¹⁷⁰Er(d,³He) **1976SuZR**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 109, 2033 (2008)	15-Jun-2008			

E(d)=35 MeV; enriched (>96%) ¹⁷⁰Er targets; measured E(level) (mag spect, FWHM=35-45 keV), angular distributions (10° to 30°); interpreted levels in terms of the Nilsson model, including pairing and Coriolis coupling.

Agreement with the results from 170 Er(pol t, α) (1979Lo02) is fair. 1979Lo02 state that poor resolution in 1976SuZR led to some incorrect conclusions.

¹⁶⁹Ho Levels

E(level) [†]	$J^{\pi \ddagger}$	L [#]	s&	Comments
0.0 ^{<i>a</i>}	7/2-	(3)	0.06	Bandhead was placed at centroid of unresolved multiplet; the nature of an additional nearby transition is unknown (possibly from a contaminant).
106 ^a 10	9/2-	5	0.22	
213 ^a 10	$11/2^{-}$	5	0.81	S: large value attributed to Coriolis mixing with higher $\pi = -$ states.
253 <mark>b</mark> 10	$3/2^{+}$	2	0.05	
320 ^b 10	$5/2^{+}$	2	0.63	
359 [°] 10	3/2+	2	0.21	Multiplet; peak probably includes weak component from $1/2^+$ $1/2[411]$ state.
385 <mark>b</mark> 10	$7/2^{+}$	4	0.27	Partially resolved from larger peak; population strength attributed to strong Coriolis mixing.
457 <mark>d</mark> 10	$(5/2^+)^{@}$	2 [@]	0.03	
497 ^d 10	$(7/2^+)$	4	0.47	J^{π} : strong population favors 7/2 ⁺ 5/2[413] assignment over 7/2 ⁺ 1/2[411]; overlap with expected 9/2 ⁺ 3/2[411] state increases uncertainty of assignment.
529 [°] 10	$(7/2^+)$	4	0.16	
768 ^e 10	5/2-		0.08	
860 ^e 10	9/2-		0.07	
1069 ⁵ 15	$1/2^{+}$	(0)	0.10 [/]	
1137? ^f 15	$(3/2^+)$		0.02 ^h	Partially resolved from larger peak.
1176 ^f 15	5/2+ @	2 [@]	0.09 <mark>h</mark>	
1270 ^f 15	7/2+	4	0.20 ^h	
1343? f 15	$(9/2^+)$		0.10 ^h	Partially resolved from larger peak.
1357 <mark>8</mark> 15	3/2+ [@]	2 [@]	0.11	
1410 ⁸ 15	5/2+	2	0.04	
1524 <mark>8</mark> 15	7/2+		0.40	
1618 15			0.07	
16/3 15	0	(2)	≈0.06	
1768 15	w	(3)	≈0.09	
1844 15	$11/2^{-}$	5	0.68	J^{π} : possibly 11/2 ⁻ 5/2[532] state (analogous level observed in ¹⁶⁵ Ho).

[†] See ¹⁶⁹Ho Adopted Levels for monotonically increasing discrepancies between these values and the corresponding adopted energies.

[‡] From angular distributions and level structure (authors' values). Inconsistencies with values adopted from ¹⁷⁰Er(pol t, α) are noted.

[#] From DWBA analysis of angular distributions.

[@] Inconsistent with adopted J^{π} .

& Values for multiplets were calculated by assigning the entire multiplet level strength to the dominant member (J^{π} indicated).

^{*a*} 7/2[523] band member.

^b 3/2[411] band member.

^c 1/2[411] band member; assignment uncertain because of possible band mixing.

 d 5/2[413] band member; assignment uncertain because of possible band mixing.

^e 1/2[541] band member (tentative).

¹⁷⁰Er(d,³He) 1976SuZR (continued)

¹⁶⁹Ho Levels (continued)

^f 1/2[420] band member; low spectroscopic factors throughout band, even with Coriolis mixing considered, suggest possible band mixing with a K-2 γ -vibrational band built on either the 3/2⁺ 3/2[411] or 5/2⁺ 5/2[413] state.

 $\frac{g}{h}$ 3/2[422] band member. ^h See comment with band assignment.