Adopted Levels, Gammas

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010		

 $Q(\beta^{-}) = -7.66 \times 10^{3} \ 14$; $S(n) = 9.71 \times 10^{3} \ 8$; $S(p) = -5.0 \times 10^{2} \ 11$; $Q(\alpha) = 6381 \ 9 \ 2012Wa38$ Note: Current evaluation has used the following Q record $-7700 \ SY9730 \ syst-470 \ SY6480 \ 50 \ 2003Au03,2009AuZZ.$ $\Delta Q(\beta) = 240, \ \Delta S(n) = 150, \ \Delta S(p) = 170 \ (2003Au03, 2009AuZZ).$

Identification: comparison of 108 Cd(63 Cu,xn) excitation functions for known and new Ir activities; E α for (63 Cu,3n) product is consistent with E α predicted for 168 Ir by α -energy systematics (1978Ca11).

Α

В

¹⁶⁸Ir Levels

Cross Reference (XREF) Flags

 172 Au α decay (22 ms)

 172 Au α decay (7.7 ms)

E(level)	T _{1/2}	XREF	Comments	
0.0 222 ms +60-40 A		A	$\% \alpha \le 100; \ \% \varepsilon + \% \beta^+ = ?; \ \% p = ?$ $\% \alpha: only \alpha decay has been observed, but \varepsilon + \beta^+ and p decay are possible. Gross \beta decay theory (1973Ta30) predicts T_{1/2}(\varepsilon + \beta^+) \approx 1 s implying \% \varepsilon + \% \beta^+ \approx 22\% and 1997Mo25 predict T_{1/2}(\varepsilon + \beta^+) = 359 ms implying \% \varepsilon + \% \beta^+ = 62\%, so \varepsilon + \beta^+ branching is expected to Be appreciable.T_{1/2}: \text{ from } 6230\alpha(t) (2009\text{Ha}42). \text{ Other } T_{1/2}: 125 \text{ ms } 40 \text{ from } 6227\alpha(t) (1996\text{Pa}01); \text{ not}$	
			unambiguously differentiated from A=169, but $E\alpha$ favors A=168 assignment although it is unclear whether it corresponds to g.s. or isomeric state decay. J ^{π} : HF≤4 for α decay from low-spin ¹⁷² Au if $\%\alpha(^{172}Au)=100$, so low J is expected for this level	
0.0+x	0.0+x 159 ms +16-13		$%\alpha$ =77 9; %ε+%β ⁺ ≤23 9; %p=? %α: weighted average of 82 14 (1996Pa01) and 75 11 (2009Ha42); only α decay has been observed, but a significant ε+β ⁺ branch is expected and p decay is probably possible also.	
			T _{1/2} : weighted average of 161 ms 21 from 6323α (t) (1996Pa01), 160 ms +30-20 from 6320α (t) and 153 ms +40-30 from 6260α (t) (2009Ha42). See also the comment on T _{1/2} (g.s.).	
72+x 12		В	E(level): from difference between $E\alpha$ feeding this level and that feeding the 0.0+x level in 172 Au α decay (7.7 ms) (2009Ha42). J ^{π} : probably a high-spin state; fed in α decay from high-J 172 Au.	
			γ ⁽¹⁶⁸ Ir)	
E _i (level)	Ε _γ Ιγ	E_f	Comments	
72+x	$72^{\dagger} 12 100$	0.0+x	E_{γ} : from level energy difference. Consistent with E=65.0 4 and 73.0 6 for photons observed	

 72^{\dagger} 12 100 0.0+x E_{γ} : from level energy difference. Consistent with E=65.0 4 and 73.0 6 for photons observed to Be correlated with 6800α from 172 Au(7.7 ms), but those energies (and their relative I γ) are also close to expectation for K α x ray and K β x ray for Ir so they possibly result, instead, from a highly-converted transition at somewhat higher energy. If so, the presence of K x ray implies $E\gamma > 76$ keV, the K shell binding energy for Ir.

[†] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 γ Decay (Uncertain)

