169 Er β^- decay 1968Ca06,1970Sh09

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008					

Parent: ¹⁶⁹Er: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=9.392$ d 18; $Q(\beta^{-})=351.3$ 11; % β^{-} decay=100.0

Others: 1948Ke11, 1951Ke44, 1956Bi30, 1956Ha72, 1959Ch31, 1963Mc13, 1965Du02, 1967Ma42, 1971MaXG. Except for the ce and I β data reported here, transition data were obtained with ¹⁶⁹Yb sources (see ¹⁶⁹Yb ε decay (32.018 d) for details and additional data).

For K-shell auto-ionization probability data, see 1968Er02, 1971Ca44, and 1974Ja31; for theoretical calculations, see 1972La07, 1972La09, 1972Mo26, 1975La20, 1977Is05, and 1981Mu14.

For internal bremsstrahlung data, see 1976Pr06.

¹⁶⁹Tm Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0 8.41017 <i>15</i>	$\frac{1/2^+}{3/2^+}$	stable 4.09 ns 5	$T_{1/2}$: datum from β^- decay: 4.34 ns 17 (1963Mc13; however, see comment on this datum In
118.18945 11	5/2+	62 ps 3	Adopted Develop.

[†] From recoil-corrected $E\gamma$.

[‡] From Adopted Levels.

β^{-} radiations

 β^- feedings are from intensity imbalance at each level; g.s. feeding is from 100% less total I β to 8.4+118.2 levels. 1965Du02 report E β =344 keV 3 for β group to the g.s. and 8.4 levels combined.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(233.1 11) (342.9 11)	118.18945	0.0048 10	9.54^{1u} 9	av $E\beta = 74.14$ 37 av $E\beta = 08$ 27 36
(342.9 11) (351.3 11)	0.0	43 5 55 5	6.44 <i>4</i>	av $E\beta = 100.96$ 36

[†] Absolute intensity per 100 decays.

I γ normalization: from I(γ +ce)/ Σ I β measurements.

${\rm E_{\gamma}}^{\dagger}$	I_{γ} #a	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
8.41017 <i>15</i>	0.170 19	8.41017	3/2+	0.0	1/2+	M1+E2	0.0328 5	263 5	45 [@] 5	ce(M)/(γ+ce)=0.789 9; ce(N+)/(γ+ce)=0.207 5 ce(N)/(γ+ce)=0.182 5; ce(O)/(γ+ce)=0.0240 6; ce(P)/(γ+ce)=0.000899 21 Mult.,δ: from M1:M2:M3 In 1968Ca06. E _γ : from level energy difference. M1:M2:M3:M4:M5:N1:N2:N3:(N4+N5):O1: (O2+O3)= 100:36.8 14:38.0 14:0.9 2:1.0 2:22.1 6:6.4 3:7.6 2:0.20 2: 3.7 1:2.08 6 (1968Ca06); M1:M2:M3:(M4+M5)=100:31 3:34 3:≈1.2, N1:N2:N3=100:25 3:41 5, M/N=4.2 5, N/O=6.4 10 (1971MaXG). Other: (α(M)exp + α(N)exp)=106 6 (from βce coin (1959Ch31)); value is inconsistent with adopted multipolarity.
109.77924 4	0.0013 3	118.18945	5/2+	8.41017	3/2+	M1+E2	-0.139 10	2.37	0.0044 ^{&} 10	$\begin{aligned} & \operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.583 \ 5; \ \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.0932 \ 16; \\ & \operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 0.0209 \ 4; \\ & \operatorname{ce}(\mathbf{N}+)/(\gamma + \operatorname{ce}) = 0.00561 \ 11 \\ & \operatorname{ce}(\mathbf{N})/(\gamma + \operatorname{ce}) = 0.00488 \ 9; \ \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 0.000693 \\ & 13; \ \operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 3.57 \times 10^{-5} \ 7 \end{aligned}$
118.18940 <i>14</i>	0.00014 3	118.18945	5/2+	0.0	1/2+	E2		1.642	0.00037 ^{&} 8	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce}){=}0.265\ 4;\ {\rm ce}({\rm L})/(\gamma+{\rm ce}){=}0.273\ 4;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce}){=}0.0666\ 11;\\ {\rm ce}({\rm N}{+})/(\gamma+{\rm ce}){=}0.0169\ 3\\ {\rm ce}({\rm N})/(\gamma+{\rm ce}){=}0.01515\ 25;\ {\rm ce}({\rm O})/(\gamma+{\rm ce}){=}0.00177\\ 3;\ {\rm ce}({\rm P})/(\gamma+{\rm ce}){=}1.117{\times}10^{-5}\ 19 \end{array}$

 \mathbf{N}

[†] From Adopted Gammas.[‡] From Adopted Gammas, except As noted.

[#] Deduced from I(γ +ce) and α . [@] From Ice(8.4 γ)/ Σ I β =45 5 (Ice \approx I(γ +ce)) (1965Du02). Other value for this ratio: 42 *I* (1959Ch31). [&] From Ti(109.8 γ +118.2 γ)/ Σ I β =0.0048 *I0* (1970Sh09) and adopted γ -ray branching from 118.2 level.

^{*a*} Absolute intensity per 100 decays.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁹Er β^- decay 1968Ca06,1970Sh09

Decay Scheme

¹⁶⁹₆₉Tm₁₀₀