689.290	7/2-	960.612	7/2-	(M1)		0.01570	^o α (K)exp=0.0095 8. α (K)=0.01323 19; α (L)=0.00193 3; α (M)=0.000429 6; α (N+)=0.0001160 17 α (N)=0.0001008 15; α (O)=1.447×10 ⁻⁵ 21; α (P)=7.86×10 ⁻⁷ 11 α (K)exp=0.0155 16.
760.95 [@] 4	0.9 5	832.085	(7/2)+	70.880	9/2+	M1+E2	0.8 3	0.0112 15	$\alpha(K)=0.0094 \ 13; \ \alpha(L)=0.00142 \ 16; \ \alpha(M)=0.00032 \ 4; \ \alpha(N+)=8.5\times10^{-5} \ 10 \ \alpha(N)=7.4\times10^{-5} \ 8; \ \alpha(O)=1.06\times10^{-5} \ 12; \ \alpha(P)=5.5\times10^{-7} \ 8 \ E_{\gamma}: \text{ from Adopted Gammas. } E_{\gamma}=761.35 \ 3 \text{ In } 1978\text{Ba73.} \ I_{\gamma}: \text{ deduced from } I_{\gamma}(761.0\gamma+761.9\gamma)=3.11 \ 26 \text{ and} \ I_{\gamma}(761.9\gamma)=2.2 \ 4. \ \alpha(K)=x_{0}=0.0095 \ 10 \ \text{for doublet}$
761.864 [@] 25	2.2 ^{&} 4	761.822	(5/2)+	0.0	7/2+	M1+E2	0.8 2	0.0111 <i>10</i>	$\alpha(K) \approx p=0.0095 \ 10^{-101} \ 100 \ 101 \ 101 \ 111; \ \alpha(M)=0.000316 \ 23; \ \alpha(N+)=8.5\times10^{-5} \ 6 \ \alpha(N)=7.4\times10^{-5} \ 6; \ \alpha(O)=1.05\times10^{-5} \ 8; \ \alpha(P)=5.5\times10^{-7} \ 5 \ E_{\gamma}: \ from \ Adopted \ Gammas. \ E_{\gamma}=761.35 \ 3 \ In \ 1978Ba73. \ \alpha(K) \approx p=0.0095 \ 10 \ 100 $
767.55 4	1.46 <i>12</i>	929.17	11/2-	161.645	11/2+	E1+M2	-0.17 ^c +12-10	0.0034 14	$\alpha(K) \approx 0.0029 \ 12; \ \alpha(L) = 0.00042 \ 19; \ \alpha(M) = 9.E - 5 \ 5; \alpha(N+) = 2.5 \times 10^{-5} \ 12 \alpha(N) = 2.2 \times 10^{-5} \ 10; \ \alpha(O) = 3.1 \times 10^{-6} \ 15; \ \alpha(P) = 1.7 \times 10^{-7} 8 \alpha(K) \exp = 0.0029 \ 4.$
782.6 ^{<i>d</i>} 3	0.20 10	1061.2		278.594	$7/2^{-}$				$\alpha(K) \exp = 0.032 \ 20.$
^ 192.5 5 796.93 7	0.10 5 0.34 7	1444.75	7/2 ⁻ ,9/2 ⁻	647.847	7/2-	E2		0.00597	$\alpha(\mathbf{K})\exp=0.039\ 27.$ $\alpha(\mathbf{K})=0.00491\ 7;\ \alpha(\mathbf{L})=0.000829\ 12;\ \alpha(\mathbf{M})=0.000188\ 3;$ $\alpha(\mathbf{N}+)=5.01\times10^{-5}\ 7$ $\alpha(\mathbf{N})=4.38\times10^{-5}\ 7;\ \alpha(\mathbf{O})=6.05\times10^{-6}\ 9;\ \alpha(\mathbf{P})=2.75\times10^{-7}\ 4$ $\alpha(\mathbf{K})\exp=0.0049\ 13$
802.34 <i>4</i> 815.95 <i>4</i>	1.13 9 0.91 4	1449.781 886.80	7/2 ⁻ 9/2 ⁺	647.34 70.880	7/2+ 9/2+	M1+E2	-0.80 ^{<i>c</i>} +17-24	0.0094 8	$\alpha(\mathbf{K})\exp=0.0047 \text{ 15.}$ $\alpha(\mathbf{K})\exp=0.0079 \text{ 7; } \alpha(\mathbf{L})=0.00119 \text{ 9; } \alpha(\mathbf{M})=0.000266 \text{ 20;}$ $\alpha(\mathbf{N}+)=7.2\times10^{-5} \text{ 6}$ $\alpha(\mathbf{N})=6.2\times10^{-5} \text{ 5; } \alpha(\mathbf{O})=8.9\times10^{-6} \text{ 7; } \alpha(\mathbf{P})=4.6\times10^{-7} \text{ 5}$ $\alpha(\mathbf{K})\exp=0.0084 \text{ 9.}$

¹⁶⁹₇₀Yb₉₉-19

From ENSDF

			169	Lu ε decay	(34.06 h)	1978Ba73,	1978Bo39,1980Ba	07 (continued)	
					<u> </u>	(¹⁶⁹ Yb) (co	ntinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
817.6 [#] 4 821.18 4	0.90 [#] 4 1.35 5	1888.00 1781.696	(7/2 ⁺ ,9/2 ⁺) 7/2 ⁻	1070.77 960.612	7/2 ⁺ 7/2 ⁻	M1+E2	+0.13 ^{<i>c</i>} +31–13	0.0115 9	$\alpha(K)=0.0097 \ 8; \ \alpha(L)=0.00141 \ 10; \\ \alpha(M)=0.000315 \ 22; \ \alpha(N+)=8.5\times10^{-5} \ 6 \\ \alpha(N)=7.4\times10^{-5} \ 5; \ \alpha(O)=1.06\times10^{-5} \ 8; \\ \alpha(P)=5.8\times10^{-7} \ 5 \\ \alpha(K)\exp=0.0118 \ 10.$
824.70 [@] 17	0.15 4	911.38	(5/2)-	86.927	3/2-	(M1)		0.01153	$\begin{aligned} &\alpha(\text{K}) = 0.00972 \ 14; \ \alpha(\text{L}) = 0.001409 \ 20; \\ &\alpha(\text{M}) = 0.000314 \ 5; \ \alpha(\text{N}+) = 8.49 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 7.37 \times 10^{-5} \ 11; \ \alpha(\text{O}) = 1.059 \times 10^{-5} \ 15; \\ &\alpha(\text{P}) = 5.76 \times 10^{-7} \ 8 \\ &\alpha(\text{K}) \exp = 0.015 \ 5. \end{aligned}$
832.01 9	0.29 4	832.085	(7/2)+	0.0	7/2+	(M1)		0.01128	$\begin{aligned} \alpha(\mathbf{K}) = 0.00951 \ 14; \ \alpha(\mathbf{L}) = 0.001378 \ 20; \\ \alpha(\mathbf{M}) = 0.000307 \ 5; \ \alpha(\mathbf{N}+) = 8.30 \times 10^{-5} \ 12 \\ \alpha(\mathbf{N}) = 7.21 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 1.035 \times 10^{-5} \ 15; \\ \alpha(\mathbf{P}) = 5.63 \times 10^{-7} \ 8 \\ \alpha(\mathbf{K}) \exp = 0.0085 \ 12. \end{aligned}$
847.9 ^{<i>d j</i>} 7	0.10 5	2296.78?	5/2 ⁻ ,7/2,9/2 ⁻	1449.781	7/2-	M1		0.01076	$\begin{aligned} &\alpha(\text{K}) = 0.00907 \ 13; \ \alpha(\text{L}) = 0.001314 \ 19; \\ &\alpha(\text{M}) = 0.000293 \ 5; \ \alpha(\text{N}+) = 7.91 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 6.87 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 9.87 \times 10^{-6} \ 14; \\ &\alpha(\text{P}) = 5.37 \times 10^{-7} \ 8 \\ &\alpha(\text{K}) \exp = 0.009 \ 6. \end{aligned}$
857.15 [#] 24	0.15 8	1427.12	$(7/2, 9/2)^{-}$	569.837	5/2-				$\alpha(K) \exp = 0.012 \ 8.$
862.4 ^h 5	0.15 ^h 8	1781.696	7/2-	919.80	$(9/2)^{-}$				α (K)exp=0.008 6 for doublet.
862.4 ^{<i>h</i>} 5	0.15 ⁿ 8	2029.87	7/2-	1167.74	(7/2,9/2)-				α (K)exp=0.008 6 for doublet.
875.9 ⁿ	$0.15^{n} 8$	1707.71	$(7/2, 9/2)^+$	832.085	$(7/2)^+$				α (K)exp=0.012 8 for doublet.
879.93 <i>4</i>	0.15" 8 1.46 8	1954.50 1449.781	5/2 ⁻ ,7/2 ⁻ 7/2 ⁻	1078.335 569.837	9/2 ⁻ 5/2 ⁻	M1+E2	$-0.9^{c} 4$	0.0076 <i>13</i>	$\alpha(K)\exp=0.012 \ 8 \text{ for doublet.}$ $\alpha(K)=0.0064 \ 11; \ \alpha(L)=0.00095 \ 14;$ $\alpha(M)=0.00021 \ 3; \ \alpha(N+)=5.7\times10^{-5} \ 9$ $\alpha(N)=5.0\times10^{-5} \ 7; \ \alpha(O)=7.1\times10^{-6} \ 11;$ $\alpha(P)=3.7\times10^{-7} \ 7$ $\alpha(K)\exp=0.0086 \ 9.$
883.81 9	0.35 7	1954.50	5/2-,7/2-	1070.77	7/2+				Alternative placement from 1716 level, as suggested by 1978Ba73, not likely. Additional intensity to 832 level would make intensity balance there negative.
889.753 21	22.9 6	960.612	7/2-	70.880	9/2+	E1		0.00186	$\alpha(K)=0.001584\ 23;\ \alpha(L)=0.000219\ 3;$ $\alpha(M)=4.83\times10^{-5}\ 7;\ \alpha(N+)=1.300\times10^{-5}\ 19$ $\alpha(N)=1.130\times10^{-5}\ 16;\ \alpha(O)=1.608\times10^{-6}\ 23;$ $\alpha(P)=8.52\times10^{-8}\ 12$ Mult.: E1 for 889.8 γ and 960.6 γ established

From ENSDF

From

 $^{169}_{70}{
m Yb}_{99}$ -20

			¹⁶⁹ Lu ε	decay (34.	06 h) 1	978Ba73,19	78Bo39,1980B	a07 (continue	<u>d)</u>					
	γ ⁽¹⁶⁹ Yb) (continued)													
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
895.82 <i>11</i> 903.42 <i>23</i> 908.64 <i>7</i> 916.71 <i>3</i>	0.61 21 0.17 7 0.52 7 3.71 11	1973.97 1167.74 1070.77 1078.335	7/2 ⁻ (7/2,9/2) ⁻ 7/2 ⁺ 9/2 ⁻	1078.335 264.272 161.645 161.645	9/2 ⁻ 9/2 ⁻ 11/2 ⁺ 11/2 ⁺	E1(+M2)	-0.010 ^c 27	0.00176 <i>4</i>	by low $\alpha(K)$ exp from preliminary normalization. Adopted normalization of 1978Ba73 assumes pure E1 for both. 1982Da23 report δ =+0.018 29 for 889.8 γ (nuclear orientation). $\alpha(K)$ exp=0.006 3. $\alpha(K)$ exp=0.007 4. $\alpha(K)$ exp=0.003. $\alpha(K)$ =0.00150 3; $\alpha(L)$ =0.000207 5; $\alpha(M)$ =4.57×10 ⁻⁵ 11; $\alpha(N+)$ =1.23×10 ⁻⁵ 3 $\alpha(N)$ =1.068×10 ⁻⁵ 24; $\alpha(O)$ =1.52×10 ⁻⁶ 4; $\alpha(P)$ =8.07×10 ⁻⁸ 18					
^x 920.41 <i>21</i>	0.22 5					(E2)		0.00440	$\alpha(K)\exp=0.0014 \ 3.$ $\alpha(K)=0.00364 \ 6; \ \alpha(L)=0.000588 \ 9;$ $\alpha(M)=0.0001325 \ 19;$ $\alpha(N+)=3.55\times10^{-5} \ 5.$ $\alpha(N)=3.09\times10^{-5} \ 5; \ \alpha(O)=4.31\times10^{-6} \ 6;$ $\alpha(P)=2.05\times10^{-7} \ 3.$					
926.6 5 934.5 5 939.7 ^h 5 939.7 ^h 5 960.622 20	$\begin{array}{c} 0.10 \ 5 \\ 0.30 \ 15 \\ 0.50^{h} \ 25 \\ 0.50^{h} \ 25 \\ 100 \ 2 \end{array}$	1449.781 1656.22 1427.12 1463.412 960.612	7/2 ⁻ 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ (7/2,9/2) ⁻ 7/2 ⁻ 7/2 ⁻	523.066 722.21 487.031 523.066 0.0	11/2 ⁻ 5/2 ⁻ (11/2 ⁻) 11/2 ⁻ 7/2 ⁺	E1		1.61×10 ⁻³	$\alpha(K)\exp=0.0043 \ 20.$ $\alpha(K)\exp=0.0035 \ 21 \text{ for doublet.}$ $\alpha(K)\exp=0.0042 \ 23.$ $\alpha(K)\exp=0.0042 \ 23. \text{ for doublet.}$ $\alpha(K)=0.001372 \ 20; \ \alpha(L)=0.000189 \ 3; \ \alpha(M)=4.17\times10^{-5} \ 6; \ \alpha(N+)=1.121\times10^{-5} \ 16$ $\alpha(N)=9.75\times10^{-6} \ 14; \ \alpha(O)=1.389\times10^{-6} \ 20; \ \alpha(P)=7.39\times10^{-8} \ 11$					
979.79 ^d 7	0.52 5	1141.44	(9/2)+	161.645	11/2+	E2(+M1)		0.0057 19	1982Da23 report δ =+0.06 +5-4 for 960.6γ (nuclear orientation). α (K)=0.0048 <i>16</i> ; α (L)=0.00071 <i>21</i> ; α (M)=0.00016 <i>5</i> ; α (N+)=4.3×10 ⁻⁵ <i>13</i> α (N)=3.7×10 ⁻⁵ <i>11</i> ; α (O)=5.3×10 ⁻⁶ <i>16</i> ; α (P)=2.8×10 ⁻⁷ <i>10</i>					
^x 984.09 <i>14</i> 993.96 <i>13</i>	0.75 8 0.23 7	1954.50	5/2-,7/2-	960.612	7/2-	(M1)		0.00727	α (K)exp=0.0023 7. α (K)exp=0.0023 13. α (K)=0.00613 9; α (L)=0.000884 13; α (M)=0.000197 3; α (N+)=5.32×10 ⁻⁵ 8					

From ENSDF

			1	⁶⁹ Lu ε deca	ay (34.06	5 h) 197	8Ba73,1978Bo39,1	980Ba07 (cont	inued)					
	γ ⁽¹⁶⁹ Yb) (continued)													
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
999.96 7	1.80 11	1070.77	7/2+	70.880	9/2+	M1+E2	+1.3 ^c 6	0.0050 11	$\alpha(N)=4.62\times10^{-5} 7; \ \alpha(O)=6.64\times10^{-6} \ 10; \\ \alpha(P)=3.62\times10^{-7} 5 \\ \alpha(K)\exp=0.0068 \ 25. \\ \alpha(K)=0.0042 \ 9; \ \alpha(L)=0.00063 \ 12; \ \alpha(M)=0.00014 \\ 3; \ \alpha(N+)=3.8\times10^{-5} 7 \\ \alpha(N)=3.3\times10^{-5} \ 6; \ \alpha(Q)=4.7\times10^{-6} \ 0; \\ \alpha(Q)=0.00014 \\ \alpha(Q)=$					
1007.47 3	7.71 <i>19</i>	1078.335	9/2-	70.880	9/2+	E1+M2	-0.08 ^{<i>c</i>} 5	0.00158 17	$\begin{aligned} \alpha(N) &= 3.5 \times 10^{-7} \ 6 \\ \alpha(P) &= 2.4 \times 10^{-7} \ 6 \\ \alpha(K) &= 0.00134 \ 14; \ \alpha(L) &= 0.000186 \ 22; \\ \alpha(M) &= 4.1 \times 10^{-5} \ 5; \ \alpha(N+) &= 1.11 \times 10^{-5} \ 14 \\ \alpha(N) &= 9.6 \times 10^{-6} \ 12; \ \alpha(O) &= 1.37 \times 10^{-6} \ 17; \\ \alpha(D) &= 7.2 \times 10^{-8} \ 0 \end{aligned}$					
1013.08 <i>10</i>	0.34 6	1973.97	7/2-	960.612	7/2-	(M1)		0.00693	$\alpha(\mathbf{F})=7.5\times10^{-5} \text{ g}$ $\alpha(\mathbf{K})\exp=0.00137 \ I0.$ $\alpha(\mathbf{K})=0.00585 \ 9; \ \alpha(\mathbf{L})=0.000843 \ I2;$ $\alpha(\mathbf{M})=0.000188 \ 3; \ \alpha(\mathbf{N}+)=5.07\times10^{-5} \ 8$ $\alpha(\mathbf{N})=4.40\times10^{-5} \ 7; \ \alpha(\mathbf{O})=6.33\times10^{-6} \ 9;$ $\alpha(\mathbf{P})=3.46\times10^{-7} \ 5$ $\alpha(\mathbf{K})\exp=0.011 \ 4$					
1015.4 [#] 4 1017.58 5	1.11 8	1177.01 1540.69	(7/2,9/2) ⁺ 9/2 ⁻	161.645 523.066	11/2 ⁺ 11/2 ⁻	M1		0.00686	Seen only in ce spectrum (1976Ba61). $\alpha(K)=0.00579 \ 9; \ \alpha(L)=0.000834 \ 12;$ $\alpha(M)=0.000186 \ 3; \ \alpha(N+)=5.02\times10^{-5} \ 7$ $\alpha(N)=4.36\times10^{-5} \ 6; \ \alpha(O)=6.26\times10^{-6} \ 9;$ $\alpha(P)=3.42\times10^{-7} \ 5$					
^x 1025.72 7 1031.91 6	0.36 <i>5</i> 0.56 <i>3</i>	1554.876	9/2-	523.066	11/2-	M1+E2	-0.28 ^{<i>c</i>} +19-29	0.0064 <i>6</i>	Mult.: M1+E2 with 0.41≤ δ ≤3.05 (nuclear orientation, 1982Da23). α (K)exp=0.0055 9. α (K)exp=0.0039 21. α (K)=0.0054 5; α (L)=0.00078 7; α (M)=0.000174 14; α (N+)=4.7×10 ⁻⁵ 4 α (N)=4.1×10 ⁻⁵ 4; α (O)=5.9×10 ⁻⁶ 5; α (P)=3.2×10 ⁻⁷ 3					
1037.49 [#] <i>13</i> 1043.20 8	0.20 <i>10</i> 0.65 <i>5</i>	1427.12 1972.35	(7/2,9/2) ⁻ 9/2 ⁻	389.523 929.17	9/2 ⁻ 11/2 ⁻	M1+E2	-1.1 ^c 7	0.0048 13	$\alpha(K) \exp = 0.0063 \ 9.$ $\alpha(K) \exp = 0.023 \ 13.$ $\alpha(K) = 0.0040 \ 11; \ \alpha(L) = 0.00060 \ 14; \ \alpha(M) = 0.00013$ $3; \ \alpha(N+) = 3.6 \times 10^{-5} \ 9$ $\alpha(N) = 3.1 \times 10^{-5} \ 8; \ \alpha(O) = 4.4 \times 10^{-6} \ 11;$ $\alpha(P) = 2.3 \times 10^{-7} \ 7$					
1055.8 <i>4</i> 1060.28 <i>4</i>	0.35 <i>12</i> 8.16 27	1888.00 1449.781	(7/2 ⁺ ,9/2 ⁺) 7/2 ⁻	832.085 389.523	(7/2) ⁺ 9/2 ⁻	M1+E2	+0.036 ^c 22	0.00620	α (K)exp=0.0047 7. α (K)exp=0.0036 20. α (K)=0.00523 8; α (L)=0.000753 11;					

From ENSDF

					¹⁶⁹ Lu 8	e decay	r (34.06 h) 1	978Ba73,197	8Bo39,1980Ba	a07 (contin	ued)
	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^g	$I_{(\gamma+ce)}f$	Comments
	1065.09 5	2.00 16	1343.57	(7/2)-	278.594	7/2-	M1		0.00614		$\begin{aligned} &\alpha(M) = 0.0001674\ 24;\ \alpha(N+) = 4.53 \times 10^{-5}\ 7\\ &\alpha(N) = 3.93 \times 10^{-5}\ 6;\ \alpha(O) = 5.65 \times 10^{-6}\ 8;\\ &\alpha(P) = 3.09 \times 10^{-7}\ 5\\ &\alpha(K) \exp = 0.0052\ 5.\\ &\alpha(K) = 0.00518\ 8;\ \alpha(L) = 0.000745\ 11;\\ &\alpha(M) = 0.0001657\ 24;\ \alpha(N+) = 4.48 \times 10^{-5}\ 7\\ &\alpha(N) = 3.89 \times 10^{-5}\ 6;\ \alpha(O) = 5.59 \times 10^{-6}\ 8; \end{aligned}$
	1068.54 8	1.36 8	1167.74	(7/2,9/2)-	99.250	5/2-					$\alpha(P)=3.06\times10^{-7}$ 5 $\alpha(K)\exp=0.0063$ 8. Alternative placement from 1716.1 level, as suggested by 1978Ba73 and 1993Dz02, not likely. 1980Ba07 assign all intensity to this 1168-level placement on basis of ce γ coin data.
• •	1070.81 <i>7</i>	1.71 8	1070.77	7/2+	0.0	7/2+	E0+M1+E2		0.0046 15	1.78 8	α(K)exp=0.0029 15. ce(K)/(γ+ce)=0.0039 12; ce(L)/(γ+ce)=0.00057 16; ce(M)/(γ+ce)=0.00013 4; ce(N+)/(γ+ce)=3.5×10 ⁻⁵ 10 ce(N)/(γ+ce)=3.0×10 ⁻⁵ 9; ce(O)/(γ+ce)=4.3×10 ⁻⁶ 13; ce(P)/(γ+ce)=2.3×10 ⁻⁷ 8 α: estimated from α(K)exp. I _(γ+ce) : deduced from Iγ, α(K)exp, and K/L ratios for E0 transitions (1969Ha61)). Mult.,α: from α(K)exp=0.0367 26 (1978Ba73) and nuclear orientation (1982Da23). 1982Da23 report two solutions for δ(M1,E2) (-0.74 +11-13, +10 +50-5), and combining these with α(K)exp, one can deduce q(E0/E2)=5.8 +8-7 or 3.57 14, respectively, and α=0.042 if Ω(E0,K):Ω(E0,L1):Ω(E0,L2)=1.14:0.164:
	1073.79 <i>3</i>	4.8 3	1463.412	7/2-	389.523	9/2-	M1+E2	+0.18 [°] 7	0.00593 12		0.0047. $\alpha(K)=0.00500 \ 10; \ \alpha(L)=0.000720 \ 14;$ $\alpha(M)=0.000160 \ 3; \ \alpha(N+)=4.33\times10^{-5} \ 8$ $\alpha(N)=3.76\times10^{-5} \ 7; \ \alpha(O)=5.41\times10^{-6} \ 10;$ $\alpha(P)=2.95\times10^{-7} \ 6$
	1078.28 4	4.58 18	1078.335	9/2-	0.0	7/2+	E1(+M2)	-0.01 ^c 3	0.00131 <i>3</i>		$\alpha(K)\exp=0.0046 5.$ $\alpha(K)=0.001111 23; \ \alpha(L)=0.000152 4;$ $\alpha(M)=3.35\times10^{-5} 8; \ \alpha(N+)=9.03\times10^{-6} 21$ $\alpha(N)=7.85\times10^{-6} 18; \ \alpha(O)=1.12\times10^{-6} 3;$ $\alpha(P)=6.00\times10^{-8} 14$
	1088.23 8	0.43 7	1658.10	5/2+	569.837	5/2-					α (K)exp=0.00139 20. α (K)exp<0.002.

			¹⁶⁹ L	uεdecay (3	34.06 h)	1978Ba73	,1978Bo39,1980Ba	07 (continue	<u>d)</u>
						$\gamma(^{169}\text{Yb})$ (co	ontinued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^g	Comments
1099.89 <i>11</i> 1106.11 <i>6</i>	0.27 <i>3</i> 0.65 <i>6</i>	1343.57 1177.01	(7/2) ⁻ (7/2,9/2) ⁺	243.827 70.880	7/2 ⁻ 9/2 ⁺	M1(+E2)		0.0043 13	α (K)exp<0.003. α (K)=0.0036 <i>11</i> ; α (L)=0.00053 <i>15</i> ; α (M)=0.00012 <i>4</i> ; α (N+)=3.2×10 ⁻⁵ <i>9</i> α (N)=2.8×10 ⁻⁵ <i>8</i> ; α (O)=4.0×10 ⁻⁶ <i>12</i> ; α (P)=2.1×10 ⁻⁷ <i>7</i> ; α (IPF)=3.4×10 ⁻⁷ <i>5</i> Mult.: δ =-0.21 + <i>13</i> - <i>17</i> (if J(1177.0 level)=7/2) or δ =-0.41 <i>22</i> (if J=9/2) (nuclear orientation, 1982Da23) suggests E2 admixture. α (K)exp=0.0053 <i>7</i>
1109.99 7	0.79 4	2029.87	7/2-	919.80	(9/2)-	M1+E2	-0.19 ^c +24-37	0.0055 6	$\alpha(K)=0.0046 5; \ \alpha(L)=0.00066 6; \alpha(M)=0.000147 13; \ \alpha(N+)=4.0\times10^{-5} 4 \alpha(N)=3.5\times10^{-5} 3; \ \alpha(O)=5.0\times10^{-6} 5; \alpha(P)=2.7\times10^{-7} 3; \ \alpha(IPF)=4.48\times10^{-7} 22 \alpha(K)\exp=0.0049 8.$
1117.61 ^d 20 1122.21 7	0.13 <i>4</i> 0.66 8	1204.55 1954.50	5/27/2-	86.927 832.085	$3/2^{-}$ $(7/2)^{+}$				α (K)exp=0.010 5. α (K)exp<0.0016
1127.1 [#] 6		1888.00	$(7/2^+, 9/2^+)$	761.822	$(5/2)^+$				Seen only in ce spectrum (1976Ba61).
x1133.44 5 x1139.28 5	0.80 7 0.389 <i>21</i>					M1		0.00521	α (K)exp=0.0016 6. α (K)=0.00440 7; α (L)=0.000631 9; α (M)=0.0001403 20; α (N+)=3.92×10 ⁻⁵ 6 α (N)=3.29×10 ⁻⁵ 5; α (O)=4.74×10 ⁻⁶ 7; α (P)=2.59×10 ⁻⁷ 4; α (IPF)=1.292×10 ⁻⁶ 19 α (K)exp=0.0043 11
1141.96 <i>10</i>	0.176 23	1406.35	9/2-	264.272	9/2-	M1		0.00518	$\begin{aligned} &\alpha(\text{K}) = 0.00437 \ 7; \ \alpha(\text{L}) = 0.000627 \ 9; \\ &\alpha(\text{M}) = 0.0001395 \ 20; \ \alpha(\text{N}+) = 3.91 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 3.28 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 4.71 \times 10^{-6} \ 7; \\ &\alpha(\text{P}) = 2.58 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 1.408 \times 10^{-6} \ 21 \\ &\alpha(\text{K}) = 0.0054 \ 20 \end{aligned}$
1146.92 <i>13</i>	0.31 6	1908.63	5/2+	761.822	(5/2)+	(M1)		0.00512	$\alpha(K) \exp = 0.0034 \ 20.$ $\alpha(K) = 0.00433 \ 6; \ \alpha(L) = 0.000621 \ 9;$ $\alpha(M) = 0.0001380 \ 20; \ \alpha(N+) = 3.90 \times 10^{-5} \ 6$ $\alpha(N) = 3.24 \times 10^{-5} \ 5; \ \alpha(O) = 4.66 \times 10^{-6} \ 7;$ $\alpha(P) = 2.55 \times 10^{-7} \ 4; \ \alpha(IPF) = 1.645 \times 10^{-6} \ 24$ $\alpha(K) \exp = 0.0039 \ 16$
1148.0 [#] 6 1151.70 7	0.23 [#] 12 0.88 11	1427.12 1540.69	(7/2,9/2) ⁻ 9/2 ⁻	278.594 389.523	7/2 ⁻ 9/2 ⁻	M1+E2	≥0.36 ^{<i>c</i>}	0.0038 11	$\alpha(K)=0.0032 \ 9; \ \alpha(L)=0.00047 \ 12; \\\alpha(M)=0.00010 \ 3; \ \alpha(N+)=3.0\times10^{-5} \ 7 \\\alpha(N)=2.5\times10^{-5} \ 6; \ \alpha(O)=3.5\times10^{-6} \ 9; \\\alpha(P)=1.8\times10^{-7} \ 6; \ \alpha(IPF)=1.67\times10^{-6} \ 19 \\\alpha(K)\exp=0.0045 \ 15.$
1156.03 <i>16</i> 1162 49 ^h 7	$0.22 \ 4$ $0.77^{h} \ 5$	1420.31 1406 35	(5/2 ⁻ ,7/2,9/2 ⁻) 9/2 ⁻	264.272	9/2 ⁻ 7/2 ⁻	M1		0 00496	$\alpha(\mathbf{K}) = 0.00419 \text{ fs} \alpha(\mathbf{I}) = 0.000600.9$
1102.47 /	0.11 5	1700.33	712	273.027	1/2	1411		0.00+20	$u(\mathbf{x}) = 0.007170, u(\mathbf{L}) = 0.00000007,$

From ENSDF

 $^{169}_{70} \mathrm{Yb}_{99}$ -24

 $^{169}_{70}\mathrm{Yb}_{99}$ -24

			¹⁶⁹ L	uε decay	(34.06)	h) 1978B	a73,1978Bo39,198(Ba07 (continu	ed)
						γ(¹⁶⁹ Yb)	(continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	${f J}^\pi_i$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
1162 49 ^h 7	0.77h 5	1427 12	(7/2 9/2)-	264 272	9/2-			0.00496	$\alpha(M)=0.0001335 \ 19; \ \alpha(N+)=3.87\times10^{-5} \ 6$ $\alpha(N)=3.13\times10^{-5} \ 5; \ \alpha(O)=4.51\times10^{-6} \ 7; \ \alpha(P)=2.47\times10^{-7} \ 4; \ \alpha(IPF)=2.59\times10^{-6} \ 4$ $\alpha(K)=0.0050 \ 6 \ for \ doublet.$ $\alpha(K)=0.00419 \ 6; \ \alpha(I)=0.000600 \ 9;$
1102.49	0.77 5	1727.12	(1/2,7/2)	204.272	72	1411		0.00470	$\alpha(M)=0.0001335 \ 19; \ \alpha(N+)=3.87\times10^{-5} \ 6$ $\alpha(N)=3.13\times10^{-5} \ 5; \ \alpha(O)=4.51\times10^{-6} \ 7;$ $\alpha(P)=2.47\times10^{-7} \ 4; \ \alpha(IPF)=2.59\times10^{-6} \ 4$ $\alpha(K)\exp=0.0050 \ 6 \ \text{for doublet}$
1165.21 <i>11</i>	0.73 5	1554.876	9/2-	389.523	9/2-	M1		0.00493	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00416 \ 6; \ \alpha(\mathbf{L}) &= 0.000597 \ 9; \\ \alpha(\mathbf{M}) &= 0.0001327 \ 19; \ \alpha(\mathbf{N}+) &= 3.87 \times 10^{-5} \ 6\\ \alpha(\mathbf{N}) &= 3.12 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) &= 4.48 \times 10^{-6} \ 7; \\ \alpha(\mathbf{P}) &= 2.45 \times 10^{-7} \ 4; \ \alpha(\mathbf{IPF}) &= 2.79 \times 10^{-6} \ 4 \end{aligned}$
1171.20 4	3.43 11	1449.781	7/2-	278.594	7/2-	M1+E2	+0.22 ^c +74-15	0.0048 10	$\begin{aligned} &\alpha(\mathbf{K}) \exp = 0.0039 \ I3. \\ &\alpha(\mathbf{K}) = 0.0040 \ 8; \ \alpha(\mathbf{L}) = 0.00058 \ I1; \\ &\alpha(\mathbf{M}) = 0.000129 \ 24; \ \alpha(\mathbf{N}+) = 3.8 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 3.0 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 4.3 \times 10^{-6} \ 9; \\ &\alpha(\mathbf{P}) = 2.4 \times 10^{-7} \ 5; \ \alpha(\mathbf{IPF}) = 3.2 \times 10^{-6} \ 3 \\ &\alpha(\mathbf{K}) \exp = 0.0048 \ 4. \end{aligned}$
1176.48 [#] 22	0.68 7	1420.31	(5/2 ⁻ ,7/2,9/2 ⁻)	243.827	7/2-				I _{γ} : combined value for 1176.5 γ +1177.7 γ . α (K)exp=0.0010 2 for doublet.
1177.7 [#] 4 1180.45 6	0.68 7 0.81 9	1177.01 1444.75	(7/2,9/2) ⁺ 7/2 ⁻ ,9/2 ⁻	0.0 264.272	7/2 ⁺ 9/2 ⁻	M1(+E2)		0.0037 ^e 11	I _γ : see comment with 1176.5γ from 1420 level. $\alpha(K)=0.0031 \ 9; \ \alpha(L)=0.00046 \ 12;$ $\alpha(M)=0.00010 \ 3; \ \alpha(N+)=3.1\times10^{-5} \ 8$ $\alpha(N)=2.4\times10^{-5} \ 7; \ \alpha(O)=3.4\times10^{-6} \ 10;$ $\alpha(P)=1.8\times10^{-7} \ 6; \ \alpha(IPF)=3.7\times10^{-6} \ 5$ Mult.: $\delta=-0.7 + 2 - 10$ (if J(1444.7 level)=7/2) or $\delta=+0.88 \ 24$ or $-0.02 + 16 - 11$ (if J=9/2) (nuclear orientation, 1982Da23) suggests E2 admixture. $\alpha(K)=n=0.0049 \ 12$
1184.875 24	9.5 4	1463.412	7/2-	278.594	7/2-	M1+E2	-0.15 ^{<i>c</i>} 7	0.00469 9	$\begin{aligned} \alpha(\mathbf{K}) &\in \mathbf{X}^{p=0.0049} \ 12. \\ \alpha(\mathbf{K}) &= 0.00396 \ 7; \ \alpha(\mathbf{L}) &= 0.000568 \ 10; \\ \alpha(\mathbf{M}) &= 0.0001262 \ 22; \ \alpha(\mathbf{N}+) &= 3.87 \times 10^{-5} \ 7 \\ \alpha(\mathbf{N}) &= 2.96 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) &= 4.26 \times 10^{-6} \ 8; \\ \alpha(\mathbf{P}) &= 2.33 \times 10^{-7} \ 5; \ \alpha(\mathbf{IPF}) &= 4.52 \times 10^{-6} \ 7 \\ \delta: \ \text{other value:} \ -0.10 \ +0 - 13 \ (\gamma\gamma(\theta), \ 1980\mathrm{Bu}24). \\ \alpha(\mathbf{K}) &= n = 0.0042 \ 3 \end{aligned}$
1199.10 6	0.96 8	1463.412	7/2-	264.272	9/2-	M1+E2	+0.22 ^c +25-19	0.0045 <i>3</i>	$\begin{aligned} &\alpha(K)=0.00380\ 24;\ \alpha(L)=0.00055\ 4;\\ &\alpha(M)=0.000121\ 7;\ \alpha(N+)=3.89\times10^{-5}\ 21\\ &\alpha(N)=2.85\times10^{-5}\ 17;\ \alpha(O)=4.10\times10^{-6}\ 25;\\ &\alpha(P)=2.24\times10^{-7}\ 15;\ \alpha(IPF)=6.09\times10^{-6}\ 20\\ &\alpha(K)\exp=0.0040\ 6. \end{aligned}$

From ENSDF

Т

 $^{169}_{70}\mathrm{Yb}_{99}$ -25

	169 Lu ε decay			⁹ Lu ε decay (34.06 h)	1978Ba	73,1978Bo39,1	tinued)	
						$\gamma(^{169}\text{Yb})$	(continued)		
$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	a ^g	Comments
1201.0 [#] 9 1206.00 4	2.15 14	1444.75 1449.781	7/2 ⁻ ,9/2 ⁻ 7/2 ⁻	243.827 243.827	7/2 ⁻ 7/2 ⁻	M1+E2	≥0.83 ^C	0.0031 6	Seen only in ce spectrum (1976Ba61). $\alpha(K)=0.0026 5; \alpha(L)=0.00039 7; \alpha(M)=8.7\times10^{-5}$ $15; \alpha(N+)=2.9\times10^{-5} 5$ $\alpha(N)=2.0\times10^{-5} 4; \alpha(O)=2.9\times10^{-6} 6; \alpha(P)=1.5\times10^{-7}$
1212.52 8	2.04 16	1283.282	(7/2,9/2) ⁻	70.880	9/2+	E1+M2	-0.02 ^c 7	0.00109 8	4; α (IPF)=6.0×10 ⁻⁶ 5 α (K)exp=0.0043 5. α (K)=0.00090 7; α (L)=0.000123 10; α (M)=2.71×10 ⁻⁵ 22; α (N+)=3.34×10 ⁻⁵ 7 α (N)=6.3×10 ⁻⁶ 6; α (O)=9.1×10 ⁻⁷ 8; α (P)=4.9×10 ⁻⁸ 4: α (IPF)=2.61×10 ⁻⁵ 5
1215.28 <i>11</i> 1219.61 <i>4</i>	0.45 <i>4</i> 1.28 <i>17</i>	1406.35 1463.412	9/2 ⁻ 7/2 ⁻	191.216 243.827	5/2 ⁻ 7/2 ⁻	M1+E2	-1.0 ^c +3-9	0.0035 6	$\alpha(K) \exp = 8.2 \times 10^{-4} \ 7.$ $\alpha(K) \exp = 0.0035.$ $\alpha(K) = 0.0029 \ 5; \ \alpha(L) = 0.00042 \ 7; \ \alpha(M) = 9.5 \times 10^{-5}$
									14; $\alpha(N+)=3.3\times10^{-5} 5$ $\alpha(N)=2.2\times10^{-5} 4$; $\alpha(O)=3.2\times10^{-6} 5$; $\alpha(P)=1.7\times10^{-7}$ 3; $\alpha(IPF)=8.0\times10^{-6} 6$ $\alpha(K)=0.0064 11$.
1223.07 ^h 8	0.48 ^h 12	1972.35	9/2-	748.923	(9/2)-				
1223.07 ^{<i>h</i>} 8 1244.24 <i>1</i> 2	0.48 ^{<i>h</i>} 12 0.32 4	2029.87 1343.57	7/2 ⁻ (7/2) ⁻	807.079 99.250	(7/2) ⁻ 5/2 ⁻	M1		0.00422	α (K)=0.00355 5; α (L)=0.000508 8; α (M)=0.0001130 $I6$; α (N+)=4.33×10 ⁻⁵ 6 α (N)=2.65×10 ⁻⁵ 4; α (Q)=3.82×10 ⁻⁶ 6;
									$\alpha(P)=2.09\times10^{-7} 3; \alpha(IPF)=1.279\times10^{-5} 18$ $\alpha(K)\exp=0.0045 11.$
1251.74 25	0.28 9	1973.97	7/2-	722.21	5/2-	(E2)		0.00238	$\alpha(K)=0.00199 \ 3; \ \alpha(L)=0.000298 \ 5; \ \alpha(M)=6.67\times10^{-5} \ 10; \ \alpha(N+)=2.90\times10^{-5} \ 4 \ \alpha(N)=1.560\times10^{-5} \ 22; \ \alpha(O)=2.20\times10^{-6} \ 3; \ \alpha(P)=1.119\times10^{-7} \ 16; \ \alpha(PE)=1.112\times10^{-5} \ 16$
1258.59 6	1.52 4	1449.781	7/2-	191.216	5/2-	M1		0.00410	$\alpha(K) = 0.0026 \ 10.$ $\alpha(K) = 0.00346 \ 5; \ \alpha(L) = 0.000494 \ 7; \ \alpha(M) = 0.0001098$ $16; \ \alpha(N+) = 4.50 \times 10^{-5} \ 7$
									$\alpha(N)=2.58\times10^{-5} 4; \ \alpha(O)=3.71\times10^{-6} 6; \\ \alpha(P)=2.03\times10^{-7} 3; \ \alpha(IPF)=1.527\times10^{-5} 22 \\ \alpha(K)\exp=0.0031 6.$
1260.86 6 1266.68 [#] 25	1.36 8 0.57 <i>10</i>	1908.63 1656.22	5/2 ⁺ 5/2 ⁻ ,7/2 ⁻ ,9/	647.847 2 ⁻ 389.523	7/2 ⁻ 9/2 ⁻	E2		0.00233	$\begin{aligned} &\alpha(\text{K}) = 0.00194 \ 3; \ \alpha(\text{L}) = 0.000291 \ 4; \ \alpha(\text{M}) = 6.50 \times 10^{-5} \\ &I0 \ \alpha(\text{N}+) = 3.07 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 1.522 \times 10^{-5} \ 22; \ \alpha(\text{O}) = 2.15 \times 10^{-6} \ 3; \\ &\alpha(\text{P}) = 1.094 \times 10^{-7} \ 16; \ \alpha(\text{IPF}) = 1.324 \times 10^{-5} \ 19 \\ &\text{Mult.:} \ -0.65 \le \delta \le +3.30 \ (\text{nuclear orientation}, \end{aligned}$

From ENSDF

				¹⁶⁹ Lu ε d	ecay (3	84.06 h)	1978Ba73,1978B	6039,1980Ba0	07 (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
1272.46 <i>6</i> 1276.62 ^h 23	2.91 <i>14</i> 0.75 ^h 7	1343.57 1540.69	(7/2) ⁻ 9/2 ⁻	70.880 264.272	9/2 ⁺ 9/2 ⁻	M1		0.00397	1982Da23) suggests little, if any, M1 admixture. α (K)exp=0.0017 5. α (K)exp=0.0016 5. α (K)=0.00334 5; α (L)=0.000477 7; α (M)=0.0001061 15;
									α (N+)=4.73×10 ⁻⁵ 7 α (N)=2.49×10 ⁻⁵ 4; α (O)=3.58×10 ⁻⁶ 5; α (P)=1.96×10 ⁻⁷ 3; α (IPF)=1.86×10 ⁻⁵ 3 α (K)exp=0.0038 11 for doublet.
1276.62 ^{<i>h</i>} 23	0.75 ^h 7	1554.876	9/2-	278.594	7/2-	M1		0.00397	$\begin{aligned} &\alpha(\text{K}) = 0.00334 \ 5; \ \alpha(\text{L}) = 0.000477 \ 7; \ \alpha(\text{M}) = 0.0001061 \ 15; \\ &\alpha(\text{N}+) = 4.73 \times 10^{-5} \ 7 \\ &\alpha(\text{N}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.58 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.96 \times 10^{-7} \\ &\beta_{3}; \ \alpha(\text{IPF}) = 1.86 \times 10^{-5} \ \beta_{3} \end{aligned}$
1283.28 4	9.0 4	1283.282	(7/2,9/2)-	0.0	7/2+	E1+M2	-0.01 ^c +6-5	0.00101 4	α (K)exp=0.0038 <i>11</i> for doublet. α (K)=0.00081 <i>3</i> ; α (L)=0.000111 <i>4</i> ; α (M)=2.44×10 ⁻⁵ <i>9</i> ; α (N+)=6.36×10 ⁻⁵ <i>9</i> α (N)=5.71×10 ⁻⁶ 22; α (O)=8.2×10 ⁻⁷ <i>3</i> ; α (P)=4.41×10 ⁻⁸
1290.59 <i>3</i>	4.89 26	1554.876	9/2-	264.272	9/2-	M1+E2	0.9 4	0.0031 4	<i>17</i> ; α (IPF)=5.70×10 ⁻⁵ 9 α (K)exp=7.3×10 ⁻⁴ 7. α (K)=0.0026 4; α (L)=0.00038 5; α (M)=8.5×10 ⁻⁵ 11;
									$\alpha(N+)=4.2\times10^{-5} 4$ $\alpha(N)=1.99\times10^{-5} 24; \ \alpha(O)=2.9\times10^{-6} 4; \ \alpha(P)=1.53\times10^{-7}$ 22; $\alpha(IPF)=1.94\times10^{-5} 12$ $\delta: 1982Da23$ (nuclear orientation) report $\delta=-0.33 6$ or +1.61 20. $\alpha(K)=x_0=0.0027 3$
1296.90 5	0.71 4	1540.69	9/2-	243.827	7/2-	M1+E2	1.0 +9-5	0.0030 5	$\begin{aligned} \alpha(\text{N}) &\approx p^{-6.0027} \ 5. \\ \alpha(\text{K}) &= 0.0025 \ 4; \ \alpha(\text{L}) = 0.00037 \ 6; \ \alpha(\text{M}) = 8.2 \times 10^{-5} \ 13; \\ \alpha(\text{N}+) &= 4.2 \times 10^{-5} \ 5 \\ \alpha(\text{N}) &= 1.9 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.7 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.5 \times 10^{-7} \ 3; \\ \alpha(\text{IPF}) &= 2.03 \times 10^{-5} \ 15 \end{aligned}$
1301.33 5	0.66 4	1565.65	(7/2-)	264.272	9/2-	(M1)		0.00380	$\alpha(K)\exp=0.0026 \ 4.$ $\alpha(K)=0.00319 \ 5; \ \alpha(L)=0.000455 \ 7; \ \alpha(M)=0.0001012 \ 15;$ $\alpha(N+)=5.11\times10^{-5} \ 8$ $\alpha(N)=2.38\times10^{-5} \ 4; \ \alpha(O)=3.42\times10^{-6} \ 5; \ \alpha(P)=1.87\times10^{-7}$ $\beta: \ \alpha(PF)=2.37\times10^{-5} \ 4$
1307.20 5	0.48 8	1406.35	9/2-	99.250	5/2-	E2		0.00220	$\alpha(K) \exp = 0.0028 \ 4.$ $\alpha(K) = 0.00183 \ 3; \ \alpha(L) = 0.000272 \ 4; \ \alpha(M) = 6.08 \times 10^{-5} \ 9;$ $\alpha(N+) = 3.61 \times 10^{-5} \ 5$ $\alpha(N) = 1.424 \times 10^{-5} \ 20; \ \alpha(O) = 2.01 \times 10^{-6} \ 3;$ $\alpha(P) = 1.030 \times 10^{-7} \ 15; \ \alpha(IPF) = 1.98 \times 10^{-5} \ 3$
1311.13 7	0.28 5	1554.876	9/2-	243.827	7/2-	M1		0.00373	α (K)exp=0.0016 4. α (K)=0.00313 5; α (L)=0.000447 7; α (M)=9.94×10 ⁻⁵ 14;

 $^{169}_{70}\mathrm{Yb}_{99}$ -27

			¹⁶⁹ L	uε decay	(34.06 h	ı) 1978	Ba73,1	978Bo39,1980	DBa07 (con	tinued)
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	$I_{(\gamma+ce)}f$	Comments
										$\alpha(N+)=5.28\times10^{-5} 8$ $\alpha(N)=2.33\times10^{-5} 4; \ \alpha(O)=3.36\times10^{-6} 5;$ $\alpha(P)=1.84\times10^{-7} 3; \ \alpha(IPF)=2.59\times10^{-5} 4$ $\alpha(K)\exp=0.0036 8.$
1318.53 ^{<i>h</i>} 12	0.55 ^h 5	1708.52	7/2-	389.523	9/2-	(M1)		0.00368		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00309 \ 5; \ \alpha(\mathbf{L}) = 0.000441 \ 7; \\ &\alpha(\mathbf{M}) = 9.80 \times 10^{-5} \ 14; \ \alpha(\mathbf{N}+) = 5.42 \times 10^{-5} \ 8 \\ &\alpha(\mathbf{N}) = 2.30 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.31 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{P}) = 1.82 \times 10^{-7} \ 3; \ \alpha(\mathbf{IPF}) = 2.77 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{K}) \exp = 0.0029 \ 9 \ \text{for doublet.} \end{aligned}$
1318.53 ^h 12	0.55 ^h 5	1908.63	5/2+	590.67	(5/2)+	(M1)		0.00368		$\alpha(K)=0.00309 5; \alpha(L)=0.000441 7;$ $\alpha(M)=9.80\times10^{-5} 14; \alpha(N+)=5.42\times10^{-5} 8$ $\alpha(N)=2.30\times10^{-5} 4; \alpha(O)=3.31\times10^{-6} 5;$ $\alpha(P)=1.82\times10^{-7} 3; \alpha(IPF)=2.77\times10^{-5} 4$ $\alpha(K)\exp=0.0029 9$ for doublet.
1321.53 ^h 16	0.33 ^h 3	1420.31	(5/2 ⁻ ,7/2,9/2 ⁻)	99.250	5/2-					
1321.53 ^h 16	0.33 ^h 3	1565.65	$(7/2^{-})$	243.827	$7/2^{-}$					
1326.85 ^{<i>i</i>} 3	2.54 ^{<i>i</i>}	1716.02	7/2+	389.523	9/2-	E1		9.81×10 ⁻⁴		$\begin{aligned} &\alpha(\text{K}) = 0.000768 \ 11; \ \alpha(\text{L}) = 0.0001040 \ 15; \\ &\alpha(\text{M}) = 2.30 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 8.56 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 5.38 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 7.69 \times 10^{-7} \ 11; \\ &\alpha(\text{P}) = 4.16 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 7.94 \times 10^{-5} \ 12 \\ &\text{I}_{\gamma}: \ ce\gamma \ coincidence \ data \ (1980\text{Ba07}) \ used \ to \\ estimate \ I\gamma \ for \ each \ placement; \end{aligned}$
										$I\gamma(\exp)=3.02$ 8 for doublet. $\alpha(K)\exp=8.9\times10^{-4}$ 33
1326.85 ^{<i>i</i>} 3	0.48 ⁱ	1973.97	7/2-	647.34	7/2+	E1		9.81×10 ⁻⁴		$\alpha(K)=0.000768 \ 11; \ \alpha(L)=0.0001040 \ 15; \alpha(M)=2.30\times10^{-5} \ 4; \ \alpha(N+)=8.56\times10^{-5} \ 12 \alpha(N)=5.38\times10^{-6} \ 8; \ \alpha(O)=7.69\times10^{-7} \ 11; \alpha(P)=4.16\times10^{-8} \ 6; \ \alpha(IPF)=7.94\times10^{-5} \ 12$

				¹⁶⁹ Lu ε decay (34.06 h)			1978Ba73,1978Bo	039,1980Ba07	(continued)
						<u>2</u>	(¹⁶⁹ Yb) (continued)	
${\rm E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
1338.82 4	6.93 21	1908.63	5/2+	569.837	5/2-	E1+M2	-0.04 ^C 3	0.00099 3	$\begin{aligned} &\alpha(\text{K}) = 0.000766\ 23;\ \alpha(\text{L}) = 0.000104\ 4;\\ &\alpha(\text{M}) = 2.29 \times 10^{-5}\ 8;\ \alpha(\text{N}+) = 9.23 \times 10^{-5}\ 13\\ &\alpha(\text{N}) = 5.37 \times 10^{-6}\ 19;\ \alpha(\text{O}) = 7.7 \times 10^{-7}\ 3;\\ &\alpha(\text{P}) = 4.16 \times 10^{-8}\ 14;\ \alpha(\text{IPF}) = 8.61 \times 10^{-5}\ 13\\ &\alpha(\text{K}) \exp = 8.5 \times 10^{-4}\ 20. \end{aligned}$
1343.30 <i>13</i> 1350.65 <i>9</i>	0.828 21	1343.37 1449.781	(<i>1</i> /2) 7/2 ⁻	99.250	7/2 5/2 ⁻	M1+E2	-0.19 ^c +15-21	0.00344 <i>16</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00287 \ 13; \ \alpha(\mathbf{L}) = 0.000410 \ 18; \\ &\alpha(\mathbf{M}) = 9.1 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 6.07 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{N}) = 2.14 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 3.08 \times 10^{-6} \ 14; \\ &\alpha(\mathbf{P}) = 1.69 \times 10^{-7} \ 8; \ \alpha(\mathbf{IPF}) = 3.60 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{K}) \exp = 0.0037 \ 6. \end{aligned}$
^x 1355.11 5	0.57 3					M1+E2	0.9 +5-3	0.0028 3	$\alpha(K) = 0.0024 \ 3; \ \alpha(L) = 0.00034 \ 4; \ \alpha(M) = 7.6 \times 10^{-5} \\ 8; \ \alpha(N+) = 5.5 \times 10^{-5} \ 4 \\ \alpha(N) = 1.78 \times 10^{-5} \ 18; \ \alpha(O) = 2.5 \times 10^{-6} \ 3; \\ \alpha(P) = 1.37 \times 10^{-7} \ 16; \ \alpha(IPF) = 3.40 \times 10^{-5} \ 18 \\ \alpha(K) = 0.0024 \ 3 \\ \alpha(K)$
1363.83 9	0.30 4	1554.876	9/2-	191.216	5/2-	E2		0.00204	$\begin{aligned} &\alpha(\mathbf{K}) \approx p = 0.002 + 9. \\ &\alpha(\mathbf{K}) = 0.001689 \ 24; \ \alpha(\mathbf{L}) = 0.000250 \ 4; \\ &\alpha(\mathbf{M}) = 5.57 \times 10^{-5} \ 8; \ \alpha(\mathbf{N}+) = 4.67 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 1.304 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 1.85 \times 10^{-6} \ 3; \\ &\alpha(\mathbf{P}) = 9.50 \times 10^{-8} \ 14; \ \alpha(\mathbf{IPF}) = 3.17 \times 10^{-5} \ 5 \\ &\alpha(\mathbf{K}) \exp = 0.0018 \ 6. \end{aligned}$
1367.56 ^{<i>a</i>} 7 1374.53 8	0.64 <i>4</i> 0.90 <i>4</i>	2287.23 1565.65	7/2 ⁻ (7/2 ⁻)	919.80 191.216	(9/2) ⁻ 5/2 ⁻	(M1)		0.00335	$\alpha(K)=0.00279 \ 4; \ \alpha(L)=0.000399 \ 6;$ $\alpha(M)=8.86\times10^{-5} \ 13; \ \alpha(N+)=6.75\times10^{-5} \ 10$ $\alpha(N)=2.08\times10^{-5} \ 3; \ \alpha(O)=2.99\times10^{-6} \ 5;$ $\alpha(P)=1.642\times10^{-7} \ 23; \ \alpha(IPF)=4.35\times10^{-5} \ 6$ $\alpha(K)\exp=0.0042 \ 12.$
1379.04 ⁱ 4	9.0 ⁱ	1449.781	7/2-	70.880	9/2+	E1		9.54×10 ⁻⁴	$\begin{aligned} &\alpha(K) = 0.000719 \ 10; \ \alpha(L) = 9.72 \times 10^{-5} \ 14; \\ &\alpha(M) = 2.14 \times 10^{-5} \ 3; \ \alpha(N+) = 0.0001170 \ 17 \\ &\alpha(N) = 5.02 \times 10^{-6} \ 7; \ \alpha(O) = 7.18 \times 10^{-7} \ 10; \\ &\alpha(P) = 3.89 \times 10^{-8} \ 6; \ \alpha(IPF) = 0.0001112 \ 16 \\ &\alpha(K) \exp = 6.8 \times 10^{-4} \ 11 \ \text{for doublet.} \\ &I_{\gamma}: \ ce\gamma \ coincidence \ data \ (1980Ba07) \ used \ to \\ estimate \ I\gamma \ for \ each \ placement; \ I\gamma = 13.6 \ 3 \ for \\ &doublet. \end{aligned}$
1379.04 ⁱ 4	4.6 ^{<i>i</i>}	1658.10	5/2+	278.594	7/2-	E1		9.54×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000719 \ 10; \ \alpha(\text{L}) = 9.72 \times 10^{-5} \ 14; \\ &\alpha(\text{M}) = 2.14 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 0.0001170 \ 17 \\ &\alpha(\text{N}) = 5.02 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 7.18 \times 10^{-7} \ 10; \\ &\alpha(\text{P}) = 3.89 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 0.0001112 \ 16 \\ &\alpha(\text{K}) \exp = 0.0068 \ 11 \ \text{for doublet.} \end{aligned}$ See comment on 1379 γ from 1450 level.

From ENSDF

			¹⁶⁹ L	ли ε decay	(34.06	h) 1978B	a73,1978B039,1980	0Ba07 (contin	ued)				
γ ⁽¹⁶⁹ Yb) (continued)													
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments				
1392.27 ^{<i>i</i>} 4	0.45 ^{<i>i</i>}	1656.22	5/2-,7/2-,9/2-	264.272	9/2-	E2		0.00197	$\alpha(K)=0.001624\ 23;\ \alpha(L)=0.000239\ 4;$ $\alpha(M)=5.34\times10^{-5}\ 8;\ \alpha(N+)=5.33\times10^{-5}\ 8$ $\alpha(N)=1.249\times10^{-5}\ 18;\ \alpha(O)=1.771\times10^{-6}\ 25;$ $\alpha(P)=9.14\times10^{-8}\ 13;\ \alpha(IPF)=3.89\times10^{-5}\ 6$ I _γ : ceγ coincidence data (1980Ba07) used to estimate I _γ for each placement; I _γ (exp)=5.56 I ₂ for doublet.				
1392.27 ^{<i>i</i>} 4	5.11 ⁱ	1781.696	7/2-	389.523	9/2-	E2		0.00197	$\alpha(\mathbf{K}) \approx p^{-6.0017} \text{ s} \text{ for a databet.}$ $\alpha(\mathbf{K}) = 0.001624 \ 23; \ \alpha(\mathbf{L}) = 0.000239 \ 4; \\ \alpha(\mathbf{M}) = 5.34 \times 10^{-5} \ 8; \ \alpha(\mathbf{N}+) = 5.33 \times 10^{-5} \ 8 \\ \alpha(\mathbf{N}) = 1.249 \times 10^{-5} \ 18; \ \alpha(\mathbf{O}) = 1.771 \times 10^{-6} \ 25; \\ \alpha(\mathbf{P}) = 9.14 \times 10^{-8} \ 13; \ \alpha(\mathbf{IPF}) = 3.89 \times 10^{-5} \ 6 \\ \alpha(\mathbf{K}) = x_0 = 0.0017 \ 3 \ \text{for doublet}$				
1406.23 5	0.96 4	1406.35	9/2-	0.0	7/2+	E1+M2	+0.08 ^C 13	0.00099 24	$\alpha(K) \exp = 0.0017 \text{ for doublet.}$ $\alpha(K) = 0.00073 \ 20; \ \alpha(L) = 0.00010 \ 3;$ $\alpha(M) = 2.2 \times 10^{-5} \ 7; \ \alpha(N+) = 0.000134 \ 3$ $\alpha(N) = 5.1 \times 10^{-6} \ 16; \ \alpha(O) = 7.3 \times 10^{-7} \ 23;$ $\alpha(P) = 4.0 \times 10^{-8} \ 13; \ \alpha(IPF) = 0.000128 \ 5$ $\alpha(K) = 0.0014 \ 7$				
1412.39 10	0.49 5	1656.22	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻	243.827	7/2-	M1+E2	-0.08 ^C 18	0.00315 9	$\alpha(\mathbf{K}) \approx p=0.0014 \ 7.$ $\alpha(\mathbf{K}) = 0.00261 \ 7; \ \alpha(\mathbf{L}) = 0.000372 \ 10;$ $\alpha(\mathbf{M}) = 8.27 \times 10^{-5} \ 22; \ \alpha(\mathbf{N}+) = 7.85 \times 10^{-5} \ 16$ $\alpha(\mathbf{N}) = 1.94 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 2.80 \times 10^{-6} \ 8;$ $\alpha(\mathbf{P}) = 1.53 \times 10^{-7} \ 5; \ \alpha(\mathbf{IPF}) = 5.61 \times 10^{-5} \ 11$ $\alpha(\mathbf{K}) \approx p = 0.004 \ 1.$				
x1419.68 <i>13</i>	0.18 4												
^x 1425.54 ^{<i>a</i>} 22	0.27 6					M1		0.00309	$\alpha(K)=0.00256 4; \alpha(L)=0.000365 6;$ $\alpha(M)=8.11\times10^{-5} 12; \alpha(N+)=8.28\times10^{-5} 12$ $\alpha(N)=1.90\times10^{-5} 3; \alpha(O)=2.74\times10^{-6} 4;$ $\alpha(P)=1.504\times10^{-7} 21; \alpha(IPF)=6.09\times10^{-5} 9$ $\alpha(K)\exp=0.0042 15.$ placed by 1988DzZW from 1617 level, but absence of this γ In (n,γ) E=thermal (where many transitions from this level are observed) makes that placement unlikely. a γ of similar energy descrites a 1555 level In (n, γ)				
1429.87 9	1.33 8	1708.52	7/2-	278.594	7/2-	M1+E2	+0.02 ^c +18-13	0.00307 7	energy deexcites a 1555 level in (n,γ) E=thermal. $\alpha(K)=0.00254 \ 6; \ \alpha(L)=0.000362 \ 8;$ $\alpha(M)=8.05\times10^{-5} \ 16; \ \alpha(N+)=8.42\times10^{-5} \ 15$ $\alpha(N)=1.89\times10^{-5} \ 4; \ \alpha(O)=2.72\times10^{-6} \ 6;$ $\alpha(P)=1.49\times10^{-7} \ 4; \ \alpha(IPF)=6.24\times10^{-5} \ 10$				
1437 43 4	2.67.9	1716.02	7/2+	278 504	7/2-	E1(+M2)	0.076 ± 0.8	0.00006.11	α (K)exp=0.0035 6.				

				¹⁶⁹ Lu	ε decay (34.06 h) 1	1978Ba73,1978Bo	39,1980Ba07 (coi	ntinued)
						$\gamma(1)$	⁶⁹ Yb) (continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
1449.74 <i>4</i>	42.4 9	1449.781	7/2-	0.0	7/2+	E1(+M2)	0.00 ^c 4	9.32×10 ⁻⁴ 16	$\alpha(M)=2.1\times10^{-5} 3; \alpha(N+)=0.000155 3$ $\alpha(N)=4.9\times10^{-6} 8; \alpha(O)=7.0\times10^{-7} 11;$ $\alpha(P)=3.8\times10^{-8} 6; \alpha(IPF)=0.000149 3$ $\alpha(K)\exp=4.9\times10^{-4} 16.$ $\alpha(K)=0.000660 13; \alpha(L)=8.91\times10^{-5} 18;$ $\alpha(M)=1.06\times10^{-5} 4; \alpha(N+)=0.0001627 23$
	<i></i>								$\alpha(M)=1.96\times10^{-4} ; \alpha(N+)=0.0001637 23$ $\alpha(N)=4.60\times10^{-6} 10; \alpha(O)=6.59\times10^{-7} 13;$ $\alpha(P)=3.58\times10^{-8} 7; \alpha(IPF)=0.0001584 23$ $\alpha(K)\exp=5.3\times10^{-4} 15.$
1463.39 4	6.45 15	1463.412	7/2-	0.0	7/2+	E1(+M2)	+0.02 ^c +11-9	0.00093 10	$\alpha(K)=0.00065 \ 8; \ \alpha(L)=8.8\times10^{-3} \ 13; \\ \alpha(M)=1.9\times10^{-5} \ 3; \ \alpha(N+)=0.000173 \ 3 \\ \alpha(N)=4.5\times10^{-6} \ 7; \ \alpha(O)=6.5\times10^{-7} \ 10; \\ \alpha(P)=3.5\times10^{-8} \ 5; \ \alpha(IPF)=0.000168 \ 4 \\ \alpha(K)\exp=8.1\times10^{-4} \ 14 $
1466.84 <i>4</i>	14.2 4	1658.10	5/2+	191.216	5/2-	E1(+M2)	-0.03 ^c 4	0.00093 3	$\alpha(\mathbf{K}) \approx p = 5.1 \times 10^{-1} I^{-1}.$ $\alpha(\mathbf{K}) = 0.000651 \ 22; \ \alpha(\mathbf{L}) = 8.8 \times 10^{-5} \ 4;$ $\alpha(\mathbf{M}) = 1.94 \times 10^{-5} \ 8; \ \alpha(\mathbf{N}+) = 0.0001751 \ 25$ $\alpha(\mathbf{N}) = 4.54 \times 10^{-6} \ 17; \ \alpha(\mathbf{O}) = 6.51 \times 10^{-7} \ 25;$ $\alpha(\mathbf{P}) = 3.53 \times 10^{-8} \ 13; \ \alpha(\mathbf{IPF}) = 0.0001699 \ 25$ $\alpha(\mathbf{K}) \approx p = 8.5 \times 10^{-4} \ 12$
1483.97 ^d j 9	0.86 <i>6</i>	1554.876	9/2-	70.880	9/2+	[E1]		9.25×10 ⁻⁴	$\alpha(K) exp=3.3 \times 10^{-12.}$ $\alpha(K) = 0.000634 \ 9; \ \alpha(L) = 8.55 \times 10^{-5} \ 12;$ $\alpha(M) = 1.89 \times 10^{-5} \ 3; \ \alpha(N+) = 0.000187 \ 3$ $\alpha(N) = 4.42 \times 10^{-6} \ 7; \ \alpha(O) = 6.33 \times 10^{-7} \ 9;$ $\alpha(P) = 3.44 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.000182 \ 3$ Mult.: $\alpha(K) exp = 0.0015 \ 4$ favors mult=E2, inconsistent with this placement. consequently, the evaluator shows the placement As uncertain.
1487.21 <i>24</i> 1497.92 <i>4</i>	0.155 <i>20</i> 1.20 <i>5</i>	1973.97 1689.290	7/2 ⁻ 7/2 ⁻	487.031 191.216	(11/2 ⁻) 5/2 ⁻	M1+E2	+0.24 ^c 6	0.00272 5	$\alpha(K)=0.00223 \ 4; \ \alpha(L)=0.000317 \ 6; \\ \alpha(M)=7.05\times10^{-5} \ 13; \ \alpha(N+)=0.0001069 \ 17 \\ \alpha(N)=1.66\times10^{-5} \ 3; \ \alpha(O)=2.38\times10^{-6} \ 5; \\ \alpha(P)=1.306\times10^{-7} \ 24; \ \alpha(IPF)=8.78\times10^{-5} \ 14 \\ \alpha(K)=0.0017 \ 5 \\ \alpha(K)=0.0017 $
1502.89 6	0.92 5	1781.696	7/2-	278.594	7/2-				Multipolarity cannot be determined with available data ($\alpha(K)exp=0.0020\ 6;\ \delta=+0.03$ +10-8 or +1.03 18 from nuclear orientation (1982Da23)).
1517.31 4	2.33 13	1708.52	7/2-	191.216	5/2-	M1+E2	-5.9 ^c +7-9	0.00175 3	$\alpha(K)=0.001406\ 21;\ \alpha(L)=0.000204\ 3;\alpha(M)=4.55\times10^{-5}\ 7;\ \alpha(N+)=8.94\times10^{-5}\ 13\alpha(N)=1.065\times10^{-5}\ 16;\ \alpha(O)=1.514\times10^{-6}\ 23;\alpha(P)=7.92\times10^{-8}\ 12;\ \alpha(IPF)=7.72\times10^{-5}\ 11\alpha(K)exp=0.0013\ 3.$
1524.77 5	2.19 11	1716.02	7/2+	191.216	5/2-	E1(+M2)	+0.03 ^c 4	9.26×10 ⁻⁴ 25	$\alpha(K)=0.000610\ 20;\ \alpha(L)=8.2\times10^{-5}\ 3;$

 $^{169}_{70}\mathrm{Yb}_{99}$ -31

			¹⁶⁹ Lu ε	decay (34	.06 h)	1978Ba73,1	.978Bo39,1980	Ba07 (continue	ed)
					<u>2</u>	v(¹⁶⁹ Yb) (con	tinued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
									$\begin{aligned} &\alpha(M) = 1.81 \times 10^{-5} \ 7; \ \alpha(N+) = 0.000215 \ 3\\ &\alpha(N) = 4.25 \times 10^{-6} \ 16; \ \alpha(O) = 6.09 \times 10^{-7} \ 22; \\ &\alpha(P) = 3.31 \times 10^{-8} \ 12; \ \alpha(IPF) = 0.000210 \ 3\\ &\alpha(K) \exp = 5.4 \times 10^{-4} \ 14. \end{aligned}$
1529.87 ^d 4	1.92 6	1616.80	$(1/2^+, 3/2, 5/2^+)$	86.927	3/2-				
1540.63 <i>15</i>	0.17 4	1540.69	9/2-	0.0	7/2+				
1547.69^{a} 18	0.23.3	2296.78?	5/2 ,7/2,9/2	748.923	(9/2) 7/2+				
$1554.4^{h}5$	0.46^{h} 11	1554.870	9/2 7/2 ⁺	0.0	$\frac{1}{2}$				
1556.7 4	0.40 11	1656.22	5/2-,7/2-,9/2-	99.250	$5/2^{-1}$				
^x 1568.66 <i>18</i> ^x 1575.76 <i>7</i> ^x 1584.70 <i>9</i>	0.11 <i>3</i> 0.37 <i>3</i> 0.60 <i>5</i>								α (K)exp=0.0043 25. α (K)exp=0.0024 9. α (K)exp=0.0012 5.
1590.35 5	2.05 8	1781.696	7/2-	191.216	5/2-	M1+E2	+0.117 ^c 23	0.00245	$\alpha(\mathbf{K}) = 0.00197 \ 3; \ \alpha(\mathbf{L}) = 0.000279 \ 4; \\ \alpha(\mathbf{M}) = 6.20 \times 10^{-5} \ 9; \ \alpha(\mathbf{N}+) = 0.0001468 \ 21 \\ \alpha(\mathbf{N}) = 1.456 \times 10^{-5} \ 21; \ \alpha(\mathbf{N}) = 2.10 \times 10^{-6} \ 3; $
			z .o.t						$\alpha(N)=1.450\times10^{-21}, \alpha(O)=2.10\times10^{-5}, \alpha(P)=1.151\times10^{-7}$ 17; $\alpha(IPF)=0.0001300$ 19 $\alpha(K)\exp=0.0020$ 5.
1595.89 <i>23</i> 1607 51 6	0.097 23	1694.48 1694.48	5/2+ 5/2+	99.250 86.927	$\frac{5}{2^{-}}$	F1(+M2)	$+0.04^{\circ}$ 18	0 00093 20	$\alpha(K) = 0.0028 I/.$ $\alpha(K) = 0.00056 I/8; \alpha(L) = 8 E - 5 3;$
1007.51 0	0.209 25	1094.40	5/2	00.927	5/2	L1(+1 v 12)	+0.0+ 10	0.00093 20	$\alpha(\mathbf{M}) = 0.0000176, \alpha(\mathbf{L}) = 0.1275, \alpha(\mathbf{M}) = 0.0002769, \alpha(\mathbf{M}) = 1.7 \times 10^{-5} 6; \alpha(\mathbf{N}+) = 0.0002769, \alpha(\mathbf{N}) = 3.9 \times 10^{-6} 14; \alpha(\mathbf{O}) = 5.6 \times 10^{-7} 20; \alpha(\mathbf{P}) = 3.0 \times 10^{-8} 11; \alpha(\mathbf{IPF}) = 0.000271 11, \alpha(\mathbf{K}) = 5.4 \times 10^{-4} 20.$
1618.48 <i>4</i>	3.04 7	1689.290	7/2-	70.880	9/2+	E1(+M2)	+0.04 ^C 6	0.00093 4	$\alpha(\mathbf{K})=0.00055 \ 4; \ \alpha(\mathbf{L})=7.5\times10^{-5} \ 5; \\ \alpha(\mathbf{M})=1.65\times10^{-5} \ 11; \ \alpha(\mathbf{N}+)=0.000284 \ 5 \\ \alpha(\mathbf{N})=3.9\times10^{-6} \ 3; \ \alpha(\mathbf{O})=5.5\times10^{-7} \ 4; \\ \alpha(\mathbf{P})=3.01\times10^{-8} \ 20; \ \alpha(\mathbf{IPF})=0.000279 \ 5 \\ \alpha(\mathbf{K})=\mathbf{N}=0 \ \mathbf{N}=0^{-4} \ \mathbf{I}_{\mathbf{K}}$
^x 1626.12 14	0.098 20								$u(\mathbf{K}) cxp = 0.0 \times 10^{-10}$
1630.02 <i>13</i>	0.28 5	1908.63	5/2+	278.594	$7/2^{-}$			0.0010 (
1636.82 8	0.94 4	1707.71	(7/2,9/2)*	70.880	9/2*	M1+E2		0.0019 4	$\alpha(K)=0.0015 4; \alpha(L)=0.00022 5; \alpha(M)=4.8\times10^{-5} 10; \alpha(N+)=0.000150 20 \alpha(N)=1.13\times10^{-5} 24; \alpha(O)=1.6\times10^{-6} 4; \alpha(P)=8.8\times10^{-8} 21; \alpha(IPF)=0.000137 17 Mult.: restricted to M1+E2 by \alpha(K)exp and two \delta values (both large) (+10 +18-4 (if J(1707.8 level)=7/2 or -2.8 +15-158 (if J=9/2)) (nuclear orientation, 1982Da23).\alpha(K)$ exp=9×10 ⁻⁴ 5.

From ENSDF

 $^{169}_{70}$ Yb₉₉-32

 $^{169}_{70} \mathrm{Yb}_{99}$ -32

				¹⁶⁹ Lu ε de	cay (34	4.06 h) 19	78Ba73,1978Bo39,	1980Ba07 (cor	ntinued)
						$\gamma(^{169})$	Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments
1645.14 8	0.339 21	1716.02	7/2+	70.880	9/2+	M1+E2	+0.34 ^c +21-15	0.00223 11	$\alpha(K)=0.00176 \ 9; \ \alpha(L)=0.000249 \ 12; \\ \alpha(M)=5.5\times10^{-5} \ 3; \ \alpha(N+)=0.000169 \ 6 \\ \alpha(N)=1.30\times10^{-5} \ 7; \ \alpha(O)=1.87\times10^{-6} \ 9; \\ \alpha(P)=1.03\times10^{-7} \ 6; \ \alpha(IPF)=0.000154 \ 5 \\ \alpha(K)\exp=0.0025 \ 11 $
1658.08 <i>5</i>	3.39 8	1658.10	5/2+	0.0	7/2+	M1+E2	+0.28 ^{<i>c</i>} 11	0.00222 6	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00174 \ 5; \ \alpha(\mathbf{L}) &= 0.000247 \ 7; \\ \alpha(\mathbf{M}) &= 5.50 \times 10^{-5} \ 14; \ \alpha(\mathbf{N}+) &= 0.000176 \ 4 \\ \alpha(\mathbf{N}) &= 1.29 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) &= 1.86 \times 10^{-6} \ 5; \\ \alpha(\mathbf{P}) &= 1.02 \times 10^{-7} \ 3; \ \alpha(\mathbf{IPF}) &= 0.000161 \ 3 \\ \alpha(\mathbf{K}) &= 0.0020 \ 4. \end{aligned}$
^x 1671.60 <i>10</i> 1676.46 8	0.234 22 0.378 <i>18</i>	1954.50	5/2-,7/2-	278.594	7/2-	M1		0.00223	$\alpha(K)\exp=0.0024 \ 12.$ $\alpha(K)=0.001743 \ 25; \ \alpha(L)=0.000247 \ 4;$ $\alpha(M)=5.49\times10^{-5} \ 8; \ \alpha(N+)=0.000188 \ 3$ $\alpha(N)=1.288\times10^{-5} \ 18; \ \alpha(O)=1.85\times10^{-6} \ 3;$ $\alpha(P)=1.020\times10^{-7} \ 15; \ \alpha(IPF)=0.0001728 \ 25$ $\alpha(K)\exp=0.0024 \ 7$
1682.49 5	1.25 13	1781.696	7/2-	99.250	5/2-	M1+E2	+0.53 ^C +8-6	0.00206 5	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00160 \ 4; \ \alpha(\mathbf{L}) &= 0.000227 \ 6; \\ \alpha(\mathbf{M}) &= 5.04 \times 10^{-5} \ 12; \ \alpha(\mathbf{N}+) &= 0.000181 \ 4 \\ \alpha(\mathbf{N}) &= 1.18 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) &= 1.70 \times 10^{-6} \ 4; \\ \alpha(\mathbf{P}) &= 9.31 \times 10^{-8} \ 24; \ \alpha(\mathbf{IPF}) &= 0.000168 \ 3 \\ \alpha(\mathbf{K}) &= n = 0.0024 \ 7 \end{aligned}$
1689.35 <i>5</i>	2.23 11	1689.290	7/2-	0.0	7/2+	E1(+M2)	-0.03 ^C 7	0.00093 4	$\alpha(\mathbf{K}) \approx p^{-0.0021771} \alpha(\mathbf{K}) = 6.9 \times 10^{-5} 5;$ $\alpha(\mathbf{M}) = 1.52 \times 10^{-5} 11; \ \alpha(\mathbf{N}+) = 0.000336 6$ $\alpha(\mathbf{N}) = 3.56 \times 10^{-6} 25; \ \alpha(\mathbf{O}) = 5.1 \times 10^{-7} 4;$ $\alpha(\mathbf{P}) = 2.79 \times 10^{-8} 20; \ \alpha(\mathbf{IPF}) = 0.000332 6$ $\alpha(\mathbf{K}) \approx p^{-6} 3 \times 10^{-4} 20$
1694.38 <i>14</i>	0.186 <i>13</i>	1694.48	5/2+	0.0	7/2+	(M1)		0.00219	$\alpha(\mathbf{K}) \exp = 0.5 \times 10^{-20.5} \times 10^{-20.5} \times 10^{-20.5} \times 10^{-20.5} \times 10^{-5} \times 10^{$
^x 1702 <i>1</i> 1707.97 ^{<i>i</i>} 9	0.10 <i>5</i> 0.91 ^{<i>i</i>}	1707.71	(7/2,9/2)+	0.0	7/2+	(M1+E2)		0.0018 4	$\alpha(K)=0.0014 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.4\times10^{-5} \ 9; \ \alpha(N+)=0.000181 \ 23 \ \alpha(N)=1.03\times10^{-5} \ 21; \ \alpha(O)=1.5\times10^{-6} \ 3; \ \alpha(P)=8.0\times10^{-8} \ 18; \ \alpha(IPF)=0.000169 \ 20 \ I_{\gamma}: \ cey \ coincidence \ data \ (1980Ba07) \ used \ to \ estimate \ I_{\gamma} \ for \ each \ placement; \ I_{\gamma}(exp)=1.86 \ 26 \ for \ doublet.$
1707.97 ⁱ 9	0.95 ⁱ	1972.35	9/2-	264.272	9/2-	(M1+E2)		0.0018 4	$\alpha(K)=0.0014 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.4\times10^{-5} \ 9; \ \alpha(N+)=0.000181 \ 23$

From ENSDF

 $^{169}_{70} \mathrm{Yb}_{99}$ -33

			169	Lu $arepsilon$ decay	y (34.06	h) 1978B	a73,1978Bo39,19	980Ba07 (con	tinued)					
	γ ⁽¹⁶⁹ Yb) (continued)													
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments					
1710.17 <i>10</i> 1717.41 <i>6</i> 1726 30 9	1.2 <i>3</i> 0.48 <i>4</i> 0.26 <i>3</i>	1973.97 1908.63 1888.00	$7/2^{-}$ $5/2^{+}$ $(7/2^{+}, 9/2^{+})$	264.272 191.216 161.645	9/2 ⁻ 5/2 ⁻ 11/2 ⁺				α (N)=1.03×10 ⁻⁵ 21; α (O)=1.5×10 ⁻⁶ 3; α (P)=8.0×10 ⁻⁸ 18; α (IPF)=0.000169 20					
1720.30 9 1730.8 6 *1737.03 26 *1746.78 14	0.09 5 0.180 23 0.27 4	1973.97	(1/2 ,9/2) 7/2 ⁻	243.827	7/2-	M1		0.00208	α (K)exp=0.005 3. α (K)exp<0.005. α (K)=0.001581 23; α (L)=0.000224 4; α (M)=4.97×10 ⁻⁵ 7; α (N+)=0.000224 4 α (N)=1.167×10 ⁻⁵ 17; α (O)=1.681×10 ⁻⁶ 24; α (P)=9.25×10 ⁻⁸ 13; α (IPF)=0.000210 3 α (K)exp=0.0038 16. placed by 1988DzZW from 1909 level, but adopted J^{π} =5/2 ⁺ for that level would imply an M3					
1751.2 <i>4</i> 1763.35 <i>5</i>	0.058 <i>14</i> 0.79 <i>4</i>	2029.87 1954.50	7/2 ⁻ 5/2 ⁻ ,7/2 ⁻	278.594 191.216	7/2 ⁻ 5/2 ⁻	M1(+E2)		0.0017 4	a (K)=0.0013 3; α(L)=0.00018 4; α(M)=4.1×10 ⁻⁵ 8; α(N+)=0.00021 3 α(N)=9.6×10 ⁻⁶ 19; α(O)=1.4×10 ⁻⁶ 3; α(P)=7.5×10 ⁻⁸ 16; α(IPF)=0.000196 24 Mult: δ=-0.8 +2-4 (if J(1954.6 level)=5/2) or					
1781.75 5	4.01 11	1781.696	7/2-	0.0	7/2+	E1+M2	+0.08 ^C +6-5	0.00097 5	$\delta = 0.00 \ 7 \ (if \ J=7/2) \ (nuclear orientation, 1982Da23) \ suggests E2 \ admixture. \alpha(K) = 0.0021 \ 6. \\ \alpha(K) = 0.00049 \ 4; \ \alpha(L) = 6.6 \times 10^{-5} \ 6; \\ \alpha(M) = 1.44 \times 10^{-5} \ 13; \ \alpha(N+) = 0.000402 \ 7 \\ \alpha(N) = 3.4 \times 10^{-6} \ 3; \ \alpha(O) = 4.9 \times 10^{-7} \ 5; \\ \alpha(P) = 2.66 \times 10^{-8} \ 24; \ \alpha(IPF) = 0.000399 \ 7 $					
x1790.55 <i>10</i> 1810.64 <i>13</i> 1817.12 <i>7</i> 1822.42 ^{<i>d</i>} <i>11</i> x1833.41 <i>11</i> 1838.30 <i>8</i>	0.262 <i>11</i> 0.104 <i>18</i> 0.145 <i>10</i> 0.150 <i>10</i> 0.133 <i>10</i> 0.150 <i>9</i>	1972.35 1888.00 2101.03 2029.87	9/2 ⁻ (7/2 ⁺ ,9/2 ⁺) (5/2,7/2) ⁻ 7/2 ⁻	161.645 70.880 278.594 191.216	11/2 ⁺ 9/2 ⁺ 7/2 ⁻ 5/2 ⁻				α (K)exp=6.2×10 ⁻⁴ <i>13</i> . α (K)exp=0.0011 <i>6</i> . α (K)exp=0.0029 <i>15</i> . α (K)exp=0.00063 <i>22</i> ; consistent with E1 or E2.					
*1850.8770 *1862.449 *1867.0672 1897.60 ^d 70	0.102 20 0.626 24 0.086 7 0.137 8	2287.23	7/2-	389.523	9/2-	M1		0.00183	α (K)exp=0.0010 5. α (K)exp=0.0013 5. α (K)=0.001301 19; α (L)=0.000184 3; α (M)=4.08×10 ⁻⁵ 6; α (N+)=0.000306 5 α (N)=9.58×10 ⁻⁶ 14; α (O)=1.379×10 ⁻⁶ 20; α (P)=7.60×10 ⁻⁸ 11; α (IPF)=0.000295 5 α (K)exp=0.0048 12.					

 $^{169}_{70}\mathrm{Yb}_{99}$ -34

			^{169}L	u ε decay (3	34.06 h) 1978Ba7 3	3,1978Bo39,1980	Ba07 (continue	<u>d)</u>		
						$\gamma(^{169}\text{Yb})$ (c	ontinued)				
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments		
1903.04 <i>5</i> 1908.46 <i>6</i>	0.308 <i>16</i> 0.354 <i>20</i>	1973.97 1908.63	7/2- 5/2+	70.880 0.0	9/2 ⁺	(E1+M2) (M1,E2)	+0.08 ^c 15	0.00100 <i>12</i> 0.0016 <i>3</i>	$\begin{aligned} &\alpha(\text{K}) = 0.00044 \ 11; \ \alpha(\text{L}) = 5.9 \times 10^{-5} \ 17; \\ &\alpha(\text{M}) = 1.3 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000491 \ 16 \\ &\alpha(\text{N}) = 3.0 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 4.3 \times 10^{-7} \ 13; \\ &\alpha(\text{P}) = 2.4 \times 10^{-8} \ 7; \ \alpha(\text{IPF}) = 0.000488 \ 17 \\ \text{Placement from 1982Da23.} \\ &\text{Mult.: from nuclear orientation, with} \\ &\Delta \pi = \text{yes from decay scheme.} \\ &\alpha(\text{K}) = 0.00110 \ 19; \ \alpha(\text{L}) = 0.00015 \ 3; \\ &\alpha(\text{M}) = 3.4 \times 10^{-5} \ 6; \ \alpha(\text{N}+) = 0.00028 \ 4 \end{aligned}$		
^x 1916.1 4	0.042 10								$\alpha(N)=8.1\times10^{-6} \ 14; \ \alpha(O)=1.16\times10^{-6} \ 21; \\ \alpha(P)=6.3\times10^{-8} \ 12; \ \alpha(IPF)=0.00027 \ 4 \\ \delta: \ 1982Da23 \ (nuclear \ orientation) \ report \\ \delta=0.00 \ 18 \ or \ \delta\geq 3.0. \\ \alpha(K)exp=0.0014 \ 5. $		
x 1920.81 77 x 1947.33 22 1954.48 9 1959.24 9	0.104 9 0.050 8 0.184 <i>12</i> 1.18 <i>4</i>	1954.50 2029.87	5/2 ⁻ ,7/2 ⁻ 7/2 ⁻	0.0 70.880	7/2 ⁺ 9/2 ⁺	(E1(+M2))	+0.03 ^c 4	1.00×10 ⁻³ 2	α (K)=0.000403 <i>11</i> ; α (L)=5.39×10 ⁻⁵ <i>16</i> ;		
X10/0 00 20									$\alpha(M)=1.19\times10^{-5} 4; \alpha(N+)=0.000534 8$ $\alpha(N)=2.78\times10^{-6} 9; \alpha(O)=3.99\times10^{-7} 12;$ $\alpha(P)=2.19\times10^{-8} 7; \alpha(IPF)=0.000531 8$ Mult.: from nuclear orientation, with $\Delta\pi$ =yes from decay scheme. $\alpha(K)$ exp=0.0010 3.		
1969.80 20 1973.68 6	0.146 <i>10</i> 1.21 <i>4</i>	1973.97	7/2-	0.0	7/2+	(E1+M2)	-0.13 ^c +9-8	0.00104 7	$\alpha(K)=0.00043 \ 6; \ \alpha(L)=5.9\times10^{-5} \ 9; \\ \alpha(M)=1.29\times10^{-5} \ 20; \ \alpha(N+)=0.000539 \\ I2 \\ \alpha(N)=3.0\times10^{-6} \ 5; \ \alpha(O)=4.3\times10^{-7} \ 7; \\ \alpha(N)=3.0\times10^{-6} \ 7; \ \alpha(O)=4.3\times10^{-7} \ 7; \\ \alpha(N)=3.0\times10^{-6} \ 7; \ \alpha(O)=4.3\times10^{-7} \ 7; \\ \alpha(N)=3.0\times10^{-6} \ 7; \ \alpha(O)=4.3\times10^{-7} \ 7; \ 7; \ 7; \ 7; \ 7; \ 7; \ 7; \ $		
×1085.08.72	0 427 14								$\alpha(P)=2.4\times10^{-8} 4; \ \alpha(IPF)=0.000535 \ 13$ Mult.: from nuclear orientation, with $\Delta\pi$ =yes from decay scheme. $\alpha(K)\exp=7\times10^{-4} 4.$ $\alpha(K)\exp=0.00073 \ 21$		
2014.06 ^{<i>d</i>} 9	0.135 16	2101.03	(5/2,7/2) ⁻	86.927	3/2-	M1,E2		0.00148 23	$\alpha(K) \exp -0.00075 21.$ $\alpha(K) = 0.00098 16; \ \alpha(L) = 0.000138 22;$ $\alpha(M) = 3.1 \times 10^{-5} 5; \ \alpha(N+) = 0.00033 4$ $\alpha(N) = 7.2 \times 10^{-6} 12; \ \alpha(O) = 1.03 \times 10^{-6} 17;$ $\alpha(P) = 5.6 \times 10^{-8} 10; \ \alpha(IPF) = 0.00032 4$ $\alpha(K) \exp - 0.0012 7$		
2018.40 ^{<i>dj</i>} 27 ^{<i>x</i>} 2025.46 <i>11</i>	0.062 <i>19</i> 0.493 <i>23</i>	2296.78?	5/2-,7/2,9/2-	278.594	7/2-				$\alpha(K)\exp=0.0012$ /. $\alpha(K)\exp=0.0016$ 8.		

From ENSDF

			1	⁶⁹ Lu ε deo	cay (34	.06 h) 1978	Ba73,1978Bo	039,1980Ba07 (c	continued)	
γ ⁽¹⁶⁹ Yb) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{g}	Comments	
2030.00 6	2.89 8	2029.87	7/2-	0.0	7/2+	(E1(+M2))	+0.03 ^c 5	1.03×10 ⁻³ 2		
^x 2048.99 8 ^x 2056.17 5 2065.03 11	0.335 22 1.23 4 0.059 5	2065.04	7/2+	0.0	7/2+	M1+E2+E0		0.00145 21	$\begin{aligned} &\alpha(\text{K})\exp=0.0029 \ 15. \\ &\alpha(\text{K})\exp=0.0021 \ 11. \\ &\alpha(\text{K})=0.00093 \ 15; \ \alpha(\text{L})=0.000130 \ 21; \\ &\alpha(\text{M})=2.9\times10^{-5} \ 5; \ \alpha(\text{N}+)=0.00036 \ 5 \\ &\alpha(\text{N})=6.8\times10^{-6} \ 11; \ \alpha(\text{O})=9.7\times10^{-7} \ 16; \\ &\alpha(\text{P})=5.3\times10^{-8} \ 10; \ \alpha(\text{IPF})=0.00035 \ 5 \\ &\alpha(\text{K})\exp=0.0062 \ 16. \end{aligned}$	
^x 2070.85 11 ^x 2088.69 14	0.130 5								placement from 1991DzZY. $\alpha(K)exp=0.0014 6.$	
2095.90 ^d 7	0.549 19	2287.23	7/2-	191.216	5/2-	M1		1.63×10 ⁻³	$\alpha(K)=0.001031 \ 15; \ \alpha(L)=0.0001452 \ 21; \\ \alpha(M)=3.22\times10^{-5} \ 5; \ \alpha(N+)=0.000420 \ 6 \\ \alpha(N)=7.56\times10^{-6} \ 11; \ \alpha(O)=1.090\times10^{-6} \ 16; \\ \alpha(P)=6.01\times10^{-8} \ 9; \ \alpha(IPF)=0.000412 \ 6 \\ \alpha(K)\exp=0.0018 \ 6.$	
2101.09 ^d 13 ^x 2112.0 4 ^x 2114.33 26	0.053 <i>4</i> 0.036 <i>11</i> 0.070 <i>4</i>	2101.03	(5/2,7/2)-	0.0	7/2+				α (K)exp<0.003.	
x2122.47 10 2135.4 4 x2139.39 17 x2141.88 20 x2148 27 17	0.84 <i>4</i> 0.033 <i>5</i> 0.31 <i>4</i> 0.063 <i>8</i> 0.106 <i>6</i>	2135.4		0.0	7/2+				α (K)exp=0.00112 20. placement from 1991DzZY. α (K)exp=0.00078 22.	
x2158.05 25 x2161.18 10 x2191.49 20	0.116 25 0.30 <i>3</i> 0.068 <i>4</i>								α (K)exp=0.0027 9. α (K)exp=0.0009 5.	

[†] From 1978Ba73, except where noted.

[‡] From $\alpha(K)$ exp and/or $\alpha(L)$ exp in 1978Ba73, except where noted. The photon and ce intensity scales in 1978Ba73 were normalized to give $\alpha(K)$ values consistent with known multipolarities of 75.0 γ (E2), 156.9 γ (E2), 165.0 γ (E2), and 191.2 γ (E1+M2), and then adjusted slightly to give $\alpha(K)$ =0.00158 (E1 theory) for 889.8 γ and $\alpha(K)$ =0.00137 (E1 theory) for 960.6 γ .

[#] From 1980Ba07 and/or 1976Ba61.

36

From ENSDF

 $^{169}_{70}$ Yb₉₉-36

$\gamma(^{169}\text{Yb})$ (continued)

[@] From Adopted Gammas.

[&] Deduced from relative photon branchings in ¹⁶⁸Yb(n, γ) E=thermal and I γ for transitions common to both decay and (n, γ).

^{*a*} From Adopted Gammas.

^b From L and/or M subshell ratios.
 ^c From nuclear orientation (1982Da23).

^d Placement from 1988DzZW.

^{*e*} For pure M1.

^f For absolute intensity per 100 decays, multiply by 0.212 4.

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with undivided intensity.

^{*i*} Multiply placed with intensity suitably divided.

^{*j*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{169}_{70}{\rm Yb}_{99}$

¹⁶⁹₇₀Yb₉₉

Decay Scheme (continued)

 $^{169}_{70} \rm Yb_{99}$

¹⁶⁹₇₀Yb₉₉

 $^{169}_{70}{\rm Yb}_{99}$

 $^{169}_{70} Yb_{99}$

 $^{169}_{70} \rm Yb_{99}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{169}_{70}{
m Yb}_{99}$

 $^{169}_{70}{\rm Yb}_{99}$

	Band(J): β vibration band		
	(9/2) ⁺	1141.44	
Band(I): 7/2[514] band			

9/2- 1078.335

1070.77

7/2+

Band(F): 3/2[521] band + K-2 γ vibration built on 1/2[521]				Band(H): 1/2 K-2 γ vibr	[510] band + ation built	7/2-	960.612
(9/2)-	919.80	Band(G): 3/ K-2 γ vib on 7	/2[651] band + oration built /2[633]	(5/2) ⁻	911.38		
		<u>9/2</u> +	886.80				
		(7/2) ⁺	832.085				
(7/2)-	807.079	<u> </u>					
		(5/2) ⁺	761.822				
5/2-	722.21	<u>3/2</u> +	720.00				
3/2-	659.52						

¹⁶⁹₇₀Yb₉₉