$^{168}_{77}$ Ir₉₁-1

¹⁷²Au α decay (7.7 ms) 2009Ha42,1996Pa01,1993Se09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁷²Au: E=0+x; T_{1/2}=7.7 ms 14; Q(α)=6923 10; % α decay \approx 100.0

- ¹⁷²Au-T_{1/2}: Unweighted average of 9 ms +2-1 from 6870 α (t) (2009Ha42) and 6.3 ms 15 from 6878 α (t) (1996Pa01). others: 4 ms 1 (1993Se09, from time difference of implanted fragments and decay events); 8 ms +5-2 from 6800 α (t) (2009Ha42).
- 172 Au-J^{π}: Possibly (9⁺), analogous to that suggested by 2004GoZZ for 174 Au and 176 Au (2009Ha42).
- ¹⁷²Au-% α decay: α decay only has been observed. Proton decay is possible, but 2009Ha42 and 1993Se09 set upper limits on %p of 0.02 (from correlation between 6453 α from ¹⁷¹Pt and any preceding ¹⁷²Au decay) and 2, respectively. No experimental information about $\varepsilon + \beta^+$ decay of ¹⁷²Au is available, but gross β decay theory (1973Ta30) predicts $T_{1/2}(\varepsilon + \beta^+) \approx 0.9$ s which implies %($\varepsilon + \beta^+$) ≈ 0.9 .
- 1993Se09: source from ¹⁰⁶Cd(⁷⁰Ge,P3N), E=354 MeV; 80% ¹⁰⁶Cd target; mass separated residues implanted into double-sided Si strip detector; measured $E\alpha$, $T_{1/2}(172AU)$ from (implant)- α (t).
- 1996Pa01: sources from heavy-ion fusion-evaporation reactions; recoil mass separator, double-sided Si strip detector (FWHM \leq 20 keV); measured E α , parent T_{1/2}.
- 2009Ha42: ¹⁷²Au source from ⁹⁶Ru(⁷⁸Kr,pn γ), E=342, 348 MeV; 96% enriched ⁹⁶Ru target followed by C charge reset foil; In-flight mass separation using RITU gas-filled separator; fusion-evaporation residues implanted In 2 double-sided Si strip detectors In the GREAT spectrometer (which also includes a multiwire proportional counter, 28 Si PIN diode detectors, a segmented planar Ge detector and a HPGe clover detector) At the RITU focal plane; measured E α , α (t), α branching(¹⁶⁸Ir), α correlations.

¹⁶⁸Ir Levels

E(level)	T _{1/2}		Comments	
0.0+x 72+x <i>12</i>	159 ms +10	5- <i>13</i> 1	$\Gamma_{1/2}$: from Adopted Levels. E(level): from energy difference between α feeding this level and that feeding the 0+x level (2009Ha42). consistent with E=65.0 4 and 73.0 6 for photons observed to Be correlated with 6800 α from ¹⁷² Au, but those energies (and their relative I γ) are also close to expectation for K α x ray and K β x ray for Ir so they probably result, instead, from a highly-converted transition At somewhat higher energy. if so, the presence of K x ray implies E γ >76 keV, the K shell binding energy for Ir.	
			α radiations	
Εα	E(level)	$\mathrm{I}\alpha^{\dagger \#}$	Comments	

6800 [‡] 10	72+x	29 10	E <i>α</i> : from 2009Ha42.
6870 [‡] 6	0.0+x	70 9	Eα: weighted average of 6860 10 (1993Se09), 6878 9 (1996Pa01) and 6870 10 (2009Ha42). This
			$E\alpha$ would imply $Q(\alpha)(^{172}Au)=7034$ 9 were it a g.s. to g.s. transition (cf. $Q(\alpha)=7030$ 50 In
			2003Au03, 2009AuZZ), but it appears, instead, to connect excited states In ¹⁷² Au and In ¹⁶⁸ Ir.

[†] From I(6870 α):I(6800 α)=53 5:22 10 (2009Ha42) normalized so Σ (I α)=100.

[‡] Correlated with 6320α and 6260α from isomeric ¹⁶⁸Ir, 5623α from ¹⁶⁴Re isomer and 5412α from ¹⁶⁰Ta isomer.

[#] For absolute intensity per 100 decays, multiply by ≈ 1.0 .

¹⁷²Au α decay (7.7 ms) 2009Ha42,1996Pa01,1993Se09 (continued)

$\gamma(^{168}\mathrm{Ir})$

Eγ	E _i (level)	E_f	Comments
72 [†] 12	72+x	0.0+x	E_{γ} : from level energy difference. see also the comment on E(72+x level).

 † Placement of transition in the level scheme is uncertain.

¹⁷²Au α decay (7.7 ms) 2009Ha42,1996Pa01,1993Se09

Legend

Decay Scheme

