¹⁶⁸Er(³He,d), (α,t) 1974Ch44

History										
Type	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008							

 $E(^3He)=24$ MeV (nine angles used), $E(\alpha)=27$ MeV ($\theta=45^\circ$, 60°); Er metal targets enriched to 99.989% in ^{168}Er ; measured E(level) (mag spect, FWHM=16-18 keV), (3 He,d) angular distributions, (3 He,d) and (α ,t) differential cross sections and cross-section ratios; interpreted level structure, comparing spectroscopic factors (DWBA analysis) with Nilsson-model predictions (pairing correlations and Coriolis coupling considered).

$^{169}\mathrm{Tm}$ Levels

All levels were observed in both (3 He,d) and (α ,t).

E(level) [†]	$J^{\pi \ddagger}$	<u>L</u> #	S@	Comments		
0.0	1/2+					
8 <mark>&</mark> 2	3/2+			S=0.64 if entire cross section for 0.0+8 levels is assumed to be for 8 level.		
118 ^{&} 2	5/2+		0.32	S: 1974Ch44 note that this value is about 2 to 3 times larger than that predicted for the 5/2+ 1/2[411] state.		
140 <mark>&</mark> 2	7/2+		0.28			
316 ^a 2	7/2+		1.19			
345 ^b 2	1/2 & 5/2			Complex peak composed of 341.9 ((1/2 ⁻)) and 345.0 (5/2 ⁻) states (adopted E(level) and J^{π}).		
				S=0.71 if entire cross section is assumed to be for the $5/2^ 1/2[541]$ state.		
432 <mark>b</mark> 2	9/2-		1.03	adopted $J^{\pi} = (9/2)^{-}$.		
476 <mark>b</mark> 2	3/2-	1	0.13	adopted $J^{\pi} = (3/2)^{-}$.		
570 ^d 2	3/2+		0.04			
588 ^c 2	$11/2^{-}$		0.57			
634 ^d 2	5/2+		0.39			
648 <mark>b</mark> 2	7/2-		0.09	adopted $J^{\pi} = (7/2^{-})$.		
785 ° 2	5/2+	2	0.87	adopted $J^{\pi}=(5/2)^+$.		
885 2						
938 2						
1152 ^f 2 1243 2	11/2-		1.13	adopted $J^{\pi} = (11/2^{-})$.		
1372 2	1/2+	0				
1400 2						
1515 2						

[†] From (3 He,d) (values from (α ,t) agree within 1 keV).

 $^{^{\}ddagger}$ Authors' values from (3 He,d) angular distributions and (3 He,d)/(α ,t) cross-section ratios. Values that are not identical to those In Adopted Levels are noted. for evaluator's assignments.

[#] From DWBA analysis of angular distributions in (³He,d).

[®] Nuclear structure factor from (3 He,d) (= d σ /d Ω (exp)/(2N d σ /d Ω (DWBA)), where N=4.42); see 1974Ch44 for nuclear structure factors from (α ,t) (where N=50) and for measured d σ /d Ω At 25° and 60° for (3 He,d) and At 45° and 60° for (α ,t).

[&]amp; Band(A): 1/2[411] band.

^a Band(B): 7/2[404] band.

^b Band(C): 1/2[541] band. Strongly perturbed level order due to large (≈4) decoupling parameter.

^c Band(D): 7/2[523] band.

^d Band(E): 3/2[411] band + K-2 (1/2[411] γ vibration built on 1/2[411].

^e Band(F): 5/2[402] band.

^f Band(G): 9/2[514] band.

¹⁶⁸Er(3 He,d), (α ,t) 1974Ch44

Band(F	٦:	5/2	[402]	hand

<u>5/2</u>⁺ 785

Band(C): 1/2[541] band

7/2- 648

Band(E): 3/2[411] band + K-2 (1/2[411] γ vibration built on 1/2[411]

5/2⁺ 634

Band(D): 7/2[523] band

11/2- 588

<u>3/2</u>⁺ 570

3/2 476

9/2- 432

1/2- & 5/2- 345

Band(B): 7/2[404] band

7/2+ 316

Band(A): 1/2[411] band

7/2⁺ **140**

5/2⁺ 118

 $^{169}_{\ 69}\mathrm{Tm}_{100}$

168Er(3 He,d), (α ,t) 1974Ch44 (continued)

Band(G): 9/2[514] band

11/2 1152

 $^{169}_{\ 69}\mathrm{Tm}_{100}$