Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010							

 $Q(\beta^{-}) = -5.81 \times 10^{3} 4$; $S(n) = 9.02 \times 10^{3} syst$; $S(p) = 9.8 \times 10^{2} 4$; $Q(\alpha) = 5063 13 2012$ Wa38

Note: Current evaluation has used the following Q record -5800 30 9030 SY1000 40 5063 13 2003Au03,2009AuZZ. $\Delta S(n)=60$ (2003Au03,2009AuZZ).

Identification: comparison of ${}^{141}Pr({}^{32}S,xn)$ excitation functions, producing known tungsten isotopes, with ${}^{141}Pr({}^{32}S,pxn)$ excitation functions, producing new and established rhenium isotopes; presence of Ta x rays in α - γ coincidence spectra (1992Me10). Earlier assignments of various α groups to one or more isomers of ${}^{168}Re$ (1978Ca11,1978Sc26,1982De11,1984Sc06) are apparently incorrect.

¹⁶⁸Re Levels

 ε decay from ^{168}Os to ^{168}Re is expected (57% branch) but has not yet been observed.

Cross Reference (XREF) Flags

A 172 Ir α decay (4.4 s)

B 172 Ir α decay (2.19 s)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(7+)	4.4 s 1	AB	%ε+%β ⁺ ≈100; %α≈5×10 ⁻³ %α: deduced from Iα/Iγ(199.3γ in ¹⁶⁸ W) and ε decay scheme for ¹⁶⁸ Re (1992Me10). E(level): the observed ε decay (4.4 s) branch to 6 ⁺ 1042 level in ¹⁶⁸ W suggests that the high-spin isomer of ¹⁶⁸ Re is the ground state. J ^π : M1+E2 162γ from (8 ⁺) 162; strongest ε branches feed 6 ⁺ and 8 ⁺ states in ¹⁶⁸ W, but decay scheme may be incomplete. 2004GoZZ suggest a K^{π} =7 ⁺ configuration of (π 9/2[514])+(ν 5/2[523]) but 1992Me10 suggest (π 9/2[514])+(ν 3/2[521]), giving K^{π} =6 ⁺ ; the neighboring ¹⁶⁷ Hf, ¹⁶⁹ W and ¹⁷¹ Os isotones are believed to have ν 5/2[523] ground states, compatible with the former configuration. T _{1/2} : from 1992Me10 (363γ(t), 480γ(t) in ε decay to ¹⁶⁸ W daughter). Others: 1984Sc06, 1992Me10 (7.1 s 25 from 4830α(t)).
89.7 [#] 4			Α	J ^π : 136γ from (2,3,4) 226 implies J≤6.
162.1 2	(8+)		В	E(level): from ¹⁷² Ir α decay (2.19 s). J ^{π} : favored α decay (HF<4) from (8 ⁺) ¹⁷² Ir.
226.0 [#] 6			A	J^{π} : (2,3,4) if the (E1) 123 γ deexcites J=(3) 349 level; highly tentative because order of the 123 γ -136 γ -90 γ cascade is unestablished. 2004GoZZ suggest the K^{π} =2 ⁺ configuration (π 9/2[514])-(ν 5/2[523]), but J^{π} =2 ⁺ is not compatible with a low-multipolarity two-step deexcitation to a (7 ⁺) g.s
349.2 6	(3)		Α	J^{π} : favored α decay (HF<4) from J=(3) in ¹⁷² Ir α decay (4.4 s).

[†] From $E\gamma$.

[‡] Note that these values arise primarily from the coupling of expected low-lying p and n orbitals to give likely configurations for the isomeric state(s) in both ¹⁶⁸Re and the ¹⁷²Ir α -decay parent; consequently, they are highly tentative.

[#] E may differ from value shown because order of 90γ - 123γ - 136γ cascade has not been established.

Adopted Levels, Gammas (continued)

$\gamma(^{168}\text{Re})$										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments		
89.7		89.7 4	100	$0.0 (7^+)$						
162.1	(8+)	162.1 2	100	0.0 (7 ⁺)	M1+E2	0.99 16	0.99 6	Coincident with 5830α from high-J ¹⁷² Ir (2004GoZZ).		
226.0		136.3 4		89.7						
349.2	(3)	123.2 2	100	226.0	(E1)		0.224	E_{γ} ,Mult.: from ¹⁷² Ir α decay (4.4 s).		

[†] From ¹⁷²Ir α decay (2.19 s), except as noted.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

¹⁶⁸₇₅Re₉₃