¹⁶⁸W ε decay **1990Me12**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010			

Parent: ¹⁶⁸W: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=50.9 \text{ s } 19$; $Q(\varepsilon)=3500 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0

The decay scheme and all data are from 1990Me12. No multipolarities are known but, provided $\%\epsilon+\beta^+$ to 179 level is >2, log ft<5.9 and the transition is allowed; given the relative strength of the 178 γ , this condition is satisfied and $J^{\pi}=1^+$ can Be assigned to the 178 level. provided $\%\epsilon+\beta^+$ to the 352 level is >1.4, this branch will Be allowed also; this condition is satisfied even if the two deexciting gammas have negligible conversion, provided none of the unplaced transitions feeds the 352 level. this May not Be a valid assumption, so the assignment of 1^+ to this level is highly tentative.

1990Me12: Sources from ¹³⁶Ba(³⁶Ar,4n), E(³⁶Ar)=165-205 MeV, helium-jet transport; 93% target enrichment; measured excitation functions, E γ , I γ (Ge(Li) and Ge γ X detectors), $\gamma\gamma$ coin.

¹⁶⁸Ta Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}
0.0	$(2^{-},3^{+})$	2.0 min 1
178.43 25	1^{+}	
352.27 25	(1^+)	

 † From least-squares fit to Ey.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(3.15 \times 10^3 \ 3)$	352.27	0.60 11	2.7 5	5.51 9	3.3 6	av E β =961 14; ε K=0.673 6; ε L=0.1096 10; ε M+=0.0337 3
$(3.32 \times 10^3 \ 3)$	178.43	21 4	75 16	4.12 10	96 20	av E β =1039 <i>14</i> ; ε K=0.642 <i>6</i> ; ε L=0.1042 <i>10</i> ; ε M+=0.0320 <i>3</i>

[†] From I(γ +ce) imbalance At each level.

[‡] Absolute intensity per 100 decays.

$\gamma(^{168}\text{Ta})$

I γ normalization: negligible g.s. feeding is expected ($\%\varepsilon + \beta^+ < 0.17$ for log $f^{lu}t > 8.5$). Of the unplaced gammas, only the relatively weak 573 γ might feed the g.s., so an approximate decay scheme normalization can Be obtained from Σ (I(γ +ce) to g.s.)=100, assuming 178 γ and 352 γ are each either E1 or E2.

Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α@
^x 37.1 [‡] 4	1.3 2						
^x 145.5 [‡] 3	<2						
^x 156.6 [‡] 3	1.7 2						
173.9 <i>3</i>	1.4 2	352.27	(1^{+})	178.43	1^{+}	[M1,E2]	0.69 22
178.5 <i>3</i>	100	178.43	1+	0.0	$(2^{-},3^{+})$	[E1,E2]	0.26 18
^x 181.8 [‡] 3	1.7 2						
352.2 <i>3</i>	1.8 2	352.27	(1^{+})	0.0	$(2^{-},3^{+})$	[E1,E2]	0.033 18
^x 573.1 4	1.4 2						

Continued on next page (footnotes at end of table)

$^{168}\mathbf{W}\,\varepsilon$ decay 1990Me12 (continued)

$\gamma(^{168}\text{Ta})$ (continued)

[†] Arbitrary units relative to I(178.5 γ)=100.

- [‡] Coincident with 178.5 γ .
- [#] For absolute intensity per 100 decays, multiply by 0.78 11.
 [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- $x \gamma$ ray not placed in level scheme.

¹⁶⁸W ε decay 1990Me12

¹⁶⁸73Ta₉₅