Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 109,2033 (2008)	15-Jun-2008

 $Q(\beta^{-}) = -9.57 \times 10^{3} \text{ syst}; S(n) = 1.143 \times 10^{4} \text{ 8}; S(p) = -620 23; Q(\alpha) = 6141 4$ 2012Wa38

Note: Current evaluation has used the following Q record -9710 syst 11410 syst -621 24 6140 5 2003Au03,2005Sc22. $\Delta Q(\beta) = 200, \Delta S(n) = 150 (2003 Au 03).$

 $Q(\alpha)$: from E α =5995 5, the weighted average of E α =5993 4 (2005Sc22) and E α =6005 8 (1999Po09), assuming a g.s. to g.s. transition. $Q(\alpha)=6151 8$ in 2003Au03 based on the datum from 1999Po09 alone.

Identification: excitation functions for ⁶³Cu bombardments of cadmium, silver, and palladium (1978Ca11); excitation functions for krypton bombardments of niobium and yttrium (1978Sc26).

¹⁶⁹Ir Levels

Cross Reference (XREF) Flags

 173 Au α decay (25 ms) A

¹⁷³Au α decay (14.0 ms) ¹¹²Sn(⁶⁰Ni,p2nγ) В

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 153 24	(1/2 ⁺)	0.353 s <i>4</i>	A C BC	
610.15 [#] 18	$(13/2^{-})$		С	0.1 5 2 (17700020).
811.20 [@] 21	$(15/2^{-})$		С	
1243.2 <i>3</i>	$(15/2^{-})$		С	
1330.98 [#] 23	$(17/2^{-})$		С	
1547.0 ^{&} 3	$(17/2^{-})$		С	
1572.75 [@] 24	$(19/2^{-})$		С	
1724.64 ^{&} 23	$(19/2^{-})$		C	I^{π} : D. AI=1 393 γ to (17/2 ⁻) member of 11/2[505] hand
1803.1 4	$(17/2^{-})$		c	
1803.45 25	(19/2-)		С	
1997.8 <mark>&</mark> 3	$(21/2^{-})$		С	
2045.0 4	$(21/2^{-})$		С	
2115.69 [#] 25	$(21/2^{-})$		С	
2221.4 ^{&} 4	$(23/2^{-})$		С	
2261.23 25	$(21/2^{-})$		С	
2263.84 25	$(23/2^{-})$		C	
2318.4 ⁴ 3	$(23/2^{-})$		C	
2406.3 ^w 4	$(23/2^{-})$		C	
2448.9 ⁴ 3	$(25/2^{-})$		C	

Adopted Levels, Gammas (continued)

¹⁶⁹Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2467.7 3	$(23/2^{-})$	С	2851.4 4	$(25/2^{-})$	С
2574.4 4	$(25/2^{-})$	С	2861.3 ^a 7	$(29/2^{-})$	С
2608.4 ^{<i>a</i>} 4	$(27/2^{-})$	С	3117.9 ^a 8	$(31/2^{-})$	С
			3441.5 ^a 9	$(33/2^{-})$	С

[†] From least-squares fit to $E\gamma$, excluding the 317.6 γ which fits its placement very poorly. Energies are given assuming E=153 for the h_{11/2} isomeric state and do not include the 24 keV uncertainty in that energy. [‡] Based on band structure deduced in (⁶⁰Ni,92n γ), transition multipolarities and similarity of level scheme to that for ¹⁷¹Ir, except

[‡] Based on band structure deduced in (60 Ni,92n γ), transition multipolarities and similarity of level scheme to that for 171 Ir, except as noted.

[#] Band(A): $\pi 11/2[505]$, $\alpha = +1/2$ band. Configuration supported by measured B(M1) to B(E2) ratios for in-band transitions.

[@] Band(a): π 11/2[505], $\alpha = -1/2$ band. See comment on signature partner band.

[&] Band(B): π =(-) sideband 1.

^{*a*} Band(C): π =(-) sideband 2.

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	α #	Comments
610.15	$(13/2^{-})$	457.1 2	100	153	$(11/2^{-})$	(M1)	0.0910	
811.20	$(15/2^{-})$	201.7 3	31.5 8	610.15	$(13/2^{-})$	(M1)	0.838	
		658.3 <i>3</i>	100.0 13	153	$(11/2^{-})$	(E2)	0.01250	
1243.2	$(15/2^{-})$	633.1 2	100	610.15	$(13/2^{-})$			
1330.98	$(17/2^{-})$	519.3 4	100.0 21	811.20	$(15/2^{-})$	(M1)	0.0651	
		720.3 2	63.5 19	610.15	$(13/2^{-})$	(E2)	0.01026	
1547.0	$(17/2^{-})$	937.3 <i>3</i>	100	610.15	$(13/2^{-})$			
1572.75	$(19/2^{-})$	242.5 [@] 4	<58 [@]	1330.98	$(17/2^{-})$			$242\gamma + 243\gamma$ doublet; I γ shared between
								the two components. D multipolarity for
								one or both components of doublet.
		762.4 4	100.0 21	811.20	$(15/2^{-})$	(E2)	0.00909	
1724.64	$(19/2^{-})$	152.3 <i>I</i>	58.0 17	1572.75	$(19/2^{-})$			
		178.03	29.5 12	1547.0	$(17/2^{-})$	D		
1002 1	$(17/2^{-})$	393.3 1	100.0 22	1330.98	(1/2)	D		
1803.1	(1//2)	559.9 Z	100	1243.2	(15/2)			
1803.45	$(19/2^{-})$	256.6 4	100 3	1547.0	$(17/2^{-})$			Transition is a self-coincident doublet.
		992.5 2	35.4 21	811.20	(15/2)			
1997.8	(21/2 ⁻)	273.9 ^w 3	100	1724.64	(19/2 ⁻)			$273\gamma+274\gamma$ doublet, dominated by the 274γ component.
2045.0	(21/2 ⁻)	242.5 [@] 4	100 [@]	1803.45	(19/2 ⁻)			E_{γ} , I_{γ} ,Mult.: see comment on 243 γ from 1420 level.
2115.69	$(21/2^{-})$	542.8 1	100 10	1572.75	$(19/2^{-})$			
		785.3 2	83 6	1330.98	$(17/2^{-})$	(E2)	0.00854	
2221.4	$(23/2^{-})$	223.6 2	100	1997.8	$(21/2^{-})$			
2261.23	$(21/2^{-})$	263.8 2	24.7 26	1997.8	$(21/2^{-})$			
		688.4 <i>1</i>	100 <i>3</i>	1572.75	$(19/2^{-})$			
2263.84	$(23/2^{-})$	539.2 1	100	1724.64	$(19/2^{-})$			
2318.4	(23/2 ⁻)	273.9 [@] 3	<260 [@]	2045.0	(21/2 ⁻)			E_{γ} , I_{γ} ,Mult.: see comment on 274 γ from 1846 level.
		317.6 4	100 3	1997.8	(21/2 ⁻)			E _{γ} : fits placement very poorly; E γ is >5 σ from expected value. Level energy difference is 320.7 3
		515.1 <i>3</i>	24 9	1803.45	$(19/2^{-})$			
		745.4 2	51 <i>3</i>	1572.75	$(19/2^{-})$			

 $\gamma(^{169}\text{Ir})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{169}\text{Ir})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Comments
2406.3	$(23/2^{-})$	290.6 3	<18	2115.69	$(21/2^{-})$	
		833.5 4	100 5	1572.75	$(19/2^{-})$	
2448.9	$(25/2^{-})$	130.5 <i>1</i>	100	2318.4	$(23/2^{-})$	
2467.7	$(23/2^{-})$	206.5 1	100	2261.23	$(21/2^{-})$	
2574.4	$(25/2^{-})$	310.6 2	100	2263.84	$(23/2^{-})$	
2608.4	$(27/2^{-})$	159.5 2	100	2448.9	$(25/2^{-})$	
2851.4	$(25/2^{-})$	383.7 2	100	2467.7	$(23/2^{-})$	
2861.3	$(29/2^{-})$	252.9 6	100	2608.4	$(27/2^{-})$	
3117.9	$(31/2^{-})$	256.6 [@] 4	$100^{@}$	2861.3	$(29/2^{-})$	Transition is a self-coincident doublet.
3441.5	(33/2-)	323.6 2	100	3117.9	(31/2 ⁻)	

[†] From ¹¹²Sn(⁶⁰Ni,p2n γ) (2007Sa33). [‡] From ¹¹²Sn(⁶⁰Ni,p2n γ) based on measured (I γ (158°)/((I γ (86°)+I γ (94°)) and assigning $\Delta \pi$ =(no) to intraband transitions.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶⁹₇₇Ir₉₂

Adopted Levels, Gammas

¹⁶⁹₇₇Ir₉₂