¹⁶⁸Hf ε decay **1997Ba26**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁶⁸Hf: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=25.95 \text{ min } 20$; $Q(\varepsilon)=1700 \ 50$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0 Others: 1961Me05, 1966Ha23, 1969Ar23, 1970Ch17.

1961Me05 report a weak β^+ component with E β +=1700 100. 1966Ha23 report ce data; sources from ¹⁷⁰Yb(α ,6n); measured E(ce), Ice (mag spect, resolution \approx 0.1%).

1997Ba26: chemically separated sources from ¹⁵⁶Gd(¹⁶O,4n), E=75 MeV; >99% ¹⁵⁶Gd targets; He jet transfer for on-line separation, reaction products dissolved In HF and separated using three resin separation columns to produce Hf and Lu sources; Al tape transport of products also used for off-line separation; three HPGe detectors (one planar, FWHM=0.5 keV At 122 keV, and two coaxial); measured Eγ, Iγ, γγ coin, γ asymmetry W(180°)/W(90° (data unstated). See also 1995Tr10.

¹⁶⁸Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	6(-)	5.5 min <i>1</i>	T _{1/2} : from Adopted Levels.
			suggested configuration: $K^{\pi} = 6^{-} (\pi 7/2[404]) + (\nu 5/2[523]) (1997Ba26).$
202.81?	3+	6.7 min 4	$\%\varepsilon + \%\beta^+ > 99.64; \% IT < 0.8 (1997 Ba26)$
			$T_{1/2}$: from Adopted Levels.
			suggested configuration: $K^{\pi}=3^+$ (π 1/2[541])+(ν 5/2[523]) (1997Ba26).
211.00 3	$(1^+, 2^+)$		suggested configuration: $K^{\pi}=1^{+}$ (π 7/2[404])-(γ 5/2[642])? (1997Ba26).
218.20 4	$(0^+, 1^+, 2^+)$		suggested configuration: $K^{\pi}=2^{+}$ (π 1/2[411])-(γ 5/2[642])? (1997Ba26).
238.89 4	$(1^+, 2, 3)$		suggested configuration: $K^{\pi} = 2^{-} (\pi 1/2[541]) - (\gamma 5/2[642])?$ (1997Ba26).
240.85 3	$(1^+, 2, 3)$		suggested configuration: $K^{\pi}=2^{-}(\pi 7/2[404])-(\nu 3/2[521])?$ (1997Ba26).
257.85 3	$(2)^{+}$		suggested configuration: $K^{\pi}=2^{+}$ (π 1/2[541])-(ν 5/2[523]) (1997Ba26).
260.12 4	(2^{-})		suggested configuration: $K^{\pi}=2^{-}$ (π 1/2[411])-(γ 5/2[523]) (1997Ba26).
273.52 10			
303.71 4	$(0^{-}, 1^{-}, 2^{-})$		suggested configuration: $K^{\pi}=1^{-}$ (π 7/2[404])-(ν 5/2[512]) (1997Ba26); alternatively, this
			could Be the configuration of the 350 level.
320.056 23	$(2)^{-}$		suggested configuration: $K^{\pi}=2^{-} (\pi 1/2[411]) \cdot (\nu 5/2[512]) (1997Ba26).$
350.11 5	(≤3)		see comment on 304 level configuration.
354.84 4	$(0^{-}, 1^{-}, 2^{-})$		suggested configuration: $K^{\pi}=1^{-}(\pi 7/2[404])-(\nu 5/2[523])$ (1997Ba26).
360.61 4	$(0^{-}, 1^{-}, 2^{-})$		suggested configuration: $K^{\pi}=0^{-} (\pi 5/2[402]) \cdot (\nu 5/2[523]) (1997Ba26).$
363.40 <i>3</i>	$(1^+, 2^-)$		
370.48 6	(≤3)		
376.74 6	(≤3)		
393.44 6	(≤3)		
395.18 6	$(0,1,2^{-})$		
417.50 3	1+,2+		suggested configuration: $K^{\pi}=2^{+}$ (π 1/2[541])-(ν 5/2[512]) (1997Ba26).
426.33 4	(1^{+})		suggested configuration: $K^{\pi} = 1^{+} (\pi \ 1/2[541]) - (\nu \ 3/2[521]) (1997Ba26).$
428.15 3	(1^{+})		suggested configuration: $K^{\pi} = 1^{+} (\pi 1/2[541]) + (\nu 1/2[521]) (1997Ba26).$
431.29 5	$(0^{-},1)$		
441.78 3	1+		suggested configuration: $K^{\pi} = 1^{+} (\pi^{-7}/2[523]) - (\nu^{-5}/2[523]) (1997/Ba26).$
480.10 6	(. A)		
584.32 6	(≤ 4)		
585.59 J	(0,1)		
595.00 0	(0,1,2)		
710 50 11	(≤ 3)		
719.30 11	(≤ 4)		
704.64.3	(≤ 3)		suggested configuration: $V^{\pi} - 1^{\pm}$ ($\pi 7/2(522)$) ($\mu 5/2(512)$) (1007De26)
1044 75 7	$(0.1.2^{-})$		suggested configuration. $\mathbf{K} = 1 (\pi 1/2[323]) - (\pi 3/2[312]) (177/1020).$
117273	(0,1,2)		
1175 82 16	(≤ 4)		
1220 59 11	(27)		
1241 23 10	$(0.1.2^{-})$		
1211.25 10	(0,1,2)		

Continued on next page (footnotes at end of table)

¹⁶⁸Hf ε decay 1997Ba26 (continued)

¹⁶⁸Lu Levels (continued)

E(level)	J ^{π‡}
1307.93 12	(0,1)
1331.49 10	$(0,1,2^{-})$
1349.3 <i>3</i>	(0,1)

[†] From least-squares fit to $E\gamma$, holding E(3⁺ isomer) fixed At 202.81. Uncertainties do not include uncertainty of 0.12 keV for 202.81 level. note, however, that the energy of the isomer is only tentative.

[‡] From Adopted Levels.

ε, β^+ radiations

$\%\beta^+$ is small ($\approx 1\%$ to 3%) (1961Me05).

 $\log ft$, $I\varepsilon$ values are given for only the strongest branches. the absence of multipolarity information for many low energy transitions and the uncertainties In decay scheme normalization and level energies render log ft and intensity balances unreliable In most cases.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
$(3.5 \times 10^2 5)$	1349.3		0.38 19	5.7 3	0.38 19	εK=0.779 12; εL=0.167 9; εM+=0.053 4
$(3.7 \times 10^2 5)$	1331.49					
$(3.9 \times 10^2 5)$	1307.93		0.42 20	5.82 25	0.42 20	εK=0.786 9; εL=0.162 7; εM+=0.0512 24
$(4.6 \times 10^2 5)$	1241.23					
$(6.6 \times 10^2 5)$	1044.75					
$(9.1 \times 10^2 5)$	794.64		11 5	5.20 21	11 5	εK=0.8152 12; εL=0.1413 9; εM+=0.0435 3
$(1.11 \times 10^{3 \ddagger} 5)$	595.00					
$(1.11 \times 10^3 5)$	585.59		0.6 3	6.65 23	0.6 3	εK=0.8189 8; εL=0.1386 6; εM+=0.04252 20
$(1.26 \times 10^3 5)$	441.78	0.003 4	49 24	4.85 22	49 24	av Eβ=122 24; εK=0.8206 6; εL=0.1373 5;
						<i>ε</i> M+=0.04205 <i>15</i>
$(1.27 \times 10^3 5)$	431.29		0.48 25	6.87 <i>23</i>	0.48 25	εK=0.8207 6; εL=0.1372 5; εM+=0.04202 15
$(1.27 \times 10^3 5)$	428.15		1.4 7	6.41 22	1.4 7	εK=0.8207 5; εL=0.1372 4; εM+=0.04201 15
$(1.27 \times 10^3 5)$	426.33		0.45 23	6.90 23	0.45 23	εK=0.8207 5; εL=0.1372 4; εM+=0.04200 15
$(1.30 \times 10^{3 \ddagger} 5)$	395.18					
$(1.34 \times 10^{3 \ddagger} 5)$	363.40					
$(1.34 \times 10^{3 \ddagger} 5)$	360.61					

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{168}Lu)$

I γ normalization: Σ (I(γ +ce) to 3⁺ isomer)=100 can Be assumed since No significant ε + β ⁺ feeding to 6⁽⁻⁾ g.s. or 3⁺ 203-keV isomer would Be expected from 0⁺ ¹⁶⁸Hf. however, many γ rays from E>218 levels feed into the 211 and 218 levels and the very low energy transitions which must, therefore, depopulate the 211 and 218 levels have not been observed. if there were No ε + β ⁺ feeding to the 211 or 218 level, one could normalize the decay scheme using Σ (I(γ +ce) to 203+211+218 levels from E(level)>218)=100, and this May Be how 1997Ba26 obtain their suggested I γ normalization of 0.075 9. However, half the transitions involved In the decay scheme normalization have No multipolarity indicated here; if α =0 were assumed for all of these, I γ normalization=0.0744 *16* and if, alternatively, the larger of α (M1) and α (E2) were assumed for all, I γ normalization=0.0255 *19*. consequently, the evaluator has used I γ normalization=0.050 *24* to obtain an approximate normalization. note that I γ normalization will Be reduced if ε + β ⁺ feeding does occur to the 211 and/or 218 levels.

Observed	x-ray Data	(1995Tr10) (I(x) Rel	ative To	$1(184\gamma)=1$.00):			
	E(x ray) I Lu $K\alpha_2$ x ray 52.97 Lu $K\alpha_1$ x ray 54.07 Lu $K\beta_{13}$ x ray 61.20 Lu $K\beta_2$ x ray 62.96 Lu L_γ x ray 10.43		I(x ra 488 854 288 1 816 5 12.0	ay) 30 13 5 5 1					
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α ^e	Comments
(5.7 <mark>&</mark>)		360.61	$(0^{-}, 1^{-}, 2^{-})$	354.84	$(0^{-}, 1^{-}, 2^{-})$				
(7.2 ^{&})		218.20	$(0^+, 1^+, 2^+)$	211.00	$(1^+, 2^+)$				
(8.2 ^{&})		211.00	$(1^+, 2^+)$	202.81?	3+				
(13.4 ^{&})		273.52		260.12	(2 ⁻)				Ti(13.4) \geq Ti(119.9); the latter ranges from 1.6 <i>l</i> (if E1) to 4.2 β (if M1).
14.40 5	1.00 10	794.64	1+	780.29	(≤3)				
(15.4 <mark>&</mark>)		218.20	$(0^+, 1^+, 2^+)$	202.81?	3+				
(16.0 ^{&})		376.74	(≤3)	360.61	$(0^{-}, 1^{-}, 2^{-})$				
17.53 ^f 9	1.70 20	257.85	$(2)^{+}$	240.85	(1+,2,3)				
24.25 3	13.1 15	441.78	1+	417.50	1+,2+	M1+E2	0.084	55.0	α (L)=42.5 7; α (M)=9.83 15; α (N+)=2.63 4 α (N)=2.30 4; α (O)=0.319 5; α (P)=0.01462 22 Lee(L1) \approx 50; L1:L2:L3:M:N= \approx 50; \approx 15: \approx 10:20:5 (1966Ha23)
x27 52 [#]	3 0 [#] 3								100(E1)-000, E1.E2.E5.Mit (-000-10-10.20.5 (1)-001425).
27.82 7	1.20 20	238.89	$(1^+, 2, 3)$	211.00	$(1^+, 2^+)$				
29.80 7	0.80 10	240.85	(1+,2,3)	211.00	$(1^+, 2^+)$				
35.9 5	< 0.7	238.89	$(1^+, 2, 3)$	202.81?	3+				
38.045	1.30 20	240.85	$(1^+, 2, 3)$	202.81?	3+				$L_{2}(1) = 10$ $L_{2}(12) = 10$ $L_{2}(12) = 10$ $(1000 H_{2})$
*40.2°		202 71	(0-1-2-)	2(0.12	$\langle 2-\rangle$			7.101 7	(L) = 5E1.5 = (M) = 12.12 = (M) = 2.2
43.0/J 12	2.30 20	303./1	(0,1,2)	260.12	(2)	[M1,E2]		/.×10 ¹ /	$\alpha(L)=5.E1 \ 5; \ \alpha(M)=15 \ 15; \ \alpha(N+)=3 \ 3$ $\alpha(N)=3 \ 3; \ \alpha(O)=0.4 \ 4; \ \alpha(P)=0.0015 \ 12$

From ENSDF

					¹⁶⁸ Hf	ε decay 1	997Ba2	6 (continued)				
γ ⁽¹⁶⁸ Lu) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	a ^e	Comments			
	4.3 <i>4</i> 2.4 <i>3</i> <0.7	350.11 260.12	(≤3) (2 [−])	303.71 211.00	$(0^{-},1^{-},2^{-})$ $(1^{+},2^{+})$	[E1]		0.447 15	α (L)=0.348 <i>12</i> ; α (M)=0.079 <i>3</i> ; α (N+)=0.0204 <i>7</i> α (N)=0.0180 <i>6</i> ; α (O)=0.00232 <i>8</i> ; α (P)=8.49×10 ⁻⁵ 24 Ice(L1)= ¹¹ :CeM) weak (1966Ha23).			
51.2 ^c 5	5.8 ^b 10	354.84	$(0^-, 1^-, 2^-)$	303.71	(0^-,1^-,2^-)	[M1,E2]		3.×10 ¹ 3	$\alpha(L)=24\ 21;\ \alpha(M)=6\ 6;\ \alpha(N+)=1.5\ 13$			
55.03 10	60.5 4	257.85	$(2)^{+}$	202.81?	3+	M1+E2	0.16	4.41	$\alpha(N)=1.5 \ 12; \ \alpha(O)=0.16 \ 14; \ \alpha(P)=0.0009 \ 7$ $\alpha(L)=3.41 \ 6; \ \alpha(M)=0.785 \ 12; \ \alpha(N+)=0.211 \ 4$ $\alpha(N)=0.184 \ 3; \ \alpha(O)=0.0260 \ 4; \ \alpha(P)=0.001281 \ 20$ Mult $\delta: \ \text{Lec}(L1)=60; \ L1:L3:M:N=60:\approx6:16:4 \ (1966Ha23)$			
56.9 ^c 5	4.9 10	360.61	$(0^-, 1^-, 2^-)$	303.71	(0^-,1^-,2^-)	(M1)		3.15 10	$\alpha(L)=2.45 \ 8; \ \alpha(M)=0.551 \ 17; \ \alpha(N+)=0.151 \ 5 \ \alpha(N)=0.130 \ 4; \ \alpha(O)=0.0193 \ 6; \ \alpha(P)=0.00119 \ 4$			
57.30 10	137.0 10	260.12	(2 ⁻)	202.81?	3+	(E1) [@]		0.290	$\alpha(L)=0.225 4; \alpha(M)=0.0510 8; \alpha(N+)=0.01328 20$ $\alpha(N)=0.01169 18; \alpha(O)=0.001528 23; \alpha(P)=5.90\times10^{-5}.90$			
61.92 10	10.6 ^b 10	320.056	(2)-	257.85	(2)+	E1+M2 [@]	0.29	6.06 10	$\alpha(L)=0.01109 18, \alpha(O)=0.001328 25, \alpha(L)=0.00101 9$ $\alpha(L)=4.61 8; \alpha(M)=1.140 18; \alpha(N+)=0.311 5$ $\alpha(N)=0.271 5; \alpha(O)=0.0383 6; \alpha(P)=0.00101 3$			
64.81 <i>4</i> 68.23 <i>15</i> 70.96 <i>9</i> 72.94 <i>5</i> 74.94 <i>8</i>	3.0 3 1.30 10 2.7 3 9.9 ^b 10 15.1 ^b 15	428.15 431.29 431.29 376.74 395.18	$(1^+) (0^-, 1) (0^-, 1) (\leq 3) (0, 1, 2^-)$	363.40 363.40 360.61 303.71 320.056	$(1^+,2^-) (1^+,2^-) (0^-,1^-,2^-) (0^-,1^-,2^-) (2)^-$				E_{γ}, I_{γ} : for doublet; other component unplaced.			
79.05 7 85.47 <i>3</i>	2.6 <i>3</i> 40.6 <i>24</i>	320.056 303.71	$(2)^{-}$ $(0^{-},1^{-},2^{-})$	240.85 218.20	$(1^+,2,3)$ $(0^+,1^+,2^+)$	(E1) [@]		0.527	$\alpha(K)=0.432\ 6;\ \alpha(L)=0.0743\ 11;\ \alpha(M)=0.01675\ 24;$ $\alpha(N+)=0.00441\ 7$ $\alpha(N)=0.00287\ 6;\ \alpha(Q)=0.000523\ 6;\ \alpha(R)=2.27\times10^{-5}\ 4$			
86.96 <i>6</i>	12.8 8	441.78	1+	354.84	(0 ⁻ ,1 ⁻ ,2 ⁻)	(E1) [@]		0.504	$\alpha(N)=0.00367 \ 6, \ \alpha(O)=0.000323 \ 8, \ \alpha(I)=2.27\times10^{-4} \ 4$ $\alpha(K)=0.413 \ 6; \ \alpha(L)=0.0709 \ 10; \ \alpha(M)=0.01597 \ 23; \ \alpha(N+)=0.00421 \ 6$ $\alpha(N)=0.00369 \ 6; \ \alpha(O)=0.000499 \ 7; \ \alpha(P)=2.18\times10^{-5} \ 3$			
^x 87.70 [#] 89.57 8 91.58 6	32.5 [#] 20 1.00 10 1.80 20	393.44 395.18	(≤ 3) (0,1,2 ⁻)	303.71 303.71	$(0^-, 1^-, 2^-)$ $(0^-, 1^-, 2^-)$							
92.68 <i>3</i>	48 <i>3</i>	303.71	(0^-,1^-,2^-)	211.00	(1+,2+)	(E1) [@]		0.427	α (K)=0.351 5; α (L)=0.0594 9; α (M)=0.01338 19; α (N+)=0.00353 5			
97.46 <i>3</i>	70 4	417.50	1+,2+	320.056	(2)-	(E1+M2)	0.45	6.63	$\begin{aligned} &\alpha(\text{N})=0.00309 \ 5; \ \alpha(\text{O})=0.000421 \ 6; \ \alpha(\text{P})=1.87\times10^{-5} \ 3\\ &\alpha(\text{K})=4.74 \ 7; \ \alpha(\text{L})=1.440 \ 21; \ \alpha(\text{M})=0.350 \ 5; \\ &\alpha(\text{N}+)=0.0956 \ 14\\ &\alpha(\text{N})=0.0831 \ 12; \ \alpha(\text{O})=0.01186 \ 17; \ \alpha(\text{P})=0.000621 \ 9\\ &\text{Mult.},\delta: \ \text{from 1997Ba26}; \ \alpha(\text{exp})\approx7 \ \text{from intensity} \\ &\text{balance. other: } \text{Ice}(\text{K})\approx90 \ \text{for doublet; } \text{L1:M=18:5} \\ &(1966\text{Ha23}). \end{aligned}$			
^x 99.65 6	1.60 20											

4

 $^{168}_{71}\mathrm{Lu}_{97}$ -4

L

From ENSDF

 $^{168}_{71} Lu_{97}$ -4

¹⁶⁸ Hf ε decay 1997Ba26 (continued)														
	$\gamma(^{168}Lu)$ (continued)													
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments					
105.76 8 x106.81 6	1.50 <i>20</i> 1.80 <i>20</i>	363.40	(1 ⁺ ,2 ⁻)	257.85	(2) ⁺									
108.10 <i>3</i> 111.32 <i>6</i>	5.2 ^b 3 2.7 3	428.15 350.11	(1^+) (≤ 3)	320.056 238.89	$(2)^{-}$ (1 ⁺ ,2,3)									
113.68 6	3.3 ^b 3	417.50	1+,2+	303.71	(0^-,1^-,2^-)	(E1)		0.250	α (K)=0.207 3; α (L)=0.0338 5; α (M)=0.00761 11; α (N+)=0.00202 3					
115.84.5	2.9.3	354.84	$(0^{-}, 1^{-}, 2^{-})$	238.89	$(1^+, 2, 3)$				α (N)=0.001764 25; α (O)=0.000243 4; α (P)=1.133×10 ⁻⁵ 16					
117.30 3	87 4	320.056	$(2)^{-}$	202.81?	3+	(E1+M2)	0.56	4.66	α(K)=3.42 5; α(L)=0.950 14; α(M)=0.229 4; α(N+)=0.0626 9 α(N)=0.0544 8; α(O)=0.00779 11; α(P)=0.000416 6 Mult.,δ: from 1997Ba26; α(exp)≈4.8 from intensity balance. other: Ice(K)=100; K:L1:M=100:15:4 (1966Ha23).					
119.92 8	1.30 10	393.44	(≤3)	273.52	(1+2.2)									
122.56 3	10.2.6	363.40	$(1^+,2^-)$	240.85	$(1^+,2,3)$ $(0^+,1^+,2^+)$				windudad In fra. 2 of 1007Dc26					
131.81 136 74 [#]	5.5 5 18.4 [#] 13	354.84	(≤ 3) $(0^{-}, 1^{-}, 2^{-})$	218.20	(0, 1, 2) $(0^+, 1^+, 2^+)$	[F1]		0 1540	γ included in fig. 2 of 1997 Ba20. $\alpha(K) = 0.1278 I R \alpha(L) = 0.0204 3 \alpha(M) = 0.00458 7$					
150.74	10.7 15	554.04	(0 ,1 ,2)	210.20	(0,1,2)	[L1]		0.1540	$\alpha(N+)=0.001220 \ 17$					
138.38 11	3.4 10	441.78	1+	303.71	$(0^{-}, 1^{-}, 2^{-})$	(E1)		0.1493	$\alpha(N)=0.001065 \ 15; \ \alpha(O)=0.0001483 \ 21; \ \alpha(P)=7.19\times10^{-6} \ 10$ γ included In fig. 2 of 1997Ba26. $\alpha(K)=0.1239 \ 18; \ \alpha(L)=0.0198 \ 3; \ \alpha(M)=0.00444 \ 7;$					
					(* ,- ,_)	()			$\alpha(N+)=0.001182 17$					
130.07.10	2710	350 11	(<3)	211.00	(1+2+)				α (N)=0.001031 <i>15</i> ; α (O)=0.0001436 <i>21</i> ; α (P)=6.98×10 ⁻⁶ <i>10</i>					
142.44 3	14.9 9	360.61	(≤ 3) $(0^-, 1^-, 2^-)$	218.20	$(1^{+},2^{+})$ $(0^{+},1^{+},2^{+})$	(E1) [@]		0.1384	$\alpha(K)=0.1149 \ 17; \ \alpha(L)=0.0183 \ 3; \ \alpha(M)=0.00410 \ 6; \ \alpha(N+)=0.001093 \ 16$					
									$\alpha(N)=0.000953 \ 14; \ \alpha(O)=0.0001330 \ 19; \ \alpha(P)=6.50\times10^{-6} \ 10$					
143.91 3	18.7 11	354.84	(0^-,1^-,2^-)	211.00	(1+,2+)	(E1) [@]		0.1347	α (K)=0.1119 <i>16</i> ; α (L)=0.01775 <i>25</i> ; α (M)=0.00399 <i>6</i> ; α (N+)=0.001063 <i>15</i>					
						Ø			α (N)=0.000927 <i>13</i> ; α (O)=0.0001294 <i>19</i> ; α (P)=6.34×10 ⁻⁶ 9					
149.64 3	13.9 8	360.61	(0 ⁻ ,1 ⁻ ,2 ⁻)	211.00	$(1^+, 2^+)$	(E1) [@]		0.1216	$\alpha(K)=0.1011 \ 15; \ \alpha(L)=0.01597 \ 23; \ \alpha(M)=0.00358 \ 5; \ \alpha(N+)=0.000956 \ 14$					
152.31.5	6.9.5	370.48	(<3)	218.20	$(0^+, 1^+, 2^+)$				$\alpha(N)=0.000834 \ I2; \ \alpha(O)=0.0001166 \ I7; \ \alpha(P)=5.76\times10^{-6} \ 8$					
154.72 8	2.30 20	393.44	(<u>≤</u> 3) (≤3)	238.89	$(1^+, 2, 3)$									
157.41 3	71 4	417.50	1+,2+	260.12	(2 ⁻)	(E1)		0.1065	α (K)=0.0886 <i>13</i> ; α (L)=0.01392 <i>20</i> ; α (M)=0.00312 <i>5</i> ; α (N+)=0.000834 <i>12</i>					
150 46 5	2.0.10	270 49	(<2)	211.00	(1+2+)				α (N)=0.000727 <i>11</i> ; α (O)=0.0001020 <i>15</i> ; α (P)=5.08×10 ⁻⁶ 8 Mult.: from 1997Ba26. Ice(K)=3.5 (1966Ha23).					
159.66 3	5.0 <i>10</i> 41 <i>3</i>	370.48 417.50	(≤ 3) 1 ⁺ ,2 ⁺	257.85	$(1^+,2^+)$ $(2)^+$	(M1+E2)	0.62	0.869	see comment on 159.77. $\alpha(K)=0.672 \ 10; \ \alpha(L)=0.1515 \ 22; \ \alpha(M)=0.0353 \ 5;$					

S

 $^{168}_{71}Lu_{97}$ -5

I

					$^{168}\mathrm{Hf}\varepsilon$	decay 1	997Ba26 (co	ontinued)
						$\gamma(^{168}Lu)$	(continued)	
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments
1/0 50 /		262.40	(1+ 2-)					α (N+)=0.00945 <i>14</i> α (N)=0.00826 <i>12</i> ; α (O)=0.001140 <i>16</i> ; α (P)=4.85×10 ⁻⁵ <i>7</i> Mult., δ : from 1997Ba26. Ice(K)= ¹⁹ ,K/L1=5.4 (1966Ha23); probably for 159.7 γ +159.4 γ doublet dominated by 159.7 γ .
160.59 6 171.13 <i>15</i>	5.6 5 3.3 <i>3</i>	363.40 431.29	$(1^+,2^-)$ $(0^-,1)$	202.81?	3 ⁻ (2 ⁻)			
175.60 16	3.2 3	780.29	(≤ 3)	605.15	(≤3)	0		
181.65 3	66 4	441.78	1+	260.12	(2 ⁻)	(E1) [@]	0.0733	α (K)=0.0612 9; α (L)=0.00948 14; α (M)=0.00213 3; α (N+)=0.000569 8
183.93 <i>3</i>	100.0 <i>10</i>	441.78	1+	257.85	(2)+	(M1)	0.654	$\alpha(N)=0.000495 \ 7; \ \alpha(O)=6.99\times10^{-3} \ 10; \ \alpha(P)=3.58\times10^{-6} \ 5 \\ \alpha(K)=0.546 \ 8; \ \alpha(L)=0.0837 \ 12; \ \alpha(M)=0.0188 \ 3; \ \alpha(N+)=0.00514 \ 8 \\ \alpha(N)=0.00444 \ 7; \ \alpha(O)=0.000659 \ 10; \ \alpha(P)=4.08\times10^{-5} \ 6 \\ Mult.: \ from \ 1997Ba26. \ Ice(K)=33; \ K/L1=4.13 \ (1966Ha23).$
189.46 <i>15</i>	4.9 5	794.64	1+	605.15	(≤3)			
192.33 5	14.7 12	431.29	$(0^{-},1)$	238.89	$(1^+, 2, 3)$			Ice(K)=5.5; K/L1>1.8 (1966Ha23).
199.33 5	9.5 8	417.50	1+,2+	218.20	(0+,1+,2+)	(M1)	0.523	$\alpha(K)=0.437$ 7; $\alpha(L)=0.0668$ 10; $\alpha(M)=0.01502$ 21; $\alpha(N+)=0.00411$ 6 $\alpha(N)=0.00355$ 5; $\alpha(O)=0.000526$ 8; $\alpha(P)=3.26\times10^{-5}$ 5 Mult.: from 1997Ba26. Ice(K)=9 (1966Ha23).
202.81 ^{<i>f</i>} 12	0.75 9	202.81?	3+	0.0	6(-)	[E3]	1.83	$\alpha(K)=0.502$ 7; $\alpha(L)=1.003$ 15; $\alpha(M)=0.256$ 4; $\alpha(N+)=0.0666$ 10 $\alpha(N)=0.0593$ 9; $\alpha(O)=0.00725$ 11; $\alpha(P)=4.03\times10^{-5}$ 6 Ice(K)=10 (1966Ha23).
206.46 6	31.6 10	417.50	1+,2+	211.00	(1+,2+)	(M1)	0.474	$\alpha(K)=0.396\ 6;\ \alpha(L)=0.0606\ 9;\ \alpha(M)=0.01362\ 19;\ \alpha(N+)=0.00372\ 6$ $\alpha(N)=0.00322\ 5;\ \alpha(O)=0.000477\ 7;\ \alpha(P)=2.96\times10^{-5}\ 5$ Mult: from 1997Ba26. Lee(K)=9 (1966Ha23)
208.14 5 210.07 9	6.0 <i>6</i> 4.2 <i>4</i>	426.33 794.64	(1^+) 1^+	218.20 584.32	$(0^+, 1^+, 2^+)$ (≤ 4)			
213.01 9	2.00 20	431.29	$(0^{-},1)$	218.20	$(0^+, 1^+, 2^+)$			
214.56 8	3.1 3	417.50	1+,2+	202.81?	3+	[M1,E2]	0.32 11	$\alpha(K)=0.25 \ 11; \ \alpha(L)=0.059 \ 5; \ \alpha(M)=0.0139 \ 17; \ \alpha(N+)=0.0037 \ 4 \\ \alpha(N)=0.0032 \ 4; \ \alpha(O)=0.000442 \ 15; \ \alpha(P)=1.7\times10^{-5} \ 10 \\ Mult.: shown As (M1) on level scheme drawing but omitted from table 1 of 1997Ba26.$
217.13 6	11.1 7	428.15	(1^{+})	211.00	$(1^+, 2^+)$			
220.23 ^c 10	0.70 10	431.29	$(0^{-},1)$	211.00	$(1^+, 2^+)$			
223.51 5	9.0 ^b 10	426.33	(1^{+})	202.81?	3+			$Ice(K) = {}^{4}CeL1$ weak (1966Ha23).
225.23 6	8.2 6	428.15	(1^{+})	202.81?	3+			
230.75 <i>3</i>	11.0 7	585.59	(0,1)	354.84	$(0^{-}, 1^{-}, 2^{-})$			Ice(K)=2.5 (1966Ha23).
234.41 8	2.40 20	595.00	$(0,1,2^{-})$	360.61	$(0^{-}, 1^{-}, 2^{-})$			
^x 238.26 15	1.40 ⁰ 10							
240.15 6 ^x 248.4 ^a	4.3 4	595.00	(0,1,2 ⁻)	354.84	(0-,1-,2-)			Ice(K)=1.5 (1966Ha23). Ice(K)=4 (1966Ha23).
277.29 6	2.9 3	480.10	6	202.81?	3+			
324.11 5	8.77	584.32	(≤4)	260.12	(2^{-})			Ice(K)=1.4 (1966Ha23).

6

From ENSDF

¹⁶⁸₇₁Lu₉₇-6

¹⁶⁸Hf ε decay **1997Ba26** (continued)

$\gamma(^{168}Lu)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^e	Comments
^x 330.8 [#]	#							seen only In $\gamma\gamma$ coin.
345.08 6	11.2 8	605.15	(≤3)	260.12	(2 ⁻)			
349.02 9 352.87 9	2.00 <i>20</i> 6.4 <i>5</i>	719.50 794.64	(≤ 4) 1 ⁺	370.48 441.78	(≤ 3) 1 ⁺	(M1)	0.1107	$\alpha(K)=0.0928 \ 13; \ \alpha(L)=0.01398 \ 20; \ \alpha(M)=0.00314 \ 5; \ \alpha(N+)=0.000858 \ 12 \ \alpha(N)=0.000741 \ 11; \ \alpha(O)=0.0001101 \ 16; \ \alpha(P)=6.86\times10^{-6} \ 10$
363.36 <i>6</i> 368.33 <i>9</i>	15.2 <i>10</i> 5.7 <i>5</i>	794.64 794.64	1^+ 1^+	431.29 426.33	$(0^{-},1)$ (1^{+})	[M1,E2]	0.07 3	$\alpha(K) = 0.0653; \ \alpha(L) = 0.010421; \ \alpha(M) = 0.00244; \ \alpha(N+) = 0.0006512$ $\alpha(N) = 0.0005610; \ \alpha(O) = 8.0 \times 10^{-5}19; \ \alpha(P) = 4.1 \times 10^{-6}21$
x372.78.15	0.90 ^b 10							u(1)=0.00000 10, u(0)=0.0×10 17, u(1)=1.1×10 21
377.50 14	9.2 7	794.64	1+	417.50	1+,2+	(M1)	0.0926	$\alpha(K)=0.0776 \ 11; \ \alpha(L)=0.01167 \ 17; \ \alpha(M)=0.00262 \ 4; \ \alpha(N+)=0.000716 \ 10 \ \alpha(N)=0.000716 \ 10 \ \alpha(N)=0$
^x 384.72 [#]	11.3 [#] 8							$a(\mathbf{N})=0.000019$ 9, $a(\mathbf{O})=9.19\times10^{-1}$ 15, $a(\mathbf{P})=5.75\times10^{-1}$ 8
391.37^{f} 9	2.6.3	1172.7	(<4)	780.29	(<3)			
401.21 9	7.5 6	794.64	1^{+}	393.44	(≤3)			
^x 414.0 [#]	#							seen only In $\gamma\gamma$ coin.
417.62 9	22.1 16	794.64	1+ 1+	376.74	(≤3)			
424.26 9	3./4	794.64	1 · 1+	3/0.48	(≤ 3)	(\mathbf{T}_1)	0.00964.12	(X) = 0.0779 11, $(X) = 0.001059$ 15, $(X) = 0.000226$ 4,
434.14 0	55.0 25	/94.04	1.	300.01	(0 ,1 ,2)	(EI) •	0.00804 13	$\alpha(\mathbf{N})=0.00728 11; \alpha(\mathbf{L})=0.001058 15; \alpha(\mathbf{M})=0.000258 4; \\ \alpha(\mathbf{N}+)=6.39\times 10^{-5} 9$
r (a < a#	#							$\alpha(N) = 5.54 \times 10^{-5} 8; \ \alpha(O) = 8.05 \times 10^{-6} 12; \ \alpha(P) = 4.64 \times 10^{-7} 7$
^{436.0} 439.94 8	9.0 8	794.64	1+	354.84	(0^-,1^-,2^-)	(E1)	0.00839 12	seen only $\ln \gamma \gamma$ coin. $\alpha(K)=0.00707 \ 10; \ \alpha(L)=0.001026 \ 15; \ \alpha(M)=0.000229 \ 4;$ $\alpha(M)=0.000229 \ 4;$
								$\alpha(N+)=0.20\times 10^{-9}$ $\alpha(N)=5.37\times 10^{-5}.8$ $\alpha(O)=7.81\times 10^{-6}.11$ $\alpha(P)=4.51\times 10^{-7}.7$
444 54 [#]	15 3 [#] 12	794 64	1+	350 11	(<3)			included In fig. 2 of 1997Ba26 but not In table I
474.62 6	5.4 4	794.64	1+	320.056	$(2)^{-}$	[E1]	0.00708 10	$\alpha = 0.00708 \ I0; \ \alpha(K) = 0.00597 \ 9; \ \alpha(L) = 0.000862 \ I2; \ \alpha(M) = 0.000192$ $3; \ \alpha(N+) = 5.21 \times 10^{-5} \ 8$ $\alpha(N) = 4.51 \times 10^{-5} \ 7; \ \alpha(Q) = 6.57 \times 10^{-6} \ I0; \ \alpha(R) = 3.83 \times 10^{-7} \ 6$
x484 0 [#]	#							seen only. In var coin
490.87 6	29.2 20	794.64	1+	303.71	(0^-,1^-,2^-)	(E1) [@]	0.00657 10	$\alpha(K)=0.00555 \ 8; \ \alpha(L)=0.000799 \ 12; \ \alpha(M)=0.0001781 \ 25; \ \alpha(N+1)=4.83\times10^{-5} \ 7$
								$\alpha(N) = 4.18 \times 10^{-5} \text{ fr } \alpha(O) = 6.10 \times 10^{-6} \text{ gr } \alpha(P) = 3.56 \times 10^{-7} \text{ 5}$
^x 493.02 9	5.3 4							
534.45 6	19.4 <i>13</i>	794.64	1+	260.12	(2 ⁻)	(E1) [@]	0.00546 8	α (K)=0.00461 7; α (L)=0.000661 10; α (M)=0.0001473 21; α (N+)=3.99×10 ⁻⁵ 6
536.76 9	3.3 3	794.64	1+	257.85	(2)+	(M1)	0.0370	α (N)=3.46×10 ⁻⁵ 5; α (O)=5.05×10 ⁻⁶ 7; α (P)=2.97×10 ⁻⁷ 5 α (K)=0.0310 5; α (L)=0.00461 7; α (M)=0.001034 15;

L

From ENSDF

¹⁶⁸₇₁Lu₉₇-7

					¹⁶⁸ Hf	ε decay	1997Ba	26 (continued)
						γ (¹⁶⁸ I	Lu) (contir	nued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.‡	α ^e	Comments
576.42 6	8.4 7	794.64	1+	218.20	(0+,1+,2+)	(M1)	0.0308	$\alpha(N+)=0.000283 \ 4$ $\alpha(N)=0.000244 \ 4; \ \alpha(O)=3.63\times10^{-5} \ 5; \ \alpha(P)=2.27\times10^{-6} \ 4$ $\alpha(K)=0.0258 \ 4; \ \alpha(L)=0.00384 \ 6; \ \alpha(M)=0.000859 \ 12; \ \alpha(N+)=0.000235 \ 4$ $\alpha(N)=0.000203 \ 3; \ \alpha(O)=3.02\times10^{-5} \ 5; \ \alpha(P)=1.89\times10^{-6} \ 3$
583.59 9	2.0 2	794.64	1+	211.00	(1+,2+)	(M1)	0.0298	$\alpha(N)=0.000205 3; \alpha(O)=3.02\times10^{-5} 5; \alpha(I)=1.03\times10^{-5} 3$ $\alpha(K)=0.0250 4; \alpha(L)=0.00371 6; \alpha(M)=0.000832 12; \alpha(N+)=0.000228 4$ $\alpha(N)=0.000197 3; \alpha(O)=2.92\times10^{-5} 4; \alpha(P)=1.83\times10^{-6} 3$
^x 640.10 9	1.20 10							u(i)=0.000177 5; u(0)=2.52×10 7; u(1)=1.05×10 5
^x 706.36 9	0.80 <mark>b</mark> 10							
^x 712.08 9	1.30 10							
724.69 6	2.7 3	1044.75	$(0,1,2^{-})$	320.056	(2)-			
^x 737.20 9	1.00 10	1000 50		400.10				
740.49 9	1.00 10	1220.59	$(0, 1, 0^{-})$	480.10	(1)			
747.15 9	1.10 10	1331.49	(0,1,2)	584.32	(≤4)			
765.19	1.5" 1	1349.3	(0,1)	584.32	(≤4)			included In fig. 2 of 1997Ba26.
*837.35 9	1.40~10							
*859.73"	2.2" 2	1207.02	(0, 1)	441 70	1+			
872 11 15	2.20 20	1307.93	(0,1)	303 71	$(0^{-} 1^{-} 2^{-})$			
x001 7 3	0.00^{b} 10	1175.02	(1)	505.71	(0,1,2)			
912.6.3	1 60 20	1172.7	(<4)	260.12	(2^{-})			
937.52.9	2.7 3	1241.23	$(0.1.2^{-})$	303.71	$(0^{-}, 1^{-}, 2^{-})$			
988.0 <i>3</i>	2.6 3	1307.93	(0,1)	320.056	(2)-			
1004.0 <i>3</i>	1.70 20	1307.93	(0,1)	303.71	$(0^{-}, 1^{-}, 2^{-})$			
1047.9 <i>3</i>	1.80 20	1307.93	(0,1)	260.12	(2 ⁻)			
1071.6 <i>3</i>	2.9 ⁶ 3	1331.49	$(0,1,2^{-})$	260.12	(2 ⁻)			
1091.4 3	6.0 ^b 5	1349.3	(0,1)	257.85	$(2)^{+}$			
^x 1096.0 6	2.50 20							
^x 1119.2 6	1.30 ^b 10							
^x 1193.1 9	1.00 <mark>b</mark> 10							
^x 1311.3 9	0.70 10							

[†] From 1997Ba26, except As noted.

[‡] Deduced by 1997Ba26, based on ce data from 1966Ha23 (analyzed by 1997Ba26) and unenumerated γ asymmetry data from 1997Ba26, except As noted.

[#] From 1995Tr10 (initial account of study reported by 1997Ba26). transition is absent from table I of 1997Ba26. The uncertainty In $E\gamma$ has been omitted here because 1995Tr10 give energy uncertainties which are consistently much lower (and probably less realistic) than uncertainties from 1997Ba26.

^(a) $I_{\gamma>10}$ but transition not observed by 1966Ha23 in ce spectrum; this favors E1 multipolarity (1997Ba26). ^(b) From level-energy difference. transition expected and included In fig. 2 of 1997Ba26, but it has not yet been observed.

^{*a*} From ce measurements (1966Ha23).

From ENSDF

¹⁶⁸₇₁Lu₉₇-8

 $\gamma(^{168}$ Lu) (continued)

- ^b Corrected for contribution from impurity (x or ¹⁶⁸Lu ε decay line) (1997Ba26).
- ^c Observed by 1997Ba26 In $\gamma\gamma$ coin only.
- ^d For absolute intensity per 100 decays, multiply by 0.050 24.
- ^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁶⁸₇₁Lu₉₇

