112 Sn(60 Ni,2pn γ) 2002Jo20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008

 $E(^{60}Ni)=265$ MeV; RITU gas-filled recoil separator with Si strip detector In focal plane, JUROSPHERE detector array (13 EUROGAM and 12 TESSA-type Compton-suppressed Ge detectors); recoil α decay tagging technique; measured 5576 α - γ correlations, $E\gamma$, $I\gamma$, recoil- $\gamma\gamma$ coin, $E\alpha$.

¹⁶⁹Os Levels

Notation used for orbitals:

A, B: $(\nu i_{13/2})$ orbital.

E, F: $f_{7/2}$ or $h_{9/2}$ orbital.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0+x [#]	$(13/2^+)$	1370+x [#] 1	$(25/2^+)$	2073+x [#] 1	$(29/2^+)$	2976+x [@] 1	$(35/2^{-})$
280+x [#] 1	$(17/2^+)$	1620+x ^{&} 1	$(23/2^+)$	2183+x [@] 1	$(27/2^{-})$	3556+x [@] 1	(39/2-)
759+x [#] 1	$(21/2^+)$	1833+x [@] 1	$(23/2^{-})$	2530+x [@] 1	$(31/2^{-})$	3625+x [#] 1	$(37/2^+)$
1024+x ^{&} 1	$(19/2^+)$	1978+x <i>1</i>	$(25/2^{-})^{a}$	2842+x [#] 1	$(33/2^+)$		

[†] From fig. 2 (¹⁶⁹Os level scheme) of 2002Jo20, assuming the 13/2⁺ state is not the g.s.; the first 13/2⁺ state lies At E=186 In ¹⁷¹Os and At E=146 to \approx 200 In ¹⁷³Os.

[‡] Authors' values based on likely quasiparticle configurations and comparison with similar structures In neighboring odd-A nuclei.

[#] Band(A): ($\nu i_{13/2}$), $\alpha = +1/2$ A band.

^(a) Band(B): $\pi = -$, $\alpha = -1/2$ band. Large alignment (14.4 \hbar At $\hbar \omega = 0.25$ MeV) suggests three-quasiparticle structure, possibly EAB or FAB, analogous to ¹⁷¹Os band; drop In alignment At $\hbar \omega \approx 0.17$ MeV May indicate presence of mixing with octupole vibrational bands. The E and F orbitals are expected to originate from the $f_{7/2}$ or $h_{9/2}$ subshell, A and B orbitals from ν $i_{13/2}$.

& Band(C): $\pi = +$, $\alpha = -1/2$ band. Possibly the ($\nu i_{13/2}$), $\alpha = -1/2$ B band or the A band coupled to a collective phonon excitation.

^a Possible EAB configuration state.

$\gamma(^{169}\text{Os})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
280 1	280+x	$(17/2^+)$	0.0+x	$(13/2^+)$	
348 <i>1</i>	2530+x	$(31/2^{-})$	2183+x	$(27/2^{-})$	
349 <i>1</i>	2183+x	$(27/2^{-})$	1833+x	$(23/2^{-})$	I_{γ} : see comment on 813 γ .
446 <i>1</i>	2976+x	$(35/2^{-})$	2530+x	$(31/2^{-})$	
478 <i>1</i>	759+x	$(21/2^+)$	280+x	$(17/2^+)$	
580 <i>1</i>	3556+x	$(39/2^{-})$	2976+x	$(35/2^{-})$	
597 <i>1</i>	1620+x	$(23/2^+)$	1024+x	$(19/2^+)$	I_{γ} : see comment on 861 γ .
608 1	1978+x	$(25/2^{-})$	1370+x	$(25/2^+)$	
611 <i>1</i>	1370+x	$(25/2^+)$	759+x	$(21/2^+)$	
704 <i>1</i>	2073+x	$(29/2^+)$	1370+x	$(25/2^+)$	
744 <i>1</i>	1024+x	$(19/2^+)$	280+x	$(17/2^+)$	
768 <i>1</i>	2842+x	$(33/2^+)$	2073+x	$(29/2^+)$	
783 <i>1</i>	3625+x	$(37/2^+)$	2842+x	$(33/2^+)$	
813 <i>1</i>	2183+x	$(27/2^{-})$	1370+x	$(25/2^+)$	I_{γ} : based on fig. 2 (¹⁶⁹ Os level scheme) of 2002Jo20, I(813 γ) and
					$I(349\gamma)$ are comparable.
861 <i>1</i>	1620+x	$(23/2^+)$	759+x	$(21/2^+)$	I_{γ} : based on fig. 2 (¹⁶⁹ Os level scheme) of 2002Jo20, I(861 γ)>I(597 γ).
1075 <i>1</i>	1833+x	$(23/2^{-})$	759+x	$(21/2^+)$	

[†] From 2002Jo20.

¹¹²Sn(⁶⁰Ni,2pnγ) 2002Jo20

Level Scheme

¹⁶⁹₇₆Os₉₃

¹¹²Sn(⁶⁰Ni,2pnγ) 2002Jo20

¹⁶⁹₇₆Os₉₃