History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Coral M. Baglin	NDS 109,2033 (2008)	15-Jun-2008								

 $Q(\beta^-)=-898.5\ 12;\ S(n)=8033.6\ 15;\ S(p)=5573.9\ 12;\ Q(\alpha)=1197.7\ 13\ 2012Wa38$ Note: Current evaluation has used the following Q record $-910\ 48033.6\ 155572.2\ 111199.7\ 13\ 2003Au03.$ For hfs and/or isotope-shift data see, e.g., 1985Pf01, 1986Al32, 1986Pf03, 1987Mi31, 1988Al04, 1993Ji03, 1995Kr23, 1997Kr16. For muonic isomer shift data, see 1974Ba77.

For discussion of anapole moment of ¹⁶⁹Tm, see 1999KaZU.

¹⁶⁹Tm Levels

E(Q),J(Q) From ¹⁶⁹Tm(γ,γ'). D excitation from $1/2^+$ is assumed by 1999Hu01 in (γ,γ') so J=(1/2,3/2) is assigned; further, $\pi=+$ is assigned whenever B(E1)(W.u.) significantly exceeds RUL.

Band(ah) 1/2[411] band. Band parameters: A=12.5, B=-4.8, a=-0.78 (1/2, 3/2, 5/2, 7/2, 9/2 levels).

Cross Reference (XREF) Flags

	A B C D	¹⁶⁹ Er β^- deca ¹⁶⁹ Yb ε deca ¹⁶⁸ Er(p,p) IA ¹⁶⁸ Er(³ He,d),	y y (32.018 d) R (α,t)	E F G H	¹⁶⁹ Tm(γ,γ):Mossbauer effect ¹⁶⁹ Tm(e,e'p) IAR Coulomb excitation ¹⁷⁰ Er(p,2nγ), (d,3nγ)	I J K L	169 Tm(γ , γ') 169 Tm(n,n' γ), (pol n,n) 169 Tm(3 He, 3 He') Muonic atom
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Com	ments
0.0	$1/2^{+}$	stable	AB DE GH]	$\mu = -0.2316\ 15$		
8 41017 11	3/2+	4.09 ns 5	AB DF GH	1	No α decay observed (T _{1/2} (α)> μ : atomic beam (direct) (1989R <r<sup>2>^{1/2}(charge)=5.226 4 (2004) J^{π}: J=1/2 from EPR, optical sp configuration (π 1/2[411]) ba μ=+0.5148 48: O=-1.2 J</r<sup>	5×10^{1} a17). An14) ectroso sed or	¹⁶ y if $1.5 \le E(\alpha) \le 3.7$, 1956Po16). copy (1976Fu06); parity from a decoupling parameter of -0.78 .
8.41017 11	5/2	4.09 IIS 5	AB DE GR .	ſ	μ=+0.5148 40; Q=-1.2 <i>I</i> μ: Mossbauer (1989Ra17); valu Q: Mossbauer (weighted average polarization correction. J ^π : M1+E2 8.4γ to 1/2 ⁺ g.s T _{1/2} : weighted average of 4.04 1972TuZV), 4.22 ns <i>II</i> (198 and 4.13 ns <i>I2</i> (1966Mc08) i β ⁻ decay and/or ¹⁶⁹ Yb ε dec 1961Ha44 (6.6 ns <i>I0</i>), 1963F <i>I7</i> ; ≈3% too high (see 1966 1966Mc08), 1963Su06 (3.45	ns 6 (7AbZ (n ¹⁶⁹) ay): 1 3114 (2 Mc08) ns 25	tive to μ =-0.2316 <i>15</i> for 0.0 level. n 1989Ra17); value includes (β ce(t) in ¹⁶⁹ Er β ⁻ decay, Y; ce γ (t)), 4.10 ns 2 <i>1</i> (1974Fu01) Yb ε decay, Others (from ¹⁶⁹ Er 958Be79 (3.7 ns 5), 1961B113, 3.53 ns 20), 1963Mc13 (4.36 ns and superseded by data from), 1966Be51, 1967Be68 (5.1 ns 3).
118.18945 <i>11</i>	5/2+#	62 ps 3	ABD GH	J	μ =+0.761 45 μ : IPAC (weighted average from T _{1/2} : from microwave-pulsed b excitation (1960B110). Other decay): 1958Ma36, 1959B113	n 1989 eam n s (fror 5 (62 j	9Ra17). neasurements in Coulomb n Coulomb excitation and ¹⁶⁹ Yb ε ps 10), 1966Mc08 (63 ps 7).
138.93315 <i>12</i>	7/2+#	302 ps 2	BD GH	J	μ =+1.39 5 μ : IPAC (weighted average from T _{1/2} : from recoil-shadow mease (1979BaYN); uncertainty inc uncertainty is most certainly 1959B115 (290 ps 70), 1960F (289 ps 24).	n 1989 ureme ludes larger Be28,	9Ra17). nts in Coulomb excitation only statistical component (total). Others (from ¹⁶⁹ Yb ε decay): 1964Su06 (321 ps 14), 1966Mc08

Continued on next page (footnotes at end of table)

¹⁶⁹Tm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Х	REF	Comments
316.14633 [@] 11	7/2+	659.9 ns 23	B D	ΗJ	μ =+0.156 8 μ : DPAC (1989Ra17, from g=0.044 2 (1972Ni03)). J ^π : M1+E2 177γ to 7/2 ⁺ 139; E2 308γ to 3/2 ⁺ 8-keV level; J=7/2 uniquely consistent with γγ(θ) data in ¹⁶⁹ Yb ε decay (32.018 d). T _{1/2} : weighted average of 665 ns 5 (1974En09), 658 ns 3 (1950Fu63), 660 ns 5 (1994De01) (γγ(t) in ¹⁶⁹ Yb ε decay (32.018 d)).
332.116 11	9/2 ^{+#}	18.8 ps 5	В	GH J	 μ=1.56 9 (1999Ro03) μ: From J=9/2 and g-factor=+0.347 20 (1999Ro03) in Coulomb excitation. T_{1/2}: from recoil-distance measurements in Coulomb excitation (1977Ta10).
341.94 ^{&} 4	$(1/2^{-})$		D	ΗJ	J ^{π} : band assignment; γ to $1/2^+$ and to $3/2^+$.
345.028 ^{&} 3	5/2-		B D	НJ	J ^{π} : E1 206 γ to 7/2 ⁺ 139; E1(+M2) 337 γ to 3/2 ⁺ 8-keV level.
367.67 5	11/2+#	41.6 ps <i>21</i>	В	GH J	μ =2.28 <i>14</i> (1999Ro03) μ : From J=11/2 and g-factor=+0.414 <i>26</i> (1999Ro03) in Coulomb excitation. T _{1/2} : from recoil-distance measurements in Coulomb excitation (1977Ta10).
379.26678 ^b 12	7/2-	52.2 ns 8	В	Н	μ =+3.04 <i>14</i> (1997De02) μ : g-factor=+0.87 <i>4</i> from DPAC. Other: 0.96 <i>8</i> (1989Ra17, from 1967NiZZ, differential delay reversed field method). J ^π : E1 63γ to 7/2 ⁺ 316, E1+M2 261 γ to 5/2 ⁺ 118; 7/2 ⁻ 7/2[523] and 9/2 ⁻ 7/2[523] assignments to 379.3 and 472.9 levels lead to excellent energy fits for band up to J=21/2. T _{1/2} : weighted average of 49.8 ns <i>15</i> (1974Bo30), 54.1 ns <i>5</i> (1974En09), and 51.6 ns <i>3</i> (1974Vi05), all from γγ(t) in ¹⁶⁹ Yb ε decay (32.018 d).
430.122 ^{&} 11	$(9/2)^{-}$		ΒD	НJ	J^{π} : E1 291 γ to 7/2 ⁺ 139; band assignment.
433.521 [@] 18	$(9/2)^+$		В	Н	J ^{π} : M1 473 γ to 7/2 ⁺ 139; band assignment.
472.88128 ^b 14	9/2-	0.14 ns 7	В	Н	 J^π: M1+E2 94γ to 7/2⁻ 379 level and E1 105γ to 11/2⁺ 368 level. See also comment with 379.3 level. T_{1/2}: from Auger electron-ce(t) in ¹⁶⁹Yb ε decay (32.018 d) (1960Be28). Others (from ¹⁶⁹Yb decay): 1956Ko21, 1958Ha31, 1958Na06.
474.968 ^{<i>a</i>} 9	$(3/2)^{-}$		ΒD	НJ	J ^{π} : L=1 in ¹⁶⁸ Er(³ He,d); 357 γ 5/2 ⁺ 118.
570.830 ^c 11	3/2+	10 ps 7	ΒD	GH J	J ^{π} : M1+E2 453 γ to 5/2 ⁺ 118, M1+E2 571 γ to 1/2 ⁺ g.s (³ He,d)/(α ,t) cross-section ratio consistent with 3/2 ⁺ 3/2[411] assignment. T _{1/2} : deduced from B(E2) in Coulomb excitation and adopted γ -ray properties.
575.38 [@] 4	$(11/2^+)$			н	
588.20 ^b 5	11/2-		D	Н	
602.82 ^{&} 19	$(13/2^{-})$			Н	J ^{π} : D(+Q) 235 γ to 11/2 ⁺ 368; intraband 173 γ to (9/2) ⁻ 430; band
633.292 ^{<i>c</i>} 3	5/2+	0.27 ps	ΒD	GH J	assignment. J^{π} : M1 494 γ to 7/2 ⁺ 139; M1 625 γ to 3/2 ⁺ 8-keV level. (³ He,d)/(α ,t) cross-section ratio consistent with 5/2 ⁺ 3/2[411] assignment. $T_{1/2}$: from B(E2) \uparrow =0.0039 in Coulomb excitation and adopted γ properties
637.08 13	13/2+ [#]	5.4 ps 4		GH	μ =2.37 14 (1999Ro03)

Continued on next page (footnotes at end of table)

¹⁶⁹Tm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				μ: From J=13/2 and g-factor=+0.365 22 (1999Ro03) in Coulomb
				excitation.
				$T_{1/2}$: from recoil-distance measurements in Coulomb excitation
646.758 ^a 10	$(7/2^{-})$		BD HJ	J^{π} : γ' s to $3/2^-$ and $9/2^+$: $7/2^-$ consistent with band assignment.
691.24 16	15/2+#	8.1 ps 4	GH	$\mu = 3.2.3 (1999 \text{Ro} 03)$
0/112110	10/2	011 po .		μ : From J=15/2 and g-factor=+0.42 4 (1999Ro03) in Coulomb excitation.
				$T_{1/2}$: from recoil-distance measurements in Coulomb excitation (1977Ta10).
718.786 ^C 4	$(7/2^+)$		B GH J	J^{π} : γ' s to $3/2^+$ and $9/2^+$; $7/2^+$ consistent with band assignment.
725.44 <mark>b</mark> 7	13/2-		Н	
741.25 [@] 6	$(13/2^+)$		Н	
781.796 ^d 6	$(5/2)^+$		B D H J	XREF: D(785). J^{π} : L(³ He.d)=2: 782 γ to 1/2 ⁺ g.s.; band assignment.
832.42 ^C 7	$(9/2^+)$		В НЈ	
865.9 ^{&} 4	$(17/2^{-})$		Н	
878.35 ^d 10	$(7/2^+)$		B J	
883.75 ^b 14	$15/2^{-}$		Н	
884.62 ^a 20	$(11/2^{-})$		DH	
≈900?			G	
929.37 [@] 19 938 2	(15/2 ⁺)		H D	
964.0 ^C 4	$(11/2^+)$		Н	
1027.85 16	17/2+#	1.91 ps 18	GH	μ =3.1 3 (1999Ro03)
				μ : From J=1//2 and g-factor=+0.37 4 (1999Ro03) from Coulomb
				$T_{1/2}$: from Doppler-broadened line shape measurements in Coulomb
				excitation (1977Ta10).
1039.95 15			Н	J^{π} : 565 γ to (3/2) ⁻ 475, 695 γ to 5/2 ⁻ 345.
1058.54 21			Н	J^{π} : 717 γ to (1/2 ⁻) 342.
1063.57 ⁰ 16	17/2-		Н	
1104.18 25	19/2+#	1.94 ps 21	GH	μ =4.2 8 (1999Ro03)
				μ : From J=19/2 and g-factor=+0.44 8 (1999Ro03) in Coulomb
				$T_{1/2}$: from Doppler-broadened line shape measurements in Coulomb
				excitation (1977Ta10).
1112.6? 5			Н	J^{π} : 683 γ to (9/2) ⁻ 430.
1135.93 20			Н	J^{π} : 791 γ to 5/2 ⁻ 345.
1140.85 ^{^w} 21	$(17/2^+)$		Н	
1152° 2	(11/2 ⁻)		D	J ^{<i>A</i>} : level energy, large spectroscopic factors in ¹⁰⁶ Er(³ He,d), (α ,t), and (³ He,d)/(α ,t) cross-section ratio fit regional systematics for 11/2 ⁻ 9/2[514] state.
1188.7 ^a 3	$(15/2^{-})$		Н	>/-[···]
1190 20	+		G	B(E2)↑=0.040 9
				J^{π} : E2 excitation in Coulomb excitation.
1010 187 -	(01/2			$B(E2)\uparrow$ from Coulomb excitation.
1218.1 ^{cc} 5	$(21/2^{-})$		H	1π , 979 or to $5/2^{-2}$ 245, 991 or to $(1/2^{-1})$ 242
1223.04 13			н D	J = 0.107 to 3/2 = 543, 0017 to (1/2 = 0.542.
1262.40^{b} 21	$19/2^{-}$		т	

¹⁶⁹Tm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	X	REF	Comments
1300.8 [°] 6	$(15/2^+)$			Н	
1372 2	$1/2^+$		D		J^{π} : L=0 in ¹⁶⁸ Er(³ He.d).
1372 1 @ 6	$(10/2^+)$			ц	
1400.2	(19/2)		л	11	
1400 2	21/2-		D		
1482.94° 22	21/2			Н	
1497.8 4	21/2+#	0.87 ps 9		GH	$T_{1/2}$: from Doppler-broadened line shape measurements in Coulomb excitation (1977Ta10).
1510.6 10	$(1/2, 3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.078\ 18.$
1515 2			D		
1527.5 10	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.050$ 17.
1548.4? ^a 7	$(19/2^{-})$			Н	
1598.4? 4	$(23/2^+)$			GH	J^{π} : 23/2 ⁺ consistent with coincidence data in Coulomb excitation and structure of g.s. band.
1625.3 [@] 6	$(21/2^+)$			Н	
1658.1 ^{&} 5	$(25/2^{-})$			Н	
1716.9 ^b 3	$23/2^{-}$			н	
1864.6 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.19 3.$
1910.5 6	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.61 4.$
1922.3 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.037 11.$
1963.7 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.019 6.$
1978.4 <i>10</i>	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.020 6.$
1991.7 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.061$ 13.
2075.5 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.039 \ 17.$
2168.7 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.035 11.$
2190.6 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.022 \ 4.$
2215.3 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.018 \ 12.$
2236.1 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.050 \ 6.$
2262.5 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.043 \ 11.$
2293.8 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.018 \ 4.$
2306.3 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.013 \ 4.$
2312.2 7	$(1/2, 3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.032 \ 9.$
2386.6 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.020 \ 8.$
2455.8 7	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.022$ 7.
2466.0 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.010 \ 3.$
2492.0 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.051 5.$
2553.4 7	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.025 \ 8.$
2571.4 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.010 \ 3.$
2598.6 10	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.035 \ 10.$
2602.8 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.017 3.$
2687.0 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.011 \ 3.$
2749.4 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.031$ 7.
2756.4 10	(1/2,3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.017 \ 3.$
2769.1 7	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.043 6.$
2786.5 10	(1/2, 3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.021$ 4.
2814.2 7	(1/2,3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.032\ 21.$
2818.6 10	(1/2,3/2)			I	$B(M1,E1)\uparrow(W.u.)=0.015\ 6.$
2843.1 10	(1/2,3/2)			1	$B(M1,E1)\uparrow(W.u.)=0.011 3.$
2861.1 10	$(1/2,3/2)^+$			I	$B(M1,E1)\uparrow(W.u.)=0.033$ 12.
2943.3 6	$(1/2,3/2)^+$			1	B(M1,E1)T(W.u.)=0.043 16.
2996.2 7	$(1/2,3/2)^{+}$			1	B(M1,E1)T(W.u.)=0.033 6.
3127.6 10	(1/2,3/2)			1	B(M1,E1)T(W.u.)=0.020 3.
3175.6 10	(1/2,3/2)			1	B(M1,E1)T(W.u.)=0.010 3.
5185.0 <i>10</i>	(1/2,3/2)			1	$B(M1,E1)T(W.u.)=0.030 \ I2.$
5187.5 10	(1/2, 3/2)			T	$B(M1,E1) (W.u.) = 0.009 \ S.$

Continued on next page (footnotes at end of table)

¹⁶⁹Tm Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3191.3 7	$(1/2,3/2)^+$	I	$B(M1,E1)\uparrow(W,u_{*})=0.030$ 7.
3199.7 10	$(1/2,3/2)^+$	ī	$B(M1,E1)\uparrow(W.u.)=0.033$ 9.
3204.8 7	$(1/2,3/2)^+$	I	$B(M1,E1)\uparrow(W.u.)=0.046 \ 12.$
3254.6 7	(1/2,3/2)	I	$B(M1,E1)\uparrow(W,u)=0.025$ 7.
3274.5 10	$(1/2.3/2)^+$	I	$B(M1,E1)\uparrow(W,u)=0.029$ 7.
3286.5 10	$(1/2,3/2)^+$	I	$B(M1,E1)\uparrow(W,u)=0.028 4.$
3299.6 7	$(1/2,3/2)^+$	I	$B(M1,E1)\uparrow(W,u)=0.037$ 15.
3308.4 10	(1/2.3/2)	I	$B(M1,E1)\uparrow(W,u)=0.012 4.$
3341.2 7	$(1/2,3/2)^+$	Ī	$B(M1,E1)\uparrow(W.u.)=0.037.9.$
3376.4 7	$(1/2,3/2)^+$	ī	$B(M1,E1)\uparrow(W.u.)=0.030 6.$
3383.9 10	(1/2,3/2)	Ī	$B(M1,E1)\uparrow(W.u.)=0.020$ 3.
3419.2 10	(1/2,3/2)	ī	$B(M1,E1)\uparrow(W.u.)=0.020$ 4.
3436.3 7	(1/2,3/2)	ī	$B(M1,E1)\uparrow((V,u))=0.027$ 12.
3442.0.10	(1/2, 3/2)	Т	$B(M1,E1)\uparrow(W,u)=0.012, 7.$
3458.6.10	(1/2, 3/2)	Ť	$B(M1 E1)^{\uparrow}(Wu) = 0.013.7$
3475 7 7	$(1/2,3/2)^+$	Ť	$B(M1,E1)\uparrow(Wu) = 0.055 / 3$
3480 3 10	(1/2,3/2)	Ť	$B(M1,E1)^{\uparrow}(Wu) = 0.020 3$
3497 0 10	(1/2,3/2) (1/2,3/2)	Ť	B(M1,E1)/(W.u.)=0.020.5. B(M1 F1)/(W.u.)=0.008.3
3527.0.7	(1/2, 3/2) (1/2, 3/2)		B(M1,E1)/(W.u.)=0.0005. B(M1,E1)/(W.u.)=0.017.7
3538 7 10	(1/2, 3/2) (1/2, 3/2)	I T	D(M1,E1) (W.u.)=0.0177. $P(M1 E1)^{(W.u.)}=0.011.3$
2541.0.7	(1/2, 3/2)	1	D(M1,E1) (W.u.)=0.011 5. $D(M1,E1)^{(W.u.)}=0.026 7 $
2572.2.10	(1/2, 5/2)	1	D(M1,E1) (W.u.)=0.0207. $D(M1,E1)^{(W.u.)}=0.015.0$
33/3.3 10	(1/2, 5/2)	1 -	D(M1,E1) (W.u.)=0.013 9.
3013.0 10	(1/2, 3/2)	1	B(M1,E1) (W.u.)=0.015 4.
3024.8 0	$(1/2, 3/2)^+$	1	B(M1,E1) (W.u.)=0.057.9.
3/24.7 /	$(1/2,3/2)^{-1}$	1	B(M1,E1) (W.u.)=0.034 0.
3736.2 10	(1/2,3/2)	1	$B(M1,E1)\uparrow(W.u.)=0.010$ 4.
3741.7 10	(1/2,3/2)	1	$B(M1,E1)\uparrow(W.u.)=0.014$ 4.
3766.3 10	(1/2,3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.012$ 3.
3795.87	(1/2,3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.014$ 11.
3806.7 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.008 \ 3.$
3862.5 10	(1/2,3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.012$ 4.
3875.3 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.016 \ 4.$
3916.8 <i>10</i>	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.014$ 4.
3950.2 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.015 3.$
4103.6 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.0056\ 22.$
4190.2 7	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.021 \ 13.$
4279.7 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.008 \ 3.$
4764.5 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.006 \ 3.$
4789.8 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.008 \ 4.$
4853.0 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.007 \ 4.$
4865.5 7	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.015 9.$
4954.0 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.023 \ 6.$
5211.5 10	$(1/2,3/2)^+$	I	$B(M1,E1)\uparrow(W.u.)=0.030 \ 6.$
5507.1 10	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.023\ 26.$
5529.9 10	$(1/2, 3/2)^+$	I	$B(M1,E1)\uparrow(W.u.)=0.059\ 21.$
5593.3 7	(1/2, 3/2)	I	$B(M1,E1)\uparrow(W.u.)=0.05 \ 4.$
5598.3 10	(1/2, 3/2)	I	B(M1,E1)↑(W.u.)=0.031 <i>17</i> .
1.47×10 ⁴ 3		K	E(level): GMR; %EWSR=51 12, Γ =2.5×10 ³ keV 3 (1980Bu16) from (³ He, ³ He').
1.576×10^4 13		F	
16102	$1/2^{-}$	C -	I^{π} : Analog of $1/2^{-169}$ Er(g s.) Other E: 15760 130 in (e.e. n)
1.634×10^4 14	$(1/2)^{-}$	с Г	I_{1}^{π} Analog of $(1/2)^{-169}$ Er(562 level)
1.034×10.14	(1/2)	Г	J. Analog of $(1/2)$ = $EI(J02 \text{ level})$.

[†] Least-squares adjusted values based on adopted E γ , with E(8.4 level) held fixed at 8.41017 *15*, the difference between E(118 γ) and E(110 γ), except where noted or where cross references clearly indicate a different source.

¹⁶⁹Tm Levels (continued)

- [‡] Based on coincidence data, rotational structure, and γ -ray angular distributions in ¹⁷⁰Er(p,2n γ), (d,3n γ), except where noted. Definite J^{π} is assigned to members of bands defined by a cascade of transitions having regularly changing energies provided the J^{π} of at least one member and the multipolarity of at least one intraband transition have been independently determined.
- [#] Definite J^{π} for g.s. band established through J=21/2 based on band structure and independently established $J^{\pi}(8\text{-keV level})=3/2^+$, and intraband M1+E2 110 γ and E2 118 γ from 118 level.
- [@] Band(A): 7/2[404] band. Band parameters: A=13.3, B=-6.7 (7/2, 9/2, 11/2, 13/2 levels).
- & Band(B): 1/2[541], $\alpha = +1/2$ band. Band parameters: A=9.1, B=+0.8, a=+3.8 (J=1/2 through 21/2 levels); however, parameters vary significantly depending on which levels are included in the fit.
- ^{*a*} Band(b): 1/2[541], $\alpha = -1/2$ band. See comment on signature partner band.
- ^b Band(C): 7/2[523] band. Band parameters: A=10.3, B=3.7 (7/2, 9/2, 11/2, 13/2 levels).
- ^{*c*} Band(D): 3/2[411] band + $1/2[411] \gamma$ vibration. Band parameters: A=12.6, B=-11.9 (3/2, 5/2, 7/2, 9/2 levels). Configuration includes contribution from K-2 γ vibration built on 1/2[411] orbital.
- ^d Band(E): 5/2[402] band. Band parameter: A=13.8 (5/2, 7/2 levels).

^e Band(F): 9/2[514] band.

					Adop	oted Levels, (Gammas (contin	nued)	
						$\gamma(10)$	⁶⁹ Tm)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
8.41017	3/2+	8.41017 15	100	0.0	1/2+	M1+E2	0.0328 5	263 5	B(M1)(W.u.)=0.0342 8; B(E2)(W.u.)=241 10 E_{γ} : from recoil-corrected level-energy difference. Mult., δ : from subshell ratios in β^- decay. Other δ : 0.036 +7-9 from $\alpha(\exp)$ in (γ,γ) : Mossbauer effect.
118.18945	5/2+	109.77924 ^{&} 3	100.0 4	8.41017	3/2+	M1+E2	-0.139 10	2.37	B(M1)(W.u.)=0.072 4; B(E2)(W.u.)=53 8 δ : -0.116 4 and -0.146 16 in Coulomb excitation; -0.145 14, 0.143 5, -0.160 16, 0.149 3 and -0.21 6 in ε decay. Adopted value is weighted average of these discrepant data (using limitation of relative statistical weights method); the unweighted average is -0.153 11.
		118.18940 ^{&} 14	10.78 4	0.0	1/2+	E2		1.642	B(E2)(W.u.)=210 <i>11</i> I _{γ} : from ε decay. However, I γ =10.21 <i>5</i> (1999Ro03) in Coulomb excitation is not consistent with this. Other I(118 γ)/I(110 γ): 11 <i>2</i> (1967Se09) and 11.0 <i>10</i> (1977Ta10) in Coulomb excitation; 11 <i>3</i> in β^- decay
138.93315	7/2+	20.752 9	1.73 2	118.18945	5/2+	M1+E2	0.0292 16	54.9 9	B(M1)(W.u.)= $0.0454 \ 13$; B(E2)(W.u.)= $42 \ 5$ Other I γ : 1.68 13 in Coulomb excitation.
		130.52293 ^{&} 6	100.0 3	8.41017	$3/2^{+}$	E2		1.143	B(E2)(W.u.)=287 5
316.14633	$7/2^{+}$	177.21307 <mark>&</mark> 6	62.01 21	138.93315	7/2+	M1+E2	-0.30 13	0.594 19	$B(M1)(W.u.)=1.25\times10^{-6}$ 10; $B(E2)(W.u.)=0.0017$ 14
	,	197.95675 ^{&} 7	100	118.18945	5/2+	M1+E2	-0.326 6	0.433	$B(M1)(W.u.)=1.430\times10^{-6}$ 14; $B(E2)(W.u.)=0.00180$ 7
		307.73586 ^{&} 10	27.96 9	8.41017	$3/2^{+}$	E2		0.0662	B(E2)(W.u.)=0.000576 4
332.116	9/2+	193.15 5	100.0 [@]	138.93315	7/2+	M1+E2 [@]	-0.126 [@] 21	0.479 1	B(M1)(W.u.)= $0.0787\ 22$; B(E2)(W.u.)= $16\ 6$ δ : unweighted average of $-0.146\ 3\ (1999Ro03)$, $-0.105\ 11\ (1977Ta10)$ in Coulomb excitation
		213.935 17	45.9 10	118.18945	5/2+	E2		0.208	B(E2)(W.u.)=273 10 I _y : weighted average of 39 6 in ε decay, 43 9 in (p,2ny), 45.2 5 (1999Ro03), 49.1 11 (1977Ta10), 56 5 (1967Se09) in Coulomb excitation. Mult.: from Coulomb excitation.
341.94	$(1/2^{-})$	333.53 [#] 5	100 [#] 50 55 [#] 28	8.41017	$3/2^+$				
345.028	5/2-	205.99 6 226.3 7	36 9 2.7 19	138.93315 118.18945	$\frac{1}{2}^{+}$ $\frac{5}{2}^{+}$	E1		0.0497	
		336.618 3	100 3	8.41017	$3/2^+$	E1(+M2)	≤0.66	0.07 6	
367.67	11/2+	228.71 [#] 5	100	138.93315	7/2+	E2 [@]		0.1673	B(E2)(W.u.)=336 17 Mult.: from $\gamma(\theta)$ and RUL in Coulomb excitation.

7

 $^{169}_{69}\mathrm{Tm}_{100}$ -7

н

				A	dopted I	Levels, Gamma	s (continued)		
					γ	(¹⁶⁹ Tm) (contin	nued)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
379.26678	7/2-	63.12044 ^{&} 4	100.0 4	316.14633	7/2+	E1		1.098	B(E1)(W.u.)=7.88×10 ⁻⁶ 17
		240.331 3	0.261 14	138.93315	$7/2^{+}$	E1(+M2)	<+0.12	0.042 9	$B(E1)(W.u.)>3.5\times10^{-10}; B(M2)(W.u.)<0.00044$
		261.07712 ^{&} 9	3.850 16	118.18945	5/2+	E1+M2	-0.07 3	0.032 5	$B(E1)(W.u.)=4.26\times10^{-9} 9;B(M2)(W.u.)=0.0014 12$
		370.854 8	0.00202 21	8.41017	3/2+	[M2]		0.300	$B(M2)(W.u.)=2.6\times10^{-5}$ 3
		379.284 18	0.00068 26	0.0	1/2+	[E3]		0.1270	B(E3)(W.u.)=0.039 15
430.122	$(9/2)^{-}$	84.9 ^{<i>ma</i>} 5	20# 11	345.028	5/2-	-			Other 1γ : <67 in ε decay.
100 501		291.188 [#] 11	100# 9	138.93315	7/2+	EI		0.0207	
433.521	(9/2)+	101.41 ^{<i>a</i>}	<18	332.116	9/2+				E γ from level scheme and $I\gamma$ limit from ε decay. Possibly this is the unplaced $E\gamma$ =101.0 5 γ seen in (p,2n γ); if so, $I\gamma$ =18 9.
		117.376 19	100 6	316.14633	$7/2^{+}$	[M1,E2]		1.82 14	
		294.54 11	2.4 6	138.93315	$7/2^{+}$	M1		0.1522	
472.88128	9/2-	93.61447 ^{&} 8	100.0 6	379.26678	7/2-	M1+E2	+0.183 3	3.75	B(M1)(W.u.)=0.039 20; B(E2)(W.u.)=70 40
		105.19 10	0.10 3	367.67	$11/2^+$	E1		0.292	$B(E1)(W.u.)=2.9\times10^{-7}$ 17
		156.724 11	0.383 10	316.14633	7/2+	El		0.1016	$B(E1)(W.u.)=3.3\times10^{-7}$ 17 $D(E1)(W.u.)=(110^{-9})^2$
474 968	$(3/2)^{-}$	355.963 13	0.0675 24	138.93315	7/2* 5/2+	[EI]		0.01480	$B(E1)(W.U.)=6\times 10^{-5}$
171.900	(3/2)	466.2 2	10.0 11	8.41017	$3/2^+$				E_{γ} : from (p,2n γ).
		474.970 9	100.0 22	0.0	$1/2^{+}$				
570.830	3/2+	452.62 8	15 5	118.18945	$5/2^{+}$	M1+E2 [@]	1.5 [@] +9-4	0.030 5	B(M1)(W.u.)=0.0005 5; B(E2)(W.u.)=2.6 23
		562.410 12	100.0 21	8.41017	$3/2^{+}$	M1+E2 [@]	0.8 [@] +5-4	0.022 4	B(M1)(W.u.)=0.004 3; B(E2)(W.u.)=3 +4-3
		570.89 <i>3</i>	94 6	0.0	$1/2^{+}$	M1+E2 [@]	$0.8^{\textcircled{0}}+5-4$	0.021 4	B(M1)(W.u.)=0.003 3; B(E2)(W.u.)=3 3
575.38	$(11/2^+)$	141.85 [#] 5	100 [#] 10	433.521	$(9/2)^+$				
		259.23 [#] 5	96 [#] 48	316.14633	$7/2^{+}$				
588.20	11/2-	115.32 [#] 5	100 [#] 10	472.88128	9/2-	(M1+E2)		1.93 14	Mult.: D+Q from (p,2n γ), $\Delta \pi$ =no from level scheme.
		208.8 [#] 5	10 [#] 5	379.26678	$7/2^{-}$				
602.82	$(13/2^{-})$	172.7 [#] 5	16 [#] 8	430.122	(9/2)-				
		235.1 [#] 2	100 [#] 10	367.67	11/2+	(E1(+M2))		0.7 7	Mult.: D(+Q) from (p,2n γ), $\Delta \pi$ =yes from level scheme.
633.292	$5/2^{+}$	494.357 8	29.8 5	138.93315	$7/2^{+}$	M1		0.0389	B(M1)(W.u.)=0.091
		515.101 6	84.5 12	118.18945	$5/2^+$	M1		0.0350	B(M1)(W.u.)=0.23
		624.881 4 633 32 10	0 140 0	8.41017	$\frac{3}{2^{+}}$	M1 (E2)		0.0214	B(M1)(W.u.)=0.15 B(E2)(W.u.)=0.24
627 00	12/2+	33.32 10	0.140 9	0.0	1/2 $11/2^+$	[E∠] M1 E2@	0.140@26	0.00939	D(D2)(W, u,)=0.24 D(M1)(W, u,)=0.000, 9, D(E2)(W, u,)=12, 5
037.08	13/2	209.4 2	98.4 - 24	307.07	11/2	WI1+E2	-0.149 - 20	0.192	D(W11)(W.U.)=0.090 8; B(E2)(W.U.)=13 3

 ∞

 $^{169}_{69}\mathrm{Tm}_{100}$ -8

L

						$\gamma(^{169}\text{Tm})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I _γ ‡	E_f	J_f^{π}	Mult. [†]	α ^b	Comments
	<u> </u>							 I_γ: weighted average of 99.6 <i>12</i> (1999Ro03) and 93.7 <i>24</i> (1977Ta10) in Coulomb excitation. Other I_γ: 101 <i>14</i> in (p,2nγ); 79 8 (1967Se09) in Coulomb excitation. δ: unweighted average of -0.174 <i>3</i> (1999Ro03), -0.123 <i>14</i> (1977Ta10) in Coulomb excitation.
637.08 646.758	13/2 ⁺ (7/2 ⁻)	305.2 [#] 2 171.6 [#] 5 216.4 [#] 2 301.6 [#] 2 314.6 [#] 2 507.8 3 528.569 10	100 [@] 10 [#] 5 5.0 [#] 5.6 [#] 22 [#] 1.2 7 100.0 [#] 24	332.116 474.968 430.122 345.028 332.116 138.93315 118.18945	9/2 ⁺ (3/2) ⁻ (9/2) ⁻ 5/2 ⁻ 9/2 ⁺ 7/2 ⁺ 5/2 ⁺	E2 [@]	0.0678	B(E2)(W.u.)=318 24
691.24	$15/2^{+}$	323.4 ^{#} 2	100	367.67	$11/2^+$	E2 [@]	0.0571	B(E2)(W.u.)=337 17
718.786	$(7/2^+)$	72.028 ^d	<186	646.758	(7/2 ⁻)			E γ from level scheme and I γ limit from ε decay. Possibly this is the unplaced E=72.0 5 γ seen in (p,2n γ); if so, I $\gamma \approx 23$.
		386.671 <i>13</i> 579.851 <i>5</i> 600.603 <i>8</i> 710.354 <i>15</i>	17.4 <i>4</i> 100.0 <i>17</i> 59.1 9 1.77 9	332.116 138.93315 118.18945 8.41017	9/2 ⁺ 7/2 ⁺ 5/2 ⁺ 3/2 ⁺	[M1,E2] (M1) (M1)	0.054 <i>20</i> 0.0259 0.0237	
725.44	13/2-	137.26 [#] 5 252.5 [#] 2	$100^{\#} 10$ $29^{\#} 3$	588.20 472.88128	11/2 ⁻ 9/2 ⁻	(M1+E2)	1.11 <i>16</i>	Mult.: D+Q from (p,2n γ), $\Delta \pi$ =no from level scheme.
741.25	(13/2 ⁺)	165.8 [#] 2 307.74 [#] 5	100 [#] 9 <57 [#]	575.38 433.521	(11/2 ⁺) (9/2) ⁺			E_{γ} : for multiplet in (p,2n γ).
781.796	(5/2)+	210.94 ^{<i>c</i>#} 5 465.65 642.873 9 663.599 7 773.386 <i>14</i> 781.64 8	53 [#] 91.2 <i>10</i> 36.5 9 92.3 <i>26</i> 100.0 <i>15</i> 1.44 <i>12</i>	570.830 316.14633 138.93315 118.18945 8.41017 0.0	3/2 ⁺ 7/2 ⁺ 7/2 ⁺ 5/2 ⁺ 3/2 ⁺ 1/2 ⁺			
832.42	(9/2+)	464.7 500.35 <i>10</i> 693.46 8	41 24 100 9 98 5	367.67 332.116 138.93315	11/2 ⁺ 9/2 ⁺ 7/2 ⁺			
865.9	(17/2 ⁻)	175.0 [#] 5 262.7 [#] 5	41 [#] 22 100 [#] 16	691.24 602.82	$15/2^+$ (13/2 ⁻)			
878.35	(7/2+)	546.16 22 739.42 11 760.24 24	80 22 100 12 45 12	332.116 138.93315 118.18945	9/2 ⁺ 7/2 ⁺ 5/2 ⁺			
883.75	$15/2^{-}$	158.3 [#] 2	100 [#] 10	725 44	$\frac{13}{2^{-}}$	(M1(+E2))	0 71 14	Mult : $D(+\Omega)$ from $(p, 2n\gamma)$ $\Lambda \pi = no$ from level scheme

From ENSDF

 $^{169}_{69}\mathrm{Tm}_{100}$ -9

L

						$\gamma(^{169}\text{Tm})$	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α b	Comments
883.75	$15/2^{-}$	295.4 [#] 2	<78 [#]	588.20	$11/2^{-}$				
884.62	$(11/2^{-})$	$281.7^{\#d}$ 2	36 [#]	602.82	$(13/2^{-})$				
		454.5 ^{c#} 2	21 [#]	430.122	(9/2)-				
		552.0 ^{c#d} 2	100 [#]	332.116	9/2+				
≈900?		≈900 [@] d	100	0.0	$1/2^{+}$				
929.37	$(15/2^+)$	188.7 [#] 5	37 ^{#} 21	741.25	$(13/2^+)$				
		353.9 [#] 2	100 [#] 10	575.38	$(11/2^+)$				
964.0	$(11/2^+)$	595.9 [#] 5	100 [#]	367.67	$11/2^{+}$				
		632.3 [#] 5	72 [#] 38	332.116	9/2+				
1027.85	17/2+	336.60 [#] 5	58.7 [@] 7	691.24	15/2+	M1+E2 [@]	-0.18 [@] 3	0.1048 16	B(M1)(W.u.)=0.102 <i>10</i> ; B(E2)(W.u.)=14 5 I _γ : from 1999Ro03 in Coulomb excitation. Other I _γ : 52 5 (1977Ta10) in Coulomb excitation; 336 in (p,2nγ); 114 (1974Ba66) in (d,3nγ). δ: weighted average of -0.199 20 (1999Ro03), -0.12
		201 0# 2	100@	(27.09	12/0+	E2@		0.0221	35 (19/71a10) in Coulomb excitation.
1020.05		$391.0^{+}2$	100 °	037.08	$(2/2)^{-}$	E2 C		0.0331	B(E2)(W.U.)=350.40
1039.95		$303.2^{m} 2$	37 ^m	4/4.908	(3/2)				
1058 54		094.7 2	100	343.028	$\frac{3}{2}$				
1050.54	$17/2^{-}$	179.6 [#] 2	90 [#] 9	883 75	(1/2)				
1005.57	17/2	$338.3^{\#}.2$	$100^{\#}$ 10	725 44	$13/2^{-}$				
1104.18	$19/2^{+}$	$413.0^{\#}$ 2	100 10	691.24	$15/2^+$	E2 [@]		0.0284	$B(E_2)(W_{11})=430.50$
1112.6?	17/2	$682.5^{c#d}$ 5	100	430.122	$(9/2)^{-}$			010201	
1135.93		790.9 [#] 2	100	345.028	5/2-				
1140.85	$(17/2^+)$	210.94 <mark>¢#</mark> 5	<39 [#]	929.37	$(15/2^+)$				
	. , ,	399.6 [#] 2	100 [#]	741.25	$(13/2^+)$				
1188.7	$(15/2^{-})$	552.0 ^{c#d} 2	<189 [#]	637.08	$13/2^{+}$				
		585.9 [#] 2	100 [#] 10	602.82	(13/2 ⁻)				
1190	+	1190 [@] 20	100	0.0	$1/2^{+}$				
1218.1	$(21/2^{-})$	352.2 [#] 2	100	865.9	$(17/2^{-})$				
1223.04		877.9 <mark>#</mark> 2	100#	345.028	5/2-				
		881.2 [#] 2	75 #	341.94	$(1/2^{-})$				
1262.40	19/2-	198.3 [#] 5	<185 [#]	1063.57	$17/2^{-}$				
		378.7 [#] 2	100 [#]	883.75	$15/2^{-}$				

10

$^{169}_{69}$ Tm $_{100}$ -10

L

From ENSDF

 $^{169}_{69}\mathrm{Tm}_{100}$ -10

						γ (¹⁶⁹ Tn	n) (continu	ied)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^{π}	Mult. [†]	$\alpha^{\boldsymbol{b}}$	Comments
1300.8	$(15/2^+)$	609.6 [#] .5	100	691.24	$15/2^+$			
1372.1	$(19/2^+)$	442.7 [#] 5	100	929 37	$(15/2^+)$			
1482.94	$(1)/2^{-}$	220.5# 2	100 [#] 10	1262.40	19/2-			
1102.71	21/2	$410.4^{\#}$ 2	77# 8	1063 57	$17/2^{-}$			
1497.8	21/2+	394.0 [#] 5	34 [#] 13	1104.18	19/2 ⁺			I_{γ} : weighted average of 29 15 from Coulomb excitation and 50 26 from (p 2p χ)
		469.6 [#] 5	100 [#] 50	1027.85	$17/2^{+}$	$F2^{@}$	0.0201	$B(F2)(W_{\rm H}) = 340,220$
1510.6	$(1/2,3/2)^+$	1510.6 ^{<i>a</i>}	100 ^{<i>a</i>}	0.0	$1/2^+$	112	0.0201	5(52)(11.d.)=510 220
1527.5	$(1/2,3/2)^+$	1527.5 ^{<i>a</i>}	100 ^a	0.0	$1/2^+$			
1548.4?	$(19/2^{-})$	682.5 ^{c#d} 5	100	865.9	$(17/2^{-})$			
1598.4?	$(23/2^+)$	$494.2^{c#d}$ 2	100	1104.18	19/2+			
1625.3	$(21/2^+)$	484.4 [#] 5	100	1140.85	$(17/2^+)$			
1658 1	$(25/2^{-})$	$440.0^{\#}2$	100	1218 1	$(21/2^{-})$			
1716.0	(23/2)	$rac{1}{2}$	100	1/82 0/	(21/2)			
1/10.9	23/2	235 - 454 = 50 + 255		1402.94	21/2 10/2-			
1864 6	$(1/2 \ 3/2)^+$	434.3° 2 1856 2 ^{<i>a</i>}	100 <mark>a</mark> 26	1202.40 8 41017	19/2 3/2+			
1007.0	(1/2,3/2)	1864.6 ^{<i>a</i>}	47 ^a	0.0	$1/2^+$			
1910.5	$(1/2, 3/2)^+$	1792.3 ^{<i>a</i>}	100 ^{<i>a</i>} 10	118.18945	5/2+			
	× 1 / 1 /	1902.1 ^{<i>a</i>}	46 ^{<i>a</i>} 5	8.41017	3/2+			
		1910.5 ^a	98 ^a	0.0	$1/2^{+}$			
1922.3	$(1/2,3/2)^+$	1804.1 ^{<i>a</i>}	$100^{a} 46$	118.18945	5/2+			
10(2 7	(1/0, 2/2)	1922.3 ^{cl}	79 ⁴	0.0	$1/2^+$			
1963./	(1/2, 3/2) (1/2, 3/2)	1963./** 1078./ 4	100 ⁴	0.0	$1/2^+$ $1/2^+$			
19/0.4	(1/2, 3/2) $(1/2, 3/2)^+$	1970.4" 1983 3 <mark>4</mark>	79 ^a 36	0.0 8 41017	$\frac{1/2}{3/2^+}$			
1771.1	(1/2, 3/2)	1991.7 ^{<i>a</i>}	100^{a}	0.0	$1/2^+$			
2075.5	$(1/2, 3/2)^+$	2067.1 ^{<i>a</i>}	100 ^{<i>a</i>} 74	8.41017	$3/2^+$			
		2075.5 ^a	89 ^a	0.0	$1/2^+$			
2168.7	$(1/2, 3/2)^+$	2160.3 ^a	100 ^a 38	8.41017	3/2+			
		2168.7 ^a	72 ^a	0.0	$1/2^{+}$			
2190.6	(1/2,3/2)	2190.6 ^{<i>a</i>}	100 ^{<i>a</i>}	0.0	$1/2^+$			
2215.3	(1/2,3/2)	2215.3°	100^{4}	0.0	$1/2^{+}$			
2230.1	$(1/2, 3/2)^{2}$	2117.9^{-1}	100 ^a	116.18945	$\frac{3}{2}$			
	$(1/2 \ 3/2)^+$	2230.1 2144.3 ^{<i>a</i>}	100^{a} 31	118,18945	$\frac{1}{2}$			
2262.5			100 51	110.10713	5/2			

11

L

γ (¹⁶⁹Tm) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
2293.8	(1/2,3/2)	2293.8 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	3199.7	$(1/2,3/2)^+$	3199.7 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
2306.3	(1/2,3/2)	2306.3 ^a	100 ^{<i>a</i>}	0.0	$1/2^+$	3204.8	$(1/2,3/2)^+$	3086.6 ^a	56 ^a 19	118.18945	$5/2^{+}$
2312.2	$(1/2,3/2)^+$	2194.0 ^{<i>a</i>}	100 ^{<i>a</i>} 37	118.18945	$5/2^{+}$			3204.8 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
		2312.2 ^a	92 ^a	0.0	$1/2^{+}$	3254.6	(1/2, 3/2)	3246.2 ^a	100 ^{<i>a</i>} 53	8.41017	$3/2^{+}$
2386.6	(1/2, 3/2)	2386.6 <mark>a</mark>	100 a	0.0	$1/2^+$			3254.6 ^a	69 <mark>a</mark>	0.0	$1/2^+$
2455.8	(1/2, 3/2)	2447.4 ^a	43 ^a 27	8.41017	$3/2^{+}$	3274.5	$(1/2,3/2)^+$	3274.5 ^a	100 a	0.0	$1/2^{+}$
		2455.8 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	3286.5	$(1/2,3/2)^+$	3286.5 ^a	100 a	0.0	$1/2^{+}$
2466.0	(1/2, 3/2)	2466.0 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	3299.6	$(1/2,3/2)^+$	3291.2 ^a	100 ^a 75	8.41017	$3/2^{+}$
2492.0	$(1/2, 3/2)^+$	2373.8 ^a	47 ^a 13	118.18945	$5/2^{+}$			3299.6 ^a	96 <mark>a</mark>	0.0	$1/2^{+}$
		2492.0 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	3308.4	(1/2, 3/2)	3308.4 ^a	100 a	0.0	$1/2^{+}$
2553.4	(1/2, 3/2)	2435.2 ^a	100 a 43	118.18945	$5/2^{+}$	3341.2	$(1/2, 3/2)^+$	3332.8 ^a	47 <mark>a</mark> 18	8.41017	$3/2^{+}$
		2553.4 ^a	64 ^a	0.0	$1/2^{+}$			3341.2 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
2571.4	(1/2, 3/2)	2571.4 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	3376.4	$(1/2,3/2)^+$	3368.0	100 33	8.41017	$3/2^{+}$
2598.6	$(1/2,3/2)^+$	2598.6 ^a	100 a	0.0	$1/2^{+}$			3376.4 ^a	96 ^a	0.0	$1/2^{+}$
2602.8	(1/2, 3/2)	2602.8 ^a	100 a	0.0	$1/2^{+}$	3383.9	(1/2, 3/2)	3383.9 ^a	100 a	0.0	$1/2^{+}$
2687.0	(1/2, 3/2)	2687.0 ^a	100 ^a	0.0	$1/2^{+}$	3419.2	(1/2, 3/2)	3419.2 ^{<i>a</i>}	100 ^a	0.0	$1/2^{+}$
2749.4	$(1/2,3/2)^+$	2741.0 ^a	96 ^a 41	8.41017	$3/2^{+}$	3436.3	(1/2, 3/2)	3318.1 ⁴	67 ^{<i>a</i>} 43	118.18945	$5/2^{+}$
		2749.4 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$			3436.3 ⁴	1004	0.0	$1/2^{+}$
2756.4	(1/2,3/2)	2756.4 ^a	1004	0.0	$1/2^{+}$	3442.0	(1/2, 3/2)	3442.0 ^a	1004	0.0	$1/2^{+}$
2769.1	$(1/2,3/2)^+$	2760.7 ^a	41 ^{<i>a</i>} 11	8.41017	3/2+	3458.6	(1/2, 3/2)	3458.6 ^u	1004	0.0	$1/2^{+}$
		2769.1 ^a	1004	0.0	1/2+	3475.7	$(1/2,3/2)^+$	3467.3 ⁴	$100^{a} 41$	8.41017	3/2+
2786.5	(1/2,3/2)	2786.54	1004	0.0	1/2+	a (a a		3475.74	4/4	0.0	1/2*
2814.2	(1/2, 3/2)	2805.8 ^d	894 79	8.41017	3/2+	3480.3	(1/2,3/2)	3480.3 ^u	1004	0.0	1/2+
2010 ((1/2 2/2)	2814.2 ^a	1004	0.0	1/2+	3497.0	(1/2,3/2)	3497.04	1004	0.0	1/2+
2818.6	(1/2,3/2)	2818.6 ^d	1004	0.0	1/2	3527.0	(1/2, 3/2)	3518.64	1004 72	8.41017	3/2
2843.1	(1/2, 3/2)	2843.1ª	1004	0.0	$1/2^{+}$	2529.7	(1/0, 2/0)	3527.0°	1000	0.0	$1/2^{+}$
2861.1	$(1/2,3/2)^+$	2861.1ª	100^{a}	0.0	1/2	3538.7	(1/2,3/2)	3538.7°	1004 42	0.0	1/2 *
2945.5	$(1/2, 3/2)^{+}$	2823.1°	100^{a} 70	118.18943 8.41017	$\frac{3}{2}$	5541.9	$(1/2, 3/2)^{\circ}$	3423.7^{22}	1004 42	118.18943	$\frac{3}{2^+}$
		2934.9^{4}	100 ⁴ 70	8.41017	$\frac{3}{2}$	2572.2	(1/2) 2/2)	3341.9^{-1}	1004	0.0	$1/2^+$
2006.2	$(1/2 2/2)^+$	2943.5°	100^{a} 26	0.0	1/2 5/2+	35/5.5	(1/2, 3/2) (1/2, 3/2)	$33/3.3^{\circ}$	100 ⁴	0.0	$\frac{1}{2}$
2990.2	(1/2, 3/2)	2070.0	100 20 80 ^{<i>a</i>}	0.0	$\frac{3}{2}$	3624.8	(1/2, 3/2) $(1/2, 3/2)^+$	3013.0 3506.6 <mark>0</mark>	100^{a} 26	118 18045	1/2 5/2+
3127.6	$(1/2 \ 3/2)$	2990.2 3127.6 <mark>0</mark>	100 ^{<i>a</i>}	0.0	$\frac{1}{2}$	3024.0	(1/2, 3/2)	3616 / ⁴	86 ^{<i>a</i>} 23	8 /1017	3/2+
3175.6	(1/2, 3/2) (1/2, 3/2)	3175.6^{a}	100	0.0	$\frac{1}{2}$			3624 8 ^a	100^{a}	0.41017	$\frac{3}{2}$
3185.0	(1/2, 3/2) (1/2, 3/2)	3185.0^{a}	100^{a}	0.0	$\frac{1}{2}^{+}$	3724 7	$(1/2 \ 3/2)^+$	3606.5 ^a	100^{a} 26	118 18945	$\frac{1}{2}$
3187.5	(1/2, 3/2)	3187.5^{a}	100 ^{<i>a</i>}	0.0	$\frac{1}{2}$	5127.1	(1/2,3/2)	3724.7^{a}	100 ^{<i>a</i>}	0.0	$1/2^+$
3191 3	$(1/2,3/2)^+$	3182.9 ^{<i>a</i>}	82 ^{<i>a</i>} 33	8.41017	$\frac{1}{2}$	3736.2	(1/2, 3/2)	3736.2 ^a	100 ^a	0.0	$1/2^+$
5171.5	(1/2,5/2)	3191.3 ^{<i>a</i>}	100^{a}	0.0	$1/2^+$	3741.7	(1/2,3/2)	3741.7 ^{<i>a</i>}	100 ^a	0.0	$1/2^+$
		019110	100	0.0	-, -	1 27.11.7	(-, -, -, -, -)	27.117	100	0.0	-, -

12

γ ⁽¹⁶⁹Tm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}
3766.3	(1/2,3/2)	3766.3 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	4764.5	(1/2,3/2)	4764.4 ^a	100 ^a	0.0	$1/2^{+}$
3795.8	(1/2, 3/2)	3787.3 ^a	1.0×10 ^{2<i>a</i>} 13	8.41017	$3/2^{+}$	4789.8	(1/2, 3/2)	4789.7 <mark>a</mark>	100 ^{<i>a</i>}	0.0	$1/2^{+}$
		3795.7 <mark>a</mark>	61 ^{<i>a</i>}	0.0	$1/2^{+}$	4853.0	(1/2, 3/2)	4852.9 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
3806.7	(1/2, 3/2)	3806.7 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	4865.5	(1/2, 3/2)	4857.0 ^a	1.0×10 ^{2<i>a</i>} 11	8.41017	$3/2^{+}$
3862.5	(1/2, 3/2)	3862.5 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$			4865.4 <mark>a</mark>	69 ^a	0.0	$1/2^{+}$
3875.3	(1/2, 3/2)	3875.3 <mark>a</mark>	100 ^{<i>a</i>}	0.0	$1/2^{+}$	4954.0	(1/2, 3/2)	4953.9 <mark>a</mark>	100 ^{<i>a</i>}	0.0	$1/2^{+}$
3916.8	(1/2, 3/2)	3916.8 <mark>a</mark>	100 ^{<i>a</i>}	0.0	$1/2^{+}$	5211.5	$(1/2, 3/2)^+$	5211.4 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
3950.2	(1/2, 3/2)	3950.2 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	5507.1	(1/2, 3/2)	5507 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
4103.6	(1/2, 3/2)	4103.5 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	5529.9	$(1/2,3/2)^+$	5529.8 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$
4190.2	(1/2, 3/2)	4181.7 ^a	1.0×10 ^{2<i>a</i>} 10	8.41017	$3/2^{+}$	5593.3	(1/2, 3/2)	5584.8 <mark>4</mark>	69 ^a 81	8.41017	$3/2^{+}$
		4190.1 ^a	56 ^a	0.0	$1/2^{+}$			5593.2 <mark>a</mark>	100 ^{<i>a</i>}	0.0	$1/2^{+}$
4279.7	(1/2, 3/2)	4279.6 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$	5598.3	(1/2, 3/2)	5598.2 ^a	100 ^{<i>a</i>}	0.0	$1/2^{+}$

[†] From ¹⁶⁹Yb ε decay (32.018 d), except where noted.

[‡] Relative photon branching from each level; values are from ¹⁶⁹Yb ε decay (32.018 d), except where noted; upper limits are given for photon branchings affected by multiple placement or by presence of contaminant.

[#] From 170 Er(p,2n γ), (d,3n γ).

[@] From Coulomb excitation.

& From the evaluation by 2000He14 (with energy scale based on E γ =411.80205 keV 17 for the "Gold standard" (2⁺ to g.s. transition in ¹⁹⁸Hg)). Δ E quoted here includes the 0.3 ppm uncertainty arising from the energy-wavelength conversion. See ¹⁶⁹Yb ε decay (32.018 d) for uncertainties that do not have that systematic uncertainty included.

^{*a*} From ¹⁶⁹Tm(γ, γ').

13

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{169}_{69}\mathrm{Tm}_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{169}_{69}\mathrm{Tm}_{100}$

 $^{169}_{69}\mathrm{Tm}_{100}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{169}_{69} \mathrm{Tm}_{100}$

 $^{169}_{69}\mathrm{Tm}_{100}$

 $^{169}_{69}$ Tm $_{100}$ -20

11/2+ $(9/2)^+$ $(9/2)^-$ (3/2)-9/2-3/2-5/2+ 7/2+ 7/2+ <u>5/2-</u> <u>9/2+</u> 7/2- $= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 333963 & 12100675 \\ 1056724 & 1000675 \\ 93519 & 10383 \\ 9351451 & 010 \\ 105447 & 1010 \\ 101060 \end{bmatrix}$ Intensities: Relative photon branching from each level ┝ Level Scheme (continued) Adopted Levels, Gammas $\begin{array}{c|c} - & - & - \\ & 3_{36} & - & - \\ + & 2_{36} & -_{18} & E_{1/(s_{4}M_{2})} \\ & 2_{36} & -_{12} & 2_{1}/(s_{4}M_{2}) & - \\ & 3_{05} & -_{10} & -_{10} \\ & & -_{10} & -_{10}$ $= \frac{1}{20,32293} \sum_{\substack{k2\\ k_{2}}, k_{2}} \frac{1}{1,33} \sum_{\substack{k_{2}\\ k_{2$ $\begin{array}{c} & 1_{1_{8}} \\ & 1_{0_{9}} \\ & 1_{0_{9}} \\ & 1_{0_{9}} \\ & 1_{0_{9}} \\ & 1_{0_{9}} \\ & 1_{0_{9}} \\ & 1_{0_{1_{7}E_{2}}} \\ & 1_{0} \\ & 1_{0} \\ & 1_{0} \\ & 1_{0} \\ \end{array}$ Т - 8.41017 MI4E2 100 1 Т Т 1 1 Legend ۲ γ Decay (Uncertain) 379.26678 474.968 472.88128 316.14633 118.18945 138.93315 8.41017 0.0 345.028 341.94 332.116 433.521 430.122 367.67 4.09 ns 5 stable 52.2 ns 8 41.6 ps 21 0.14 ns 7 62 ps *3* 659.9 ns 2*3* 302 ps 2 18.8 ps 5

 $^{169}_{69}\text{Tm}_{100}$