Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010					

 $Q(\beta^{-}) = -1.127 \times 10^{4} 8$; $S(n) = 1.156 \times 10^{4} 8$; $S(p) = 2.43 \times 10^{3} syst$; $Q(\alpha) = 5816 3 2012$ Wa38

Note: Current evaluation has used the following Q record -11250 SY11560 70 2440 syst 5818 3 2003Au03,2009AuZZ. $Q(\alpha)$: Consistent with new E α =5681 5 datum (2004GoZZ) which implies $Q(\alpha)$ =5816 5.

 $\Delta Q(\beta) = 150, \Delta S(p) = 50$ (2003Au03, 2009AuZZ).

Identification: 1982En03 observed ¹⁶⁸Os as the α daughter of ¹⁷²Pt; this assignment was confirmed through cross-bombardments, excitation functions and α -energy systematics (1978Ca11,1978Sc26,1982De11,1984Sc06).

See 1983Al09, 1984Al36, and 1984HaZD for analyses of mass and proton-stability data for ¹⁶⁸Os.

¹⁶⁸Os Levels

Cross Reference (XREF) Flags

A 1/2 Pt α decay	Α	¹⁷² Pt	α	decay
-------------------------	---	-------------------	---	-------

B 112 Sn(58 Ni,2p γ),

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	2.1 s <i>I</i>	AB	
341.20 [#] 20	2^{+}		В	
857.3 [#] 3	4+		В	
1469.6 [@] 4	(3-)		В	
1499.1# 4	6+		В	
1736.8 4	(5 ⁻)		В	J^{π} : D 880 γ to 4 ⁺ 857; 238 γ to 6 ⁺ 1499; band assignment.
2154.1 ^{^w} 4	(7-)		В	
2222.7# 4	8+		В	
2298.6 ^{C} 9	(8 ⁻)		В	
2589.4 ^w 5	(9 ⁻)		В	
2730.5 ^{cc} 6	(10^{-})		В	
2937.8 [®] 5	(11-)		В	
2982.7" 5	10+		В	
3128.8 6	(12)		В	
3363.7° 3	(13)		В	
3365.1" 5	(12^{+})		в	
$3693.9^{\circ\circ} 0$	(14)		В	
3730.3" 3	(14^{+})		D D	
3942.0 = 0	(13)		D D	
4201.4 U	(10^{-})		ם ס	
4633.5 [@] 8	(10^{-})		B	

Adopted Levels, Gammas (continued)

¹⁶⁸Os Levels (continued)

E(level) [†]	J ^{π‡}	XREF
4886.7 [#] 6	(18 ⁺)	В
5158.4 ^{&} 13	(18 ⁻)	В

[†] From least-squares fit to $E\gamma$.

[‡] From ¹¹²Sn(⁵⁸Ni,2pγ), based on observed band structure and configuration assignments deduced from comparison of experimental Routhians and alignments with cranked shell-model calculations, except as noted.

[#] Band(A): g.s. band. Becomes AB band (aligned $\nu i_{13/2}^2$) for $J^{\pi} \ge 12^+$. Alignment gain=11.8 \hbar at $\hbar\omega$ =0.28 MeV.

[@] Band(B): AE, $\alpha = 1$ band. Orbital A is ($\nu i_{13/2}$), $\alpha = +1/2$; orbital E is ($\nu h_{9/2}$ or $f_{7/2}$), $\alpha = +1/2$. Alignment=9.9 \hbar at $\hbar\omega=0.28$ MeV.

& Band(C): AF, $\alpha=0$ band. Orbital A is (ν i_{13/2}), $\alpha=+1/2$; orbital F is (ν h_{9/2} or f_{7/2}), $\alpha=-1/2$. Alignment=9.1 \hbar at $\hbar\omega=0.28$ MeV.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.‡	α #
341.20	2+	341.2.2	100	0.0	0^{+}		
857.3	$\frac{-}{4^{+}}$	516.1 2	100	341.20	2+		
1469.6	(3^{-})	611.8 5	100 22	857.3	4+		
		1128.6 10	33 4	341.20	2+		
1499.1	6+	641.8 2	100 3	857.3	4+	(E2)	0.01265
1736.8	(5^{-})	237.7 10	11.4 18	1499.1	6+	· /	
		267.1 2	39 9	1469.6	(3^{-})		
		879.5 2	100 11	857.3	4+	D	
2154.1	(7^{-})	417.3 2	100 8	1736.8	(5^{-})	(E2)	0.0361
		655.2 10	8 <i>3</i>	1499.1	6+		
2222.7	8+	723.6 2	100	1499.1	6+		
2298.6	(8-)	144.6 10	100	2154.1	(7^{-})		
2589.4	(9 ⁻)	435.3 2	100	2154.1	(7^{-})	(E2)	0.0324
2730.5	(10^{-})	140.9 5	100 12	2589.4	(9-)		
		432.1 10	29 13	2298.6	(8^{-})		
2937.8	(11^{-})	207.2 10	22 9	2730.5	(10^{-})		
		348.4 2	100 11	2589.4	(9 ⁻)		
2982.7	10^{+}	760.1 2	100	2222.7	8+		
3128.8	(12^{-})	398.3 2	100	2730.5	(10^{-})		
3363.7	(13^{-})	425.9 2	100	2937.8	(11^{-})		
3365.1	(12^{+})	235.9 10	9 <i>3</i>	3128.8	(12^{-})		
		382.4 2	100 12	2982.7	10^{+}		
		427.1 10	32 12	2937.8	(11^{-})		
3693.9	(14^{-})	565.1 2	100	3128.8	(12^{-})		
3730.5	(14^{+})	365.4 2	100	3365.1	(12^{+})		
3942.6	(15^{-})	578.9 2	100	3363.7	(13^{-})		
4261.4	(16^{+})	530.9 2	100	3730.5	(14^{+})		
4382.1	(16 ⁻)	688.2 5	100	3693.9	(14^{-})		
4633.5	(17^{-})	690.9 <i>5</i>	100	3942.6	(15 ⁻)		
4886.7	(18^{+})	625.3 2	100	4261.4	(16^{+})		
5158.4	(18^{-})	776.3 10	100	4382.1	(16^{-})		

 $\gamma(^{168}\text{Os})$

[†] From ¹¹²Sn(⁵⁸Ni,2pγ).

[‡] From γ asymmetry ratio in ¹¹²Sn(⁵⁸Ni,2p γ), assigning $\Delta \pi$ =(no) to intraband transitions.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁶⁸₇₆Os₉₂

Adopted Levels, Gammas

¹⁶⁸₇₆Os₉₂