¹⁶⁹**Dy** β^- **decay 1990Ch34**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008				

Parent: ¹⁶⁹Dy: E=0.0; $J^{\pi}=(5/2)^{-}$; $T_{1/2}=39$ s 8; $Q(\beta^{-})=3.2\times10^{3}$ 3; % β^{-} decay=100.0

The partial decay scheme and all data are from 1990Ch34. Sources from multi-nucleon transfer reactions between ¹⁷⁰Er and tungsten targets, on-line mass separation; $E(^{170}Er)=1445$ MeV; measured E β , I β (plastic, silicon detectors), $E\gamma$, I γ (Ge, planar HPGE), time-resolved singles measurements, $\beta\gamma$ coin, $\gamma\gamma$ coin.

¹⁶⁹Ho Levels

E(level)	J^{π}	T _{1/2}	Comments	
0.0 1578.2 <i>4</i>	7/2 ⁻ (3/2,5/2,7/2) ⁻	4.72 min 10	T _{1/2} : from Adopted Levels.	

[†] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
$(1.6 \times 10^3 3)$	1578.2	≈20	≈4.9	av $E\beta = 5.9 \times 10^2 \ 13$
(3.2×10 ³ 3)	0.0	≈80	≈5.4	Log <i>ft</i> : lower than any known log <i>ft</i> value involving the ν 5/2[512] orbital (1990Ch34); configuration for 1578 level not understood. 1990Ch34 suggest that this May Be a three quasiparticle state with configuration (π 7/2[523]) \otimes (ν 5/2[512]) \otimes (ν 5/2[512]) \otimes (ν 5/2[523]) ⁻¹ , but decline to actually make that assignment. av E β =1.30×10 ³ 14 Log <i>ft</i> : relatively low, compared with log <i>ft</i> =5.9 for 7/2[523] to 5/2[512] transition in ¹⁶⁷ Ho decay and log <i>ft</i> =6.4 for 5/2[512] to 7/2[523] transition in ¹⁷¹ Er decay, but not inconsistent with those values.

[†] Estimated from resolution of total β^- spectrum.

[‡] Absolute intensity per 100 decays.

$\gamma(^{169}\mathrm{Ho})$

I γ normalization: assuming Ti(1578 γ)=I β (1578 level).

$$\frac{E_{\gamma}}{1578.2 \ 4} \quad \frac{I_{\gamma}^{\dagger}}{100} \quad \frac{E_{i}(\text{level})}{1578.2} \quad \frac{J_{i}^{\pi}}{(3/2, 5/2, 7/2)^{-}} \quad \frac{E_{f}}{0.0} \quad \frac{J_{f}^{\pi}}{7/2^{-}} \quad \frac{\text{Mult.}}{[\text{M1,E2}]} \quad \frac{\alpha^{\ddagger}}{0.0017 \ 4} \quad \frac{\alpha(\text{K})=0.0014 \ 3; \ \alpha(\text{L})=0.00019 \ 4; \ \alpha(\text{M})=4.2\times10^{-5} \ 8; \ \alpha(\text{N}+..)=0.000121 \ 13} \ \alpha(\text{N})=9.7\times10^{-6} \ 19; \ \alpha(\text{O})=1.4\times10^{-6} \ 3; \ \alpha(\text{P})=8.1\times10^{-8} \ 18; \ \alpha(\text{IPF})=0.000110 \ 10}$$

[†] For absolute intensity per 100 decays, multiply by ≈ 0.20 .

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁹Dy β^- decay 1990Ch34

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

