¹⁶⁸Lu ε decay (5.5 min) 1972Ch44,1970Ch28

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁶⁸Lu: E=0.0; $J^{\pi}=6^{(-)}$; $T_{1/2}=5.5 \text{ min } l$; $Q(\varepsilon)=4510 \ 50$; $\%\varepsilon+\%\beta^+$ decay=100.0

Others: 1960Wi09, 1961Me05, 1966Gr04, 1966Ha23, 1969Wi08, 1970Ar16, 1973Ch28.

1970Ch28, 1972Ch44: sources from ¹⁶⁹Tm(α ,5n), E(α)=54 MeV, which produces both isomers; measured E γ , I γ (Ge(Li)), E β , I β , E(ce), Ice (Si(Li), FWHM=4), $\gamma\gamma$ coin, $\beta\gamma$ coin.

1970Ar16: sources from the decay of spallation-produced ¹⁶⁸Hf ($J^{\pi}=0^+$) should contain mainly ¹⁶⁸Lu(6.7 min) ($J^{\pi}=3^+$); measured E β , I β (mag spect), E γ , I γ (Ge(Li)).

The adopted decay scheme is based on that In 1972Ch44 (which supersedes the scheme In 1970Ch28). IT was deduced from data taken with a source containing a mixture of ¹⁶⁸Lu(5.5 min) and ¹⁶⁸Lu(6.7 min), and the schemes have not been fully disentangled.

					¹⁶⁸ Yb Levels
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	J ^{π‡}	T _{1/2} #
0.0	0^+	stable	1551.20 19	$(4)^{+}$	
87.77 11	2^{+}	1.49 [@] ns 4	1597.83 20	(_)	
286.59 15	4+		1650.48 19	$(2,3,4)^{-}$	
585.21 17	6+		1674.06 18	(5 ⁺)	
970.0? <i>3</i>	8+		1770.18 20	5-	
983.78 <i>15</i>	2^{+}		1819.04 20	(6+)	
1066.98 17	$(3)^{+}$		1842.12 22	(6 ⁻)	
1171.23 18	$(4)^+$		1972.70 25	$(5,6^+)$	
1302.27 19	$(5)^{+}$		1998.74 <i>18</i>	(5)-	82 ns 5
1445.13 22	$(6)^{+}$		2110.6 5	$(5^-, 6^-, 7^-)$	0.34 ns 6
1451.66 17	$(3)^{+}$		2222.3 3	(_)	62 ns 8

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] From $\gamma\gamma$ (t) (1973Ch28), except where noted.

[@] From Adopted Levels. $T_{1/2}$ from ε decay: 1.4 ns 5 ($\gamma\gamma$ (t), 1970Ch28).

 ε, β^+ radiations

E(decay)	E(level)	Comments
2252 80	2222.3	E(decay): from E β +=1230 80 (β -(111.4 γ +112.4 γ) coin, 1970Ch28).

1

	¹⁶⁸ Lu ε decay (5.5 min) 1972Ch44,1970Ch28 (continued)									
					<u>2</u>	/(¹⁶⁸ Yb)				
${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{d}	Comments			
87.76 12		87.77	2+	0.0 0+	E2	5.34	α (K)=1.316 <i>19</i> ; α (L)=3.07 <i>5</i> ; α (M)=0.759 <i>12</i> ; α (N+)=0.193 <i>3</i> α (N)=0.173 <i>3</i> ; α (O)=0.0198 <i>3</i> ; α (P)=5.81×10 ⁻⁵ <i>9</i> Mult.: from K:L2:L3:M:N= 140:210:230:110:30 (1966Ha23).			
99.5 <i>3</i> 111.4 ^{<i>a</i>}	≈49 ^{<i>a</i>}	1551.20 2222.3	(4) ⁺ (⁻)	$\begin{array}{rrr} 1451.66 & (3)^+ \\ 2110.6 & (5^-, 6^-, 7^-) \end{array}$	[M1] ^C	2.48	α (K)=2.07 3; α (L)=0.317 5; α (M)=0.0709 10; α (N+)=0.0192 3 α (N)=0.01664 24; α (O)=0.00238 4; α (P)=0.0001266 18			
112.4 ^{<i>a</i>}	≈49 ^{<i>a</i>}	2110.6	(5 ⁻ ,6 ⁻ ,7 ⁻)	1998.74 (5)-	(E2) ^C	2.06	Mult.: $\alpha(K)\exp=2.2$ 10 (1970Ch28) for 112.4 γ +111.4 γ doublet. $\alpha(K)=0.780$ 11; $\alpha(L)=0.978$ 14; $\alpha(M)=0.241$ 4; $\alpha(N+)=0.0613$ 9 $\alpha(N)=0.0549$ 8; $\alpha(O)=0.00635$ 9; $\alpha(P)=3.29\times10^{-5}$ 5 Mult.: $\alpha(K)\exp=2.2$ 10 (1070Ch28) for 112 4 \times +111 4 \times doublet.			
^x 114 ^{&} 2	&	1674.06	(5 ±)	1551.00 (4)+			I_{γ} : 5 2 In 1970Ar16.			
$x_{126} \frac{x}{2}$	&	16/4.06	(5')	1551.20 (4)			I _γ : 4 2 In 1970Ar16.			
145.1 3	4.7 8	1819.04	(6 ⁺)	1674.06 (5 ⁺)			Mult.: $5 < \alpha(K) \exp < 16$ for $145\gamma + 148\gamma$.			
156.6 2	31 4	1998.74	(5)-	1842.12 (6 ⁻)	M1	0.943	$\alpha(K)=0.788 \ I2; \ \alpha(L)=0.1199 \ I8; \ \alpha(M)=0.0268 \ 4; \ \alpha(N+)=0.00725 \ I1$ $\alpha(N)=0.00630 \ I0; \ \alpha(O)=0.000901 \ I3; \ \alpha(P)=4.80\times10^{-5} \ 7$ Mult : $\alpha(K)$ exp=0.8.3 (1970Cb28)			
179.6 2	25 3	1998.74	(5) ⁻	1819.04 (6 ⁺)	(E1)	0.0733	$\alpha(\mathbf{K})=0.0612 \ 9; \ \alpha(\mathbf{L})=0.00938 \ 14; \ \alpha(\mathbf{M})=0.00209 \ 3; \ \alpha(\mathbf{N}+)=0.000554 \ 8 \\ \alpha(\mathbf{N})=0.000485 \ 7; \ \alpha(\mathbf{O})=6.59\times10^{-5} \ 10; \ \alpha(\mathbf{P})=2.93\times10^{-6} \ 5 \\ \mathbf{M} = 100000000000000000000000000000000000$			
198.79 <i>15</i>		286.59	4+	87.77 2+	E2	0.274	Mult.: $\alpha(K)\exp=0.178$ (1970Ch28). $\alpha(K)=0.1678$ 24; $\alpha(L)=0.0815$ 12; $\alpha(M)=0.0197$ 3; $\alpha(N+)=0.00507$ 8 $\alpha(N)=0.00452$ 7; $\alpha(O)=0.000545$ 8; $\alpha(P)=7.84\times10^{-6}$ 11 Mult.: from K:L2:L3:M=62:21:12:11 (1966Ha23).			
223 ^{&} f 1	&	1674.06	(5+)	1451.66 (3)+			tentatively placed in accord with Adopted Levels. From $I(123\gamma)$ and adopted branching from 1674 level, $I(223\gamma) \approx 3.5$ is expected here.			
223.6 2	36 4	2222.3	(⁻)	1998.74 (5) ⁻	[E2] ^C	0.186	α(K)=0.1202 I8; α(L)=0.0505 8; α(M)=0.01216 I8; α(N+)=0.00314 5 α(N)=0.00279 4; α(O)=0.000340 5; α(P)=5.77×10-6 9 Ιγ: probably includes small component (≈3.4) from 223γ from 1674 level (see comment on that transition). Mult.: α(K)exp=0.25 5 (1970Ch28) for 229γ+223γ doublet.			
^x 227 ^{&} 1 228.6 2	& 70 7	1998.74	(5)-	1770.18 5-	(M1)	0.329	I _γ : 3 In 1970Ar16. $\alpha(K)=0.276$ 4; $\alpha(L)=0.0416$ 6; $\alpha(M)=0.00931$ 14; $\alpha(N+)=0.00252$ 4 $\alpha(N)=0.00219$ 4; $\alpha(O)=0.000313$ 5; $\alpha(P)=1.674\times10^{-5}$ 24 Mult.: $\alpha(K)\exp=0.25$ 5 (1970Ch28) for 229γ+223γ doublet In which the 229γ is the stronger component			
$x_{268.0}^{b} 4$	8.6 15						I_{γ} : 7 2 In 1970Ar16.			
298.62 8		585.21	6+	286.59 4+	E2	0.0750	α (K)=0.0534 <i>8</i> ; α (L)=0.01658 <i>24</i> ; α (M)=0.00394 <i>6</i> ; α (N+)=0.001025 <i>15</i> α (N)=0.000908 <i>13</i> ; α (O)=0.0001140 <i>16</i> ; α (P)=2.73×10 ⁻⁶ <i>4</i> Mult.: from Adopted Gammas.			

ы

From ENSDF

 $^{168}_{70}{
m Yb}_{98}$ -2

 $^{168}_{70}{
m Yb}_{98}$ -2

L

				16	⁸ Lu ε deca	ay (5.5 min)	1972Ch4	4,1970Ch28 (continued)		
γ ⁽¹⁶⁸ Yb) (continued)										
E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments		
^x 310.5 ^b 324.7 2	30 <i>3</i>	1998.74	(5)-	1674.06	(5+)	(E1+M2)	0.26 24	I _γ : 4 2 In 1970Ar16. $\alpha(K)=0.21$ 20; $\alpha(L)=0.04$ 4; $\alpha(M)=0.009$ 9; $\alpha(N+)=0.0025$ 24 $\alpha(N)=0.0021$ 21; $\alpha(O)=0.0003$ 3; $\alpha(P)=1.5\times10^{-5}$ 15 Mult: $\alpha(K)\exp(-0.022$ 8 (1970Cb28)		
348.3 2 348.3 2	≈66	1650.48 1998.74	(2,3,4) ⁻ (5) ⁻	1302.27 1650.48	(5) ⁺ (2,3,4) ⁻	E2	0.0476	Init.: $a(K)exp=0.022$ s (1970CH28). I _γ ,Mult.,E _γ : see comments on 348.3γ from 1999 level. a(K)=0.0352 5; $a(L)=0.00955$ 14; $a(M)=0.00225$ 4; $a(N+)=0.000588$ 9 $a(N)=0.000520$ 8; $a(O)=6.64\times10^{-5}$ 10; $a(P)=1.85\times10^{-6}$ 3 I _γ : I _γ =71 8 for γ that was also placed from the 1651 level In 1972Ch44. the 1651 level was observed In ε decay (6.7 min) also, but the 348.3γ was not (see 1999Ba65). If I(348γ) <i(479γ) (="10.0" 15)="" 1651<br="" from="">level, 61<i(348γ 1999="" 8,="" assigns="" evaluator="" from="" iγ≈66<br="" level)<71="" so="" the="">here. Mult: $a(K)exp=0.036$ 9 (1970Ch28) for doublet dominated by this</i(348γ></i(479γ)>		
371.8 ^{<i>f</i>} 4		1674.06	(5 ⁺)	1302.27	(5)+			transition. May Be same γ ray As the E γ =372.17 line placed instead from a 2428 level In ε decay (6.7 min); consequently, placement is shown As		
374.2 5 379.9 3 384.8 ^{ef} 2	4.8 9	1819.04 1551.20 970.0?	(6^+) $(4)^+$ 8^+	1445.13 1171.23 585.21	$(6)^+$ $(4)^+$ 6^+	E2	0.0359	tentative here. $\alpha(K)=0.0271 \ 4; \ \alpha(L)=0.00679 \ 10; \ \alpha(M)=0.001591 \ 23; \ \alpha(N+)=0.000417$		
								6 α(N)=0.000368 6; α(O)=4.75×10 ⁻⁵ 7; α(P)=1.441×10 ⁻⁶ 21 Mult.: from Adopted Gammas; α(K)exp=0.029 9 (1970Ch28) for doubly-placed G		
384.8 ^e 2		1451.66	(3) ⁺	1066.98	(3)+	E2	0.0359	$\alpha(K) = 0.0271 \ 4; \ \alpha(L) = 0.00679 \ 10; \ \alpha(M) = 0.001591 \ 23; \ \alpha(N+) = 0.000417 \ 6 \ (N+) = 0.000417 \ (N+) = 0.$		
397 2 6	7515	1842.12	(6 ⁻)	1445 13	$(6)^{+}$			α (N)=0.000368 6; α (O)=4.75×10 ⁻⁵ 7; α (P)=1.441×10 ⁻⁶ 21 Mult.: α (K)exp=0.029 9 (1970Ch28) for doubly-placed G.		
401.1 3	26 3	1998.74	(5) ⁻	1597.83	(-)	M1	0.0727	$\alpha(K)=0.0611 \ 9; \ \alpha(L)=0.00907 \ 13; \ \alpha(M)=0.00203 \ 3; \ \alpha(N+)=0.000548 \ 8 \\ \alpha(N)=0.000476 \ 7; \ \alpha(O)=6.82\times10^{-5} \ 10; \ \alpha(P)=3.67\times10^{-6} \ 6 \\ Mult: \ \alpha(K)=0.061 \ 22 \ (1970Ch^28)$		
467.9 <i>4</i>		1451.66	(3)+	983.78	2+	M1,E2	0.035 14	$\alpha(K)=0.029 \ I3; \ \alpha(L)=0.0048 \ I3; \ \alpha(M)=0.0011 \ 3; \ \alpha(N+)=0.00029 \ 8 \\ \alpha(N)=0.00026 \ 7; \ \alpha(O)=3.6\times10^{-5} \ I0; \ \alpha(P)=1.7\times10^{-6} \ 8 \\ Mult: \ \alpha(K)\exp=0.028 \ II \ (1970Cb28) $		
479.4 <i>4</i>		1650.48	(2,3,4)-	1171.23	$(4)^+$			Hun. u(R)cxp=0.020 11 (1970en20).		
483 ^{&} f 2 539.8 2	& 47 5	1551.20 1842.12	$(4)^+$ (6 ⁻)	1066.98 1302.27	$(3)^+$ $(5)^+$	E1	0.00513	$\alpha(K)=0.00434\ 6;\ \alpha(L)=0.000616\ 9;\ \alpha(M)=0.0001367\ 20;\ \alpha(N+)=3.66\times10^{-5}\ 6$		
583.4 2		1650.48	(2,3,4) ⁻	1066.98	(3)+	E1	0.00435	$\alpha(N)=5.19\times10^{\circ} 5; \alpha(O)=4.49\times10^{\circ} 7; \alpha(P)=2.29\times10^{\circ} 4$ Mult.: $\alpha(K)\exp<0.005 (1970Ch28).$ $\alpha(K)=0.00368 6; \alpha(L)=0.000520 8; \alpha(M)=0.0001153 17;$		

ω

From ENSDF

 $^{168}_{70}{
m Yb}_{98}$ -3

 $^{168}_{70}{
m Yb}_{98}$ -3

L

						¹⁶⁸ Lu ε deo	cay (5.5 mir	n) 1972Ch44,1970Ch28 (continued)
							<u>γ(</u>	¹⁶⁸ Yb) (continued)
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
					_			α (N+)=3.09×10 ⁻⁵ 5
								$\alpha(N)=2.69\times10^{-5} 4; \alpha(O)=3.80\times10^{-6} 6; \alpha(P)=1.95\times10^{-7} 3$ Mult.: $\alpha(K)\exp<0.005$ (1970Ch28).
0	0							$I(583\gamma):I(479\gamma)=29 \ 4:10.0 \ 15 \ (1970Ch28).$
x624 2	& e							I_{γ} : 9 2 In 1970Ar16.
697 ^{&} 2	æ	983.78	2+	286.59	4+			
717.1 3		1302.27	(5) ⁺	585.21	6 ⁺		0.00/07	Mult.: α (K)exp<0.008 (1970Ch28).
780.5 3		1066.98	(3)+	286.59	4+	E2	0.00625	$\alpha(K)=0.00513 \ 8; \ \alpha(L)=0.000873 \ 13; \ \alpha(M)=0.000198 \ 3; \ \alpha(N+)=5.28\times10^{-3} \ 8$
								$\alpha(N)=4.02\times10^{\circ}$ /; $\alpha(O)=0.30\times10^{\circ}$ 9; $\alpha(P)=2.88\times10^{\circ}$ 4 Mult : $\alpha(K)=n=0.0048$ 14 (1970Cb28)
860.0.2	13.2	1445 13	$(6)^{+}$	585 21	6+	M1+E2	0.008.3	$\alpha(K) = 0.0065 \ 23^{\circ} \ \alpha(L) = 0.0010 \ 3^{\circ} \ \alpha(M) = 0.00022 \ 7^{\circ} \ \alpha(N+) = 5.9 \times 10^{-5} \ 18$
00010 2	10 2	1110110	(0)	000121	Ũ		010000	$\alpha(\mathbf{N}) = 5.1 \times 10^{-5} \ I_{5} \ \alpha(\mathbf{O}) = 7.3 \times 10^{-6} \ 23; \ \alpha(\mathbf{P}) = 3.8 \times 10^{-7} \ I_{5}$
								Mult.: α (K)exp=0.0055 25 (1970Ch28).
884.6 2		1171.23	$(4)^+$	286.59	4^{+}	E2	0.00478	α (K)=0.00395 6; α (L)=0.000645 9; α (M)=0.0001456 21; α (N+)=3.89×10 ⁻⁵ 6
								$\alpha(N)=3.40\times10^{-5}$ 5; $\alpha(O)=4.72\times10^{-6}$ 7; $\alpha(P)=2.22\times10^{-7}$ 4
0060.0		000 50	a +		2+	50	0.00465	Mult.: α (K)exp=0.0038 7 (1970Ch28).
896.0 2		983.78	21	87.77	21	E2	0.00465	$\alpha(K)=0.00385 6; \alpha(L)=0.000626 9; \alpha(M)=0.0001412 20; \alpha(N+)=3.78\times10^{-5} 6$
								$\alpha(N)=5.50\times10^{-5}$ 5; $\alpha(O)=4.58\times10^{-7}$; $\alpha(P)=2.10\times10^{-5}$ Mult $\cdot \alpha(K)=n=0.0037$ 7 (1970Cb28)
×960 7 <mark>b</mark>								u(t)/v(t)/v(t)/v(t)/v(t)/v(t)/v(t)/v(t)/v
x065& 1	5 & 1							tentative placement from 1551 level by 1070Ar16 rejected by evaluator because later
905 1	5 1							studies failed to confirm IT.
979.2 2		1066.98	$(3)^{+}$	87.77	2^{+}	(E2)	0.00387	$\alpha(K)=0.00322$ 5; $\alpha(L)=0.000510$ 8; $\alpha(M)=0.0001147$ 16; $\alpha(N+)=3.07\times10^{-5}$ 5
								$\alpha(N)=2.68\times10^{-5}$ 4; $\alpha(O)=3.74\times10^{-6}$ 6; $\alpha(P)=1.81\times10^{-7}$ 3
								$I(979\gamma):I(781\gamma)=177 \ 15:37 \ 4 \ (1970Ch28).$
			a +		0±			Mult.: α (K)exp=0.0030 5 (1970Ch28) for 984 γ +979 γ .
983.8 2		983.78	2+	0.0	0^{+}	(E2)	0.00383	$\alpha(K)=0.003195; \alpha(L)=0.0005047; \alpha(M)=0.000113576; \alpha(N+)=3.04\times10^{-5}5$
								$\alpha(N)=2.05\times10^{-5}4; \alpha(O)=5.71\times10^{-6}0; \alpha(P)=1.79\times10^{-7}5$ I(0842):I(8962)=89.8:100 (1070Cb28)
								Mult.: $\alpha(K)\exp=0.00305$ (1970Ch28) for $984\gamma+979\gamma$.
1012.9 <i>3</i>		1597.83	(_)	585.21	6+	(M2)	0.01728	$\alpha(K)=0.01438\ 21;\ \alpha(L)=0.00225\ 4;\ \alpha(M)=0.000506\ 7;\ \alpha(N+)=0.0001369\ 20$
								α (N)=0.0001190 <i>17</i> ; α (O)=1.702×10 ⁻⁵ <i>24</i> ; α (P)=9.06×10 ⁻⁷ <i>13</i>
								Mult.: α (K)exp \approx 0.011 (1970Ch28).
1015.7 2		1302.27	$(5)^+$	286.59	4+	E2	0.00359	α (K)=0.00299 5; α (L)=0.000469 7; α (M)=0.0001055 15; α (N+)=2.83×10 ⁻⁵ 4
								$\alpha(N)=2.47\times10^{-5} 4; \alpha(O)=3.45\times10^{-6} 5; \alpha(P)=1.682\times10^{-7} 24$
								$V(\mathbf{n}) = \frac{\alpha(\mathbf{x}) e \mathbf{x} = 0.0020 + (1970 Ch28)}{1(1016 \alpha) \cdot 1(717 \alpha) = 78.8 \cdot 15.1.20 (1970 Ch28)}$
x1025 7 ^b 1	5812							(1010)(111) - 10 0.13.120 (19/00120).
1023.7 4	5.0 12	1171.23	$(4)^+$	87 77	2+	(E2)	0.00315	$\alpha(K) = 0.00263 4; \alpha(L) = 0.000407 6; \alpha(M) = 9.12 \times 10^{-5} 13; \alpha(N+) = 2.45 \times 10^{-5} 4$
1005.5 2		11,1,20	(1)	57.77	-	(22)	0.00010	$\alpha(N) = 2.13 \times 10^{-5} \ 3; \ \alpha(O) = 3.00 \times 10^{-6} \ 5; \ \alpha(P) = 1.481 \times 10^{-7} \ 21$
								Mult.: $\alpha(K) \exp \approx 0.0020$ (1970Ch28).
								$I(1084\gamma):I(885\gamma)=51 \ 3:107 \ 9 \ (1970Ch28).$

					168	Lu ε decay	(5.5 min)	1972Ch44,1970Ch28 (continued)
							$\gamma(^{168}$ Yt	b) (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
1089.3 4		1674.06	(5 ⁺)	585.21	6+			I _{γ} : I(1089 γ)/I(123 γ) here is much larger than In 6.7-min decay; 1970Ch28 did not report a 1091.6 γ known In 6.5-min decay, so possibly the 1089.3 γ of 1970Ch28 is a doublet.
1158.5 3	3.4 5	1445.13	$(6)^+$	286.59	4 ⁺			
1164.7 3	AC 1	1451.66	(3)	286.59	4'	F 1	1 12 10-3	(X) = 0.000027 + 4 $(X) = 0.0001075 + 0 = (X) = 0.011075 + 4$
1185.0 2	40 4	1770.18	5	585.21	0	EI	1.12×10 ⁻⁵	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000937 \ 14; \ \alpha(\mathbf{L}) = 0.0001275 \ 18; \ \alpha(\mathbf{M}) = 2.81 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}) = 6.59 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 9.41 \times 10^{-7} \ 14; \ \alpha(\mathbf{P}) = 5.07 \times 10^{-8} \ 7; \\ &\alpha(\mathbf{IPF}) = 1.608 \times 10^{-5} \ 24 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp < 0.0016 \ (1970 \text{Ch28}). \end{aligned}$
^x 1215.4 ^b 4	9.0 15							
1233.5 2	9 [@] 5	1819.04	(6+)	585.21	6+	[M1,E2]	0.0034 10	$\alpha(K)=0.0028 \ 8; \ \alpha(L)=0.00041 \ 11; \ \alpha(M)=9.2\times10^{-5} \ 24; \alpha(N+)=3.5\times10^{-5} \ 8 \alpha(N)=2.2\times10^{-5} \ 6; \ \alpha(O)=3.1\times10^{-6} \ 9; \ \alpha(P)=1.6\times10^{-7} \ 5; \alpha(IPF)=9.9\times10^{-6} \ 12 Model (D) = 0.00072 \ 0.00072 \ 0.00072 \ 0.000072 \ 0.000072 \ 0.0000000000000000000000000000000000$
1264.5 <i>3</i>		1551.20	(4)+	286.59	4+			Mult.: $\alpha(K)\exp=0.0027.9$ (1970Ch28) for triplet. Mult.: $\alpha(K)\exp=0.0020.9$ (1970Ch28) for $1257\gamma+1265\gamma$ (where $I(1257\gamma):I(1265\gamma)=15.2:32.3$); this favors mult=M1,E2 but does not rule out E1 for one of the transitions.
^x 1289 ^{&} 2	&							I_{γ} : 2 2 In 1970Ar16.
1311.2 2		1597.83	(⁻)	286.59	4+	(E1)	9.91×10 ⁻⁴	$\dot{\alpha}$ (K)=0.000784 <i>11</i> ; α (L)=0.0001063 <i>15</i> ; α (M)=2.34×10 ⁻⁵ <i>4</i> ; α (N+)=7.72×10 ⁻⁵ <i>11</i> α (N)=5.49×10 ⁻⁶ <i>8</i> ; α (O)=7.85×10 ⁻⁷ <i>11</i> ; α (P)=4.25×10 ⁻⁸ <i>6</i> ; α (IPF)=7.09×10 ⁻⁵ <i>10</i>
								Mult.: α (K)exp<0.0014 (1970Ch28).
1363.9 2		1451.66	(3)+	87.77	2+			Mult.: α (K)exp \approx 0.0012 (1970Ch28). I(1364 γ):I(1165 γ):I(467 γ):I(385 γ)=38 4:10.2 15:9.0 15:19.5 20 (1970Ch28).
1387.5 2		1674.06	(5 ⁺)	286.59	4+			 E_γ: for doubly-placed G. Mult.: α(K)exp<0.0016 (1970Ch28) for doublet dominated by this transition. I_γ: see comment on 1388γ from 1973 level. I(1388γ from 1674):I(1089γ):I(372γ):I(123γ)= 27.8:9.0 17:5.3.9:4.8.9
1387.5 2	88	1972.70	(5,6 ⁺)	585.21	6+			(1970Ch28). E_{γ} : for γ which May Be a doublet. I_{γ} : I(1388 γ)=35 3 for doubly-placed G. based on adopted I(123 γ)/I(1388 γ from 1674 level)=0.18 3 and I(123 γ)=4.8 9 here, I(1388 γ)=27 8 from 1674 level, leaving I γ =8 8 to Be placed from this level. γ is coincident with 112 γ , absent In 6.7-min ε decay.
1413.5 <i>3</i> ^x 1449.6 ^b 5	16.4 <i>18</i> 11 2	1998.74	(5)-	585.21	6+			Mult.: $\alpha(K)\exp<0.0016$ (1970Ch28) for doublet. Mult.: $\alpha(K)\exp=0.0013$ 6 (1970Ch28).

S

From ENSDF

L

				¹⁶⁸ Lu	ε decay (5.	5 min) 197 2	2Ch44,1970Ch28 (continued)
						γ (¹⁶⁸ Yb) (c	ontinued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J'$	Mult. [#]	α^{d}	Comments
1463.5 <i>3</i>		1551.20	$(4)^{+}$	87.77 2	-		Mult.: α (K)exp<0.0018 (1970Ch28) consistent with E1 or E2. I(1463a):I(1265a):I(180a):I(100a)=21, 3:32, 3:10, 9, 17:4, 8, 10 (1970Ch28)
1483.6 2	72 9	1770.18	5-	286.59 4	E1	9.26×10 ⁻⁴	$\alpha(K)=0.000634 \ 9; \ \alpha(L)=8.56\times10^{-5} \ 12; \ \alpha(M)=1.89\times10^{-5} \ 3; \ \alpha(N+)=0.000187$
1510.0 4		1597.83	(_)	87.77 2			$\alpha(N)=4.42\times10^{-6}$ 7; $\alpha(O)=6.33\times10^{-7}$ 9; $\alpha(P)=3.44\times10^{-8}$ 5; $\alpha(IPF)=0.000182$ 3 Mult.: $\alpha(K)\exp<0.0007$ (1970Ch28). I(1510 γ):I(1311 γ):I(1013 γ)=4.4 10:33 3:7.1 10 (1970Ch28), or 12 4:7 2:12 2 (for doublet) In 1970Ar16; note that branching from 1970Ch28 disagrees with that adapted from a decay (6.7 min)
1525.1 5	4.5 10	2110.6	(5^-,6^-,7^-)	585.21 6	-		
1533.3 5	2.9 9	1819.04	(6+)	286.59 4			I_{γ} : 2 2 In 1970Ar16.
^x 1669.2 ^b 10	≈1.5						
1686.0 5	20 4	1972.70	$(5,6^+)$	286.59 4	-		
1712.0 5	≈2	1998.74	(5)-	286.59 4	-		
^x 1897.6 ^b 10							
^x 1902.5 ^b							
^x 1956.5 ^b 10	≈0.5						
^x 2031.5 ^b 12							
^x 2042.3 ^b 15							
^x 2054.0 ^b 15							
^x 2355 ^{&} 2	&						I _γ : 7 <i>3</i> In 1970Ar16.

[†] From 1970Ch28, except where noted.

[‡] From 1970Ch28. I γ is included here for γ rays which appear to occur only with ¹⁶⁸Lu(5.5 min) decay. Otherwise, branching information from 1970Ch28 for the mixed parent decay is given In a comment on the highest energy transition from the level In question.

[#] From $\alpha(K)$ exp values based on Ice(K) data In 1970Ch28, except As noted. 1970Ch28 normalized their γ and ce intensity scales by assuming pure E2 for the following transitions: 87.7 γ , 198.8 γ , 298.8 γ , 884.6 γ , 896.1 γ , 979.2 γ +983.8 γ . However, the 885 γ , 896 γ and 979 γ are not ΔJ =2 transitions, so May have a D admixture. 1999Ba65 recommend using only the 299 γ for normalization; this would give $\alpha(K)$ exp values 24% higher than deduced In 1970Ch28. if, instead, only the 199 γ were used, No adjustment of $\alpha(K)$ exp from 1970Ch28 would Be called for. 1970Ch28 do not give Ice(K) for the 88 γ . both the 199 γ and 299 γ have weak transitions from 6.7-min ¹⁶⁸Lu decay nearby; these might not have been resolved by 1970Ch28, but their impact on $\alpha(K)$ exp values whose uncertainties are \geq 20% probably is not significant. The evaluator quotes $\alpha(K)$ exp from 1970Ch28 below but, when making multipolarity assignments, takes into account the possibility that $\alpha(K)$ exp May Be systematically low by about 10%.

^(e) In ¹⁶⁸Lu(5.5 min) ε decay, a 1233 γ deexcites the 1819 level. In ¹⁶⁸Lu(6.7 min) ε decay, a 1233 γ deexcites both a 1233 and a 2405 level, each peculiar to that decay. Thus, the 1233 γ (I γ =32 3) reported by 1970Ch28 from their mixed source will Be a triplet. From I(1233 γ doublet):I(1420 γ)=21 2:62 10 In 6.7-min decay and I(1420 γ)=68 7 from 1970Ch28's mixed source, I(1233 γ)=23 4 can Be attributed to the 6.7 min component, implying I γ =9 5 for the 5.5-min component.

 $^{168}_{70} \mathrm{Yb}_{98}$ -6

From ENSDF

¹⁶⁸Lu ε decay (5.5 min) 1972Ch44,1970Ch28 (continued)

$\gamma(^{168}\text{Yb})$ (continued)

- [&] From 1970Ar16. Parent isomer undetermined, but absence of γ In ¹⁶⁸Lu ε decay (6.7 min) study In 1999Ba65 favors assignment to ¹⁶⁸Lu ε decay (5.5 min).
- ^{*a*} Reported by 1972Ch44 and 1973Ch28. These high-resolution studies of the γ spectrum showed the E γ =111.8 *3*, I γ =98 *15* transition (1970Ch28) to be two lines (E γ =111.4, E γ =112.4) of similar intensity.
- ^b Unplaced γ from 1970Ch28. Parent isomer unknown, but absence of γ In ¹⁶⁸Lu ε decay (6.7 min) study In 1999Ba65 favors assignment to ¹⁶⁸Lu ε decay (5.5 min).
- ^c From analogies between the well-known 5⁻ and 6⁻ and 7⁻ levels (and depopulating γ 's) in ¹⁶⁴Er and their apparent counterparts in ¹⁶⁸Yb.
- d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{168}_{70} {\rm Yb}_{98} \text{--} 8$

 $^{168}_{70} {\rm Yb}_{98} \text{--} 8$

From ENSDF