Coulomb excitation 1977Ta10,1999Ro03

			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008
Others: 1955He64, 1956Hu4 1965De05, 1966Bo16, 1	49, 1958Ma36, 19 979Wa15.	60Be16, 1960Na13,	1960Ol02, 1961Po08, 19	64Ho18, 1964Ho25, 1965As03,
1958Ch36: E(p)=3.7 MeV.				
1960B110: $E(p)=2.5$ MeV.				
1963De25: $E(^{16}O)=44$ MeV	7.			
1963Di09: $E(^{16}O)=60 \text{ MeV}$	•			
1965As03 : $E(\alpha)=3.1$ MeV.				
1967Se09: E(¹⁶ O)=50 MeV	•			
1977Ta10: E(³² S)=130-140	MeV; thulium me	tal targets; measured	d E γ , I γ (Ge(Li), resolution	on≈2 keV at 1.3 MeV), 32 S-γ coin,
γ -ray angular distributio	ons (0° to 90° , 15°	steps), level lifetim	ies).	
1979BaYN: E(¹⁶ O)=60 Me	V.	-		
1999Ro03: E(⁵⁸ Ni)=170, 19	0, 220 MeV; ¹⁶⁹ T	m/annealed Gd foil	/Cu targets; Ge detectors (at $\pm 60^{\circ}$ and $\pm 120^{\circ}$ for transient field
measurements, at 0° to	65° for angular co	rrelation study), Si	surface barrier detector for	r charged particle detection; measured
g-factors ($\gamma(\theta, H, t)$, H=0	.08 T). Ev. Iv. ⁵⁸ N	Ni- $\gamma(\theta)$, relative Cou	lomb excitation cross sect	ions: g-factors determined relative to
values of 0.304 18 and 0	0.383 14. respectiv	velv. for the $5/2^+$ an	d $7/2^+$ members of the g.s	s. band.
The level scheme is from 19	977Ta10, except w	here noted.	,	

¹⁶⁹Tm Levels

Band(ad) 1/2[411] band.

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	1/2+		
8.39 [‡] 5	3/2+	4.09 ns 5	$T_{1/2}$: from Adopted Levels.
118.16 4	5/2+	62 ps 3	$T_{1/2}$: 62.4 ps 28 from microwave pulsed beam measurements (1960B110); see ¹⁶⁹ Tm Adopted Levels for other $T_{1/2}$ data.
138.72 23	7/2+	302 ps 2	$T_{1/2}$: recoil-shadow measurements (1979BaYN); uncertainty includes only statistical component (total uncertainty is most certainly larger). See ¹⁶⁹ Tm Adopted Levels for other $T_{1/2}$ data.
331.80 24	9/2+	18.8 ps 5	$g-factor=+0.347 \ 20 \ (1999Ro03).$
267.0.4	11/0+	41.6 01	$T_{1/2}$: recoil-distance measurements (1977Ta10).
367.04	11/21	41.6 ps 21	g-factor= $+0.414 \ 20 \ (1999R003)$.
571.00# 23	2/2+	10 m 7	$P(E_2) = 0.022$ A
371.00" 23	5/2	10 ps /	B(E2) = 0.035 4 B(E2) from 1967Se09 Others: 1963Di09 (-0.028 6) 1963De25
			I^{π} : E2 excitation from ratio of thick target yields At two ¹⁶ O beam energies for ce(K) of
			562 and 570 transitions (1963Di09).
			$T_{1/2}$: deduced from B(E2) \uparrow and adopted γ -ray properties.
633.1 [#] 5	$5/2^{+}$	0.27 ps	B(E2)↑=0.0039
	,		B(E2) [†] : from 1963Di09.
			T _{1/2} : from B(E2) \uparrow =0.0039 and adopted γ -ray properties.
636.5 4	$13/2^{+}$	5.4 ps <i>3</i>	$g-factor = +0.365 \ 22 \ (1999Ro03).$
			$T_{1/2}$: recoil-distance and Doppler-broadened line shape measurements (1977Ta10).
690.3 9	15/2+	8.1 ps <i>3</i>	g-factor=+0.42 4 (1999Ro03).
. #			$T_{1/2}$: recoil-distance and Doppler-broadened line shape measurements (19/71a10).
717.9# 8	$(7/2^+)$		
≈900?	17/0+	1.01 17	B(E2)↑=0.008 4 (1963Di09)
1027.4 9	$17/2^{+}$	1.91 ps 17	g-tactor=+0.5/4 (1999/Ro03).
			$I_{1/2}$: Doppler-broadened line shape measurements (19//1a10).

Continued on next page (footnotes at end of table)

Coulomb excitation 1977Ta10,1999Ro03 (continued)

¹⁶⁹Tm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
1103.0 12	19/2+	1.94 ps 21	g-factor=+0.44 8 (1999Ro03).
			$T_{1/2}$: Doppler-broadened line shape measurements (1977Ta10).
1190 20	+		B(E2) ⁺ =0.040 9
			B(E2) ⁺ : Weighted average of 0.039 13 (1963De25) and 0.041 12 (1963Di09).
1497.0 <i>12</i> 1597.0 <i>15</i>	21/2 ⁺ (23/2 ⁺)	0.87 ps 9	$T_{1/2}$: Doppler-broadened line shape measurements (1977Ta10).

 $\gamma(^{169}\text{Tm})$

 † From least-squares fit to E γ , assigning 1 keV uncertainty to E γ data for which the authors stated No uncertainty.

[‡] Adopted values.

[#] Band(A): $3/2[411] + K-2 \gamma$ vibration built on 1/2[411].

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
(8.41) 20.8		8.39 138.72	3/2 ⁺ 7/2 ⁺	0.0 118.16	1/2 ⁺ 5/2 ⁺				E _γ : adopted value (rounded). E _γ : from 1999Ro03. Iγ/I(130γ)=0.0168 <i>13</i> (1999Ro03).
109.77 [@] 3	100	118.16	5/2+	8.39	3/2+	M1+E2	-0.141 25	2.37	εB(E2)↑=1.1 3 (1955He64). A ₂ =-0.456 24, A ₄ =0.00 3 (1977Ta10). δ: unweighted average of -0.116 4 from 1999Ro03 (⁵⁸ Ni-γ(θ)) and -0.146 16 from 1965As03 (α-γ(θ); A ₂ =-0.339 14).
118.16 [@] 4	10.21 5	118.16	5/2+	0.0	1/2+	E2 ^b		1.643	I_{γ} : from 1999Ro03. Others: 11.0 20 (1967Se09), 11.0 10 (1977Ta10). A_2 =+0.44 12, A_4 =-0.39 15 (1977Ta10).
130.2 ^{<i>a</i>} 3	287 4	138.72	7/2+	8.39	3/2+	E2 ^b		1.154 19	$A_2 = +0.351 \ 16, \ A_4 = -0.110 \ 20 \ (1977Ta10).$
193.0 ^{<i>a</i>} 3	251 4	331.80	9/2+	138.72	7/2+	M1+E2	-0.126 21	0.480 8	A ₂ =+0.534 <i>17</i> , A ₄ =-0.016 <i>20</i> (1977Ta10). δ : unweighted average of -0.146 <i>3</i> (1999Ro03), -0.105 <i>11</i> (1977Ta10).
213.7 ^{<i>a</i>} 3	123.2 <i>21</i>	331.80	9/2+	118.16	5/2+	E2 ^b		0.209	$I_{\gamma}/I(193_{\gamma})=0.452\ 5\ (1999Ro03),$ 0.56 5 (1967Se09). $A_2=+0.455\ 24,\ A_4=-0.21\ 3$ (1977Ta10).
228.3 ^{<i>a</i>} 3	470 5	367.0	$11/2^+$	138.72	7/2+	E2 ^b		0.1683	$A_2 = +0.451 \ 13, A_4 = -0.198 \ 16$
269.5 ^{<i>a</i>} 3	146.2 25	636.5	13/2+	367.0	11/2+	M1+E2	-0.149 21	0.191	$I\gamma/I(305\gamma)=0.996\ 12$ (1999R003); other: 0.79 8 (1967Se09). A ₂ =-0.532 24, A ₄ =-0.04 3 (1977Ta10). δ : unweighted average of -0.174 3 (1999R003), -0.123 14 (1977Ta10).

Continued on next page (footnotes at end of table)

			Co	ulomb exc	tation	1977Ta 1	10,1999Ro03 (continued)	
γ ⁽¹⁶⁹ Tm) (continued)									
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	α ^C	Comments
304.7 ^{<i>a</i>} 3	156 <i>3</i>	636.5	13/2+	331.80	9/2+	E2 ^b		0.0682	$A_2 = +0.431 \ 27, \ A_4 = -0.17 \ 3$ (1977Ta10).
323.3	146 <i>3</i>	690.3	15/2+	367.0	11/2+	E2 ^b		0.0571	$A_2 = +0.45 \ 4, \ A_4 = -0.21 \ 5$ (1977Ta10).
337.2	35 3	1027.4	17/2+	690.3	15/2+	M1+E2	-0.18 3	0.1043 <i>16</i>	$I_{\gamma}/I(391_{\gamma})=0.587\ 7$ (1999Ro03). $A_2=-0.58\ 9,\ A_4=-0.10\ 11$ (1977Ta10). δ : weighted average of $-0.199\ 20\ (1999Ro03)$ and $-0.127\ 35\ (1977Ta10)\ (as$ recommended in 1999Ro03)
390.9	67.0 18	1027.4	17/2+	636.5	$13/2^{+}$	E2 ^{<i>b</i>}		0.0331	$A_2 = +0.42 5, A_4 = -0.50 6$
394.0	3.5 18	1497.0	21/2+	1103.0	19/2+				(19771a10). E_{γ} : from 1999Ro03. I_{γ} : from 0.14< $I_{\gamma}/I(470\gamma)$ <0.44 in 1999Ro03 if $I(470\gamma)$ =12.1. I_{γ} =3.3 estimated from rotational-model expectations (peak masked by intense 390.9 γ in 1977Ta10); 1999Ro03 report 1.7< I_{γ} <5.3.
412.7	21.7 11	1103.0	19/2+	690.3	15/2+	E2 ^b		0.0285	$A_2 = +0.28 \ 11, A_4 = -0.09 \ 13$ (1977Ta10).
452.8 ^{<i>a</i>} 3		571.00	3/2+	118.16	5/2+	M1+E2	1.5 +9-4	0.030 5	Mult., δ : from α (K)exp=0.025 4, as deduced from ε (K)B(E2) \uparrow =6.2×10 ⁻⁵ 9 (1963Di09) and ε (γ)B(E2) \uparrow =2.45×10 ⁻³ 25 (1967Se09).
469.5	12.1 17	1497.0	21/2+	1027.4	17/2+	E2 ^b		0.0202	$A_2 = +0.7 3, A_4 = -0.3 3$ (1977Ta10).
494 ^{&} 1		633.1	5/2+	138.72	7/2+				$\varepsilon(K)B(E2)\uparrow=1.8\times10^{-5}$ 10 (1963Di09).
494 515 ^{&} 1		1597.0 633.1	(23/2 ⁺) 5/2 ⁺	1103.0 118.16	19/2 ⁺ 5/2 ⁺				E_{γ} : from 1999Ro03. ε(K)B(E2)↑=3.6×10 ⁻⁵ 10
562.7 ^{<i>a</i>} 5		571.00	3/2+	8.39	3/2+	M1+E2	0.8 +5-4	0.022 4	(1903D109). Mult., δ : from α (K)exp=0.018 3, as deduced from ε (K)B(E2) \uparrow =2.4×10 ⁻⁴ 3 (1963Di09) and ε (γ)B(E2) \uparrow =0.0132 13 (1967Se09). Other: 0.010 (1960Na13)
571.0 ^{<i>a</i>} 5		571.00	3/2+	0.0	1/2+	M1+E2	0.8 +5-4	0.021 4	Mult., δ : from α (K)exp=0.017 <i>3</i> , as deduced from ε (K)B(E2)↑=2.9×10 ⁻⁴ <i>3</i> (1963Di09) and ε (γ)B(E2)↑=0.0167 22 (1967Se09).
579 ^{&} 1 600 ^{&} 1		717.9 717.9	$(7/2^+)$ $(7/2^+)$	138.72 118.16	7/2 ⁺ 5/2 ⁺				

Continued on next page (footnotes at end of table)

Coulomb excitation 1977Ta10,1999Ro03 (continued)

$\gamma(^{169}\text{Tm})$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
625 ^{&} 1	633.1	5/2+	8.39 3/2+	$\epsilon(K)B(E2)\uparrow=3.8\times10^{-5} \ 9 \ (1963Di09).$
633 <mark>&</mark> 1	633.1	5/2+	0.0 1/2+	$\varepsilon(K)B(E2)\uparrow=1.0\times10^{-5}$ 7 (1963Di09).
≈900 ^d	≈900?		0.0 1/2+	E_{γ} : from 1963Di09.
1190 20	1190	+	0.0 1/2+	E_{γ} : from 1963De25. Other value: \approx 1170 (1963Di09).

[†] From 1977Ta10, except as noted.

[‡] Arbitrary units for $E(^{32}S)=140$ MeV (1977Ta10), except as noted.

[#] From $\gamma(\theta)$ angular distributions, except where noted; $\Delta \pi$ =No from RUL. Q assignments were based on large positive A₂, and intraband D+Q assignments on negative A₂ and placement relative to cascading Q γ 's between Coulomb-excited states. 1999Ro03 do not quote A₂ from their ⁵⁸Ni- $\gamma(\theta)$ data, but clearly establish that 118 γ , 131 γ , 214 γ , 229 γ , 305 γ and 323 γ are stretched Q, and the 110 γ , 193 γ , 269 γ and 337 γ are D+Q.

[@] Cryst (1958Ch36).

& Mag spect (E(ce) measured) (1963Di09).

^a Ge(Li) (1967Se09).

^{*b*} Stretched Q from $\gamma(\theta)$, not M2 from RUL.

^{*c*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

 $^{169}_{69}{
m Tm}_{100}$

Coulomb excitation 1977Ta10,1999Ro03

Band(A): $3/2[411] + K-2 \gamma$ vibration built on 1/2[411]

(7/2⁺) 717.9

<u>5/2+</u> 633.1

<u>3/2</u>⁺ 571.00

 $^{169}_{69}{
m Tm}_{100}$