¹⁷²Ir α decay (2.19 s) 2004GoZZ,1996Pa01,1992Sc16

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁷²Ir: E=133 8; J^{π}=(8⁺); T_{1/2}=2.19 s 7; Q(α)=5996 7; % α decay=23 3

¹⁷²Ir-E: Because 1992Me10 report No evidence for an isomeric excited state In ¹⁶⁸Re, 1992Sc16 conclude that both this 5828 α -162 γ cascade and the 5515 α -90 γ -123 γ -136 γ cascade from low-J ¹⁷²Ir terminate At the ¹⁶⁸Re g.s., implying E=133 8 for the high-J ¹⁷²Ir parent. note, however, that 2004GoZZ observe neither the 90 γ nor the 136 γ from the latter cascade, possibly due to statistically-limited data.

¹⁷²Ir-%α decay: From 1992Sc16. Others: 0.22 6 (2004GoZZ), <32 (1984ScZQ).

2004GoZZ: ¹⁷²Ir sources from α -decay of ¹⁷⁶Au produced In ⁸⁴Sr bombardment of Mo; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured E α , I α , recoil- α - γ coin, α (t), parent-daughter α correlations.

1992Sc16: sources from ¹⁴¹Pr(³⁶Ar,5n), E(³⁶Ar)=234 MeV primary beam, helium-jet transport; monoisotopic targets; measured excitation functions (175 MeV to 204 MeV At target face), $E\alpha$, $E\gamma$, $I\alpha$, $I\gamma$, $\alpha\gamma$ coin, α -(K x ray) coin.

Parent T_{1/2}: from α (t); weighted average of 2.26 s 5 (2004GoZZ), 2.0 s *I* (1992Sc16) and 2.1 s *I* (1978Sc26). others: 1.7 s 5 (1967Si02), 2.1 s 5 (1984ScZQ).

¹⁶⁸Re Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	(7^{+})
162.1 2	(8^{+})

[†] From $E\gamma$.

[‡] From Adopted Levels.

 α radiations

Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments	
5828 <i>3</i>	162.1	100	3.0 4	Eα: 5828 <i>3</i> from 1982De11 (used for calibration by 1992Sc16). Other data: 5810 <i>5</i> (1967Si02 and 1984ScZQ)), 5815 <i>10</i> (1978Sc26), 5822 <i>12</i> (1996Pa01), 5830 <i>5</i> (2004GoZZ).	
				correlated with 6080 α , 6117 α and 6287 α from ¹⁷⁶ Au(high J) (2004GoZZ).	

[†] If $r_0=1.5580$ 12, unweighted average of $r_0(^{166}W)=1.560$ 6 (2008Ba14), $r_0(^{168}W)=1.562$ and $r_0(^{168}Os)=1.557$ 4 (this evaluation), and $r_0(^{170}Os)=1.555$ 3 (2002Ba93) (weighted average is 1.5564 22). $Q(\alpha)=5996$ 7 (from measured E α for g.s. to 349 level decay) has been used for the calculation of HF; 2003Au03 and 2009AuZZ give $Q(\alpha)=5850$ 110 from systematics. [‡] For absolute intensity per 100 decays, multiply by 0.23 3.

 $\gamma(^{168}\text{Re})$

 $I\gamma$ (Re K x ray)=29 2 on same scale as $I\gamma$ (1992Sc16).

$$\frac{E_{\gamma}^{\dagger}}{162.1\ 2} \quad \frac{I_{\gamma}^{\dagger}}{44\ 4} \quad \frac{E_{i}(\text{level})}{162.1} \quad \frac{J_{i}^{\pi}}{(8^{+})} \quad \frac{E_{f}}{0.0} \quad \frac{J_{f}^{\pi}}{(7^{+})} \quad \frac{\text{Mult.}}{\text{M1+E2}} \quad \frac{\delta}{0.99\ 16} \quad \frac{\alpha^{\ddagger}}{0.99\ 6} \quad \frac{\alpha^{\ddagger}}{\alpha(\text{K})=0.69\ 7;\ \alpha(\text{L})=0.226\ 10;\ \alpha(\text{M})=0.055\ 3;} \\ \alpha(\text{N}+..)=0.0152\ 8 \\ \alpha(\text{N})=0.0132\ 7;\ \alpha(\text{O})=0.00202\ 8;\ \alpha(\text{P})=7.2\times10^{-5}\ 9 \\ E_{\gamma}:\ a\ 162\gamma\ deexciting\ the\ level\ fed\ by\ the\ 5830\alpha} \\ is\ shown\ In\ fig.\ 6.4,\ it\ appears\ In\ coincidence$$

¹⁷²Ir α decay (2.19 s) 2004GoZZ,1996Pa01,1992Sc16 (continued)

$\gamma(^{168}\text{Re})$ (continued)

$E_{\gamma}^{\dagger} = E_i$ (level)

with the 5830 α In fig. 6.12, and is mentioned In text (section 6.4.1) of 2004GoZZ. however, In table 5.1, the γ coincident with the 5830 α has E γ =136.3 5; the evaluator assumes that the latter E γ entry is erroneous. Mult., δ : from α (K)exp=0.69 6, as deduced from I γ and I(Re K x ray) (1992Sc16). δ =1.08 16 was deduced by 1992Sc16 from both α (K)exp and from the relative intensities of the 5828 α and the (5828 α +ce(L)(162)) sum peak.

Comments

[†] From 1992Sc16.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Legend

¹⁷²Ir α decay (2.19 s) 2004GoZZ,1996Pa01,1992Sc16

Decay Scheme

Intensities: Relative I γ . α 's: per 100 α decays

