172 Os α decay 2004GoZZ,1995Hi02,1971Bo06

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin NDS 111, 1807 (2010) 15-Jun-2010

Parent: 172 Os: E=0.0; J^{π} =0+; $T_{1/2}$ =19.2 s 9; $Q(\alpha)$ =5227 7; % α decay=1.4 3

¹⁷²Os-%α decay: from 2004GoZZ. 1995Hi02 deduce %α=1.1 2, but several assumptions are made for the level scheme (considered incomplete, as yet) of ¹⁷²Re from ¹⁷²Os ε decay. Other data: %α=0.2 (1971Bo06) is inconsistent with both values and implies r_0 =1.48 4 In disagreement with r_0 systematics; datum is rejected by the evaluator.

 r_0 =1.48 4 In disagreement with r_0 systematics; datum is rejected by the evaluator. Other: 2009Og03 (172 Os produced In 20 Ne + 156 Dy fusion reaction; used for detector calibration).

2004GoZZ: 172 Os source from 176 Pt α decay; measured E α , branching, $T_{1/2}(172OS)$.

 $T_{1/2}(^{172}Os)=19.2 \text{ s } 9 \text{ (1995Hi02)}.$ others: 20 s 2 (2004GoZZ) and 20 s 2 (1971Bo06), both from $\alpha(t)$.

 $Q(\alpha)(^{172}Os)=5227$ 7 is listed in 2003Au03 and 2009AuZZ.

¹⁶⁸W Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $\frac{\text{E}\alpha}{5106 \ 4}$ $\frac{\text{E(level)}}{0.0}$ $\frac{\text{HF}}{1.0}$

Comments

E α : reported α energies are 5105 10 (1971Bo06), 5100 7 (1995Hi02), 5106 10 (1996Pa01), 5109 5 (2004GoZZ); their weighted average is 5106 4, which implies Q(α)=5228 4.

I α : only one α group was observed. Upper limit for I α of an unobserved 4905-keV α to the 2⁺ state at 199.3 keV is calculated to be 9.4% of all α decay by requiring that its hindrance factor be greater than 1.

 $I\alpha(5105\alpha)=95~5$ per 100 α decays is recommended here, and this $I\alpha$ is used in the calculation of the r_0 parameter.

 $^{^{\}dagger}$ r₀(168 W)=1.56 2 is calculated from Hf(5106 α)=1.0.