		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010

 $Q(\beta^{-}) = -6.97 \times 10^{3} 4$; $S(n) = 9.96 \times 10^{3} 4$; $S(p) = 5.15 \times 10^{3} 5$; $Q(\alpha) = 3.23 \times 10^{3} 4$ 2012Wa38 Note: Current evaluation has used the following Q record -6970 40 9960 40 5150 40 3240 30 2003Au03,2009AuZZ. Additional information 1.

1975Sk01 used IMPAC to determine g=+0.07 4 for the average g factor of feeding states (prerotational) in 156 Gd(16 O,4n γ).

¹⁶⁸Hf Levels

The orbitals associated with the quasiparticle labels used for bands in ¹⁶⁸Hf are the following:

					Cross Reference (XREF) Flags
					A 168 Ta ε decay B (HI,xn γ) C 186 W(n,2p17n γ) D 96 Zr(76 Ge,4n γ)
	A: ν C: ν E: ν G: ν M: ν a: π c: π m: π e: π g: π	5/2[642], 3/2[651], 5/2[523], 3/2[521], 1/2[521], 7/2[404], 5/2[402], 1/2[660], 9/2[514], 1/2[541],	α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2; α=+1/2;	B:) D:) F:) H:) d: 2 f: 2	$ \begin{array}{l} \gamma & 5/2[642], \ \alpha = -1/2 \\ \gamma & 3/2[651], \ \alpha = -1/2 \\ \gamma & 5/2[523], \ \alpha = -1/2 \\ \gamma & 3/2[521], \ \alpha = -1/2 \\ \pi & 7/2[404], \ \alpha = -1/2 \\ \pi & 5/2[402], \ \alpha = -1/2 \\ \end{array} $
E(level)	J	π# T ₁	@	XREF	Comments
0.0 ^{<i>d</i>}	0+	a 25.95	min 20	ABCD	$\% \varepsilon + \% \beta^+ = 100$ $\% \beta^+ \approx 1$ to 3 determined from analyses of complex β^+ spectra after successive
					separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J^{π} : g.s. of even-even nucleus. $T_{1/2}$: from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05).
124.10 ^d	5 2+	a 0.89	ns 4	ABCD	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J^{π} : g.s. of even-even nucleus. $T_{1/2}$: from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J^{π} : 818 γ -124 $\gamma(\theta)$ establishes J=2; Q 124 γ to 0 ⁺ g.s. is not M2 from RUL.
124.10^d 385.92^d	$5 2^+ 6 4^+$	a 0.89	ns 4 ps 15	ABCD ABCD	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^{π} : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^{π} : 818 γ -124 $\gamma(\theta)$ establishes J=2; Q 124 γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xn γ).
124.10 ^d 385.92 ^d 757.29 ^d	$5 2^+ \\ 6 4^+ \\ 7 6^+$	a 0.89 a 30.6 j a 4.9 j	ns 4 ps 15 ps 3	ABCD ABCD ABCD	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J^{π} : g.s. of even-even nucleus. $T_{1/2}$: from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J^{π} : 818 γ -124 $\gamma(\theta)$ establishes J=2; Q 124 γ to 0 ⁺ g.s. is not M2 from RUL. $T_{1/2}$: from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xn γ). $T_{1/2}$: from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xn γ).
124.10 ^d 385.92 ^d 757.29 ^d 875.94 ^j	$5 2^+ 6 4^+ 7 6^+ 5 2^+$	a 0.89 a 30.6 j a 4.9 j	ns 4 ps 15 ps 3	ABCD ABCD ABCD A	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J^{π} : g.s. of even-even nucleus. $T_{1/2}$: from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J^{π} : 818 γ -124 $\gamma(\theta)$ establishes J=2; Q 124 γ to 0 ⁺ g.s. is not M2 from RUL. $T_{1/2}$: from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xn γ). $T_{1/2}$: from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xn γ). J^{π} : J=2 from 752 γ -124 $\gamma(\theta)$; E2+M1 752 γ to 2 ⁺ 124; 876 γ to 0 ⁺ g.s.
124.10 ^d 385.92 ^d 757.29 ^d 875.94 ^j 942.09 ^k	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a 0.89 a 30.6 j a 4.9 j & &	ns 4 ps 15 ps 3	ABCD ABCD ABCD A A	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^π : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^π : 818γ-124γ(θ) establishes J=2; Q 124γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xnγ). T _{1/2} : from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xnγ). J ^π : J=2 from 752γ-124γ(θ); E2+M1 752γ to 2 ⁺ 124; 876γ to 0 ⁺ g.s J ^π : 818γ-124γ(θ) in ε decay indicates a 0-2-0 cascade establishing J=0 for 942 level and J=2 for 124 level.
124.10 ^d 385.92 ^d 757.29 ^d 875.94 ^j 942.09 ^k 1030.93 ^j	$5 2^+ \\ 6 4^+ \\ 7 6^+ \\ 5 2^+ \\ 8 0^+ \\ 5 3^+ \\$	a 0.89 a 30.6 j a 4.9 j & &	ns 4 ps 15 ps 3	ABCD ABCD ABCD A A A	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^{π} : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^{π} : 818 γ -124 $\gamma(\theta)$ establishes J=2; Q 124 γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xn γ). T _{1/2} : from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xn γ). J ^{π} : J=2 from 752 γ -124 $\gamma(\theta)$; E2+M1 752 γ to 2 ⁺ 124; 876 γ to 0 ⁺ g.s J ^{π} : 818 γ -124 $\gamma(\theta)$ in ε decay indicates a 0-2-0 cascade establishing J=0 for 942 level and J=2 for 124 level. J ^{π} : J=3 from 907 γ -124 $\gamma(\theta)$; E2+M1 907 γ to 2 ⁺ 124; 645 γ to 4 ⁺ 386.
124.10 ^{<i>d</i>} 385.92 ^{<i>d</i>} 757.29 ^{<i>d</i>} 875.94 ^{<i>j</i>} 942.09 ^{<i>k</i>} 1030.93 ^{<i>j</i>} 1058.62 ^{<i>k</i>}	$5 2^+ \\ 6 4^+ \\ 7 6^+ \\ 5 2^+ \\ 8 0^+ \\ 5 3^+ \\ 5 2^+ \\ 5 2^+ \\ 6 2^+ \\ 7 6^- \\ 7 $.a 0.89 a 30.6 1 .a 4.9 1 .& .& .& .&	ns 4 ps 15 ps 3	ABCD ABCD ABCD A A A A A	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^π : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^π : 818γ-124γ(θ) establishes J=2; Q 124γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xnγ). T _{1/2} : from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xnγ). J ^π : J=2 from 752γ-124γ(θ); E2+M1 752γ to 2 ⁺ 124; 876γ to 0 ⁺ g.s J ^π : 818γ-124γ(θ) in ε decay indicates a 0-2-0 cascade establishing J=0 for 942 level and J=2 for 124 level. J ^π : J=3 from 907γ-124γ(θ); E2+M1 907γ to 2 ⁺ 124; 645γ to 4 ⁺ 386. J ^π : J=2 from 935γ-124γ(θ); E2+M1 935γ to 2 ⁺ 124; Q 673γ to 4 ⁺ 385; 1059γ to 0 ⁺ g.s
124.10 ^{<i>d</i>} 385.92 ^{<i>d</i>} 757.29 ^{<i>d</i>} 875.94 ^{<i>j</i>} 942.09 ^{<i>k</i>} 1030.93 ^{<i>j</i>} 1058.62 ^{<i>k</i>} 1160.71 ^{<i>j</i>}	$5 2^+ \\ 6 4^+ \\ 7 6^+ \\ 5 2^+ \\ 8 0^+ \\ 5 3^+ \\ 5 2^+ \\ 6 3^+ \\ 5 2^+ \\ 9 4^{(4)}$.a 0.89 .a 30.6 j .a 4.9 j .& .& .& .& .& .& .& .& .& .& .& .& .&	ns 4 ps 15 ps 3	ABCD ABCD ABCD A A A A A	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^π : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^π : 818γ-124γ(θ) establishes J=2; Q 124γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xnγ). T _{1/2} : from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xnγ). J ^π : J=2 from 752γ-124γ(θ); E2+M1 752γ to 2 ⁺ 124; 876γ to 0 ⁺ g.s J ^π : 818γ-124γ(θ) in ε decay indicates a 0-2-0 cascade establishing J=0 for 942 level and J=2 for 124 level. J ^π : J=3 from 907γ-124γ(θ); E2+M1 907γ to 2 ⁺ 124; 645γ to 4 ⁺ 386. J ^π : J=2 from 935γ-124γ(θ); E2+M1 935γ to 2 ⁺ 124; Q 673γ to 4 ⁺ 385; 1059γ to 0 ⁺ g.s J ^π : J=4 from 775γ-262γ(θ); D+Q 775γ to 4 ⁺ 386. See also the comment on J(1216 level).
124.10 ^{<i>d</i>} 385.92 ^{<i>d</i>} 757.29 ^{<i>d</i>} 875.94 ^{<i>j</i>} 942.09 ^{<i>k</i>} 1030.93 ^{<i>j</i>} 1058.62 ^{<i>k</i>} 1160.71 ^{<i>j</i>} 1213.70 ^{<i>d</i>}	$5 2^+ \\ 6 4^+ \\ 7 6^+ \\ 5 2^+ \\ 8 0^+ \\ 5 3^+ \\ 5 2^+ \\ 9 4^{(-)} \\ 15 8^+ $	a 0.89 a 30.6 j a 4.9 j & & & & & & & & & & & & &	ps 15 ps 3	ABCD ABCD ABCD A A A A A A A BCD	separations of mixed ¹⁶⁸ Lu- ¹⁶⁸ Hf source (1961Me05). J ^π : g.s. of even-even nucleus. T _{1/2} : from 1970Ch17. Others: 26.0 min 5 (1995Tr10), 25 min 2 (1969Ar23), 25 min (1966Ha23), 22 min 2 (1961Me05). J ^π : 818γ-124γ(θ) establishes J=2; Q 124γ to 0 ⁺ g.s. is not M2 from RUL. T _{1/2} : from 2009Co03. Other: 36 ps 4 (1977Bo14) in (HI,xnγ). T _{1/2} : from 2009Co03. Other: 5.9 ps 6 (1977Bo14) in (HI,xnγ). J ^π : J=2 from 752γ-124γ(θ); E2+M1 752γ to 2 ⁺ 124; 876γ to 0 ⁺ g.s J ^π : 818γ-124γ(θ) in ε decay indicates a 0-2-0 cascade establishing J=0 for 942 level and J=2 for 124 level. J ^π : J=3 from 907γ-124γ(θ); E2+M1 907γ to 2 ⁺ 124; 645γ to 4 ⁺ 386. J ^π : J=2 from 755γ-262γ(θ); D+Q 775γ to 4 ⁺ 386. See also the comment on J(1216 level). T _{1/2} : from 2009Co03. Other: 1.98 ps <i>19</i> (1977Bo14) in (HI,xnγ); reason for discrepancy is unclear.

Continued on next page (footnotes at end of table)

¹⁶⁸Hf Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{(0)}$	XREF	Comments
1373.11 8	(2) ^{&}		A	J^{π} : 987 γ to 4 ⁺ 386; 1249 γ to 2 ⁺ 124; band assignment.
1386.38 ^j 10	$(5^+)^{\&}$		A D	J^{π} : 629 γ to 6 ⁺ 757; 1000 γ to 4 ⁺ 386; band assignment.
1401.53 7			Α	J^{π} : 371 γ to 3 ⁺ 1031; 1277 γ to 2 ⁺ 124.
1408.30 11	(4) ^{&}		Α	J^{π} : 1284 γ to 2 ⁺ 124; band assignment.
1411.81 7	(≤4)		Α	J^{π} : 381 γ to 3 ⁺ 1031; 1288 γ to 2 ⁺ 124.
1497.24 ¹ 9	(4 ⁻)		A D	J^{π} : 740 γ to 6 ⁺ 757; 1111 γ to 4 ⁺ 386; band assignment.
1551.34 ^j 8	(6 ⁺) ^{&}		A D	J^{π} : 521 γ to 3 ⁺ 1031; 1165 γ to 4 ⁺ 386; band assignment.
1568.51 8	(3) &		Α	J^{π} : 1183 γ to 4 ⁺ 386; 1444 γ to 2 ⁺ 124; band assignment.
1618.00 7	(≤4)		Α	J^{π} : 1494 γ to 2 ⁺ 124.
1644.21? 11	(≤4)		Α	J^{π} : 1520 γ to 2 ⁺ 124.
1671.41 8	$(1^+, 2^+)$		A	J^{n} : 641 γ to 3 ⁺ 1031; 729 γ to 0 ⁺ 942.
1/34.03 /	$(2^+, 3, 4^+)$		A	J^{*} : 1348 γ to 4' 386; 1610 γ to 2' 124.
1755.55° 10	(7)	0.71 10		T (2000C 02 O(1 1 00 15 (1077D 14)
1736.06 20	10.4	0.71 ps 10	BCD	$I_{1/2}$: from 2009Co03. Other: 1.00 ps 15 (1977B014).
1797.22-15 1799.52-15	$(4)^{(4)}$ $(2^+,3,4^+)$		A A	J^{*} : 1411 γ to 4' 386; 1673 γ to 2' 124; band assignment. J^{π} : 1414 γ to 4' 386; 1676 γ to 2' 124.
1813.75 ¹ 12	(6 ⁻)		ВD	J^{π} : 263 γ to 6 ⁺ 1550; 316 γ to (4 ⁻) 1497; band assignment.
1966.63? 12	(•)		Α	J^{π} : 1581 γ to 4 ⁺ 386, log <i>ft</i> =7.6 from (2 ⁻ ,3 ⁺), so J^{π} =(2 ⁺ ,3,4,5 ⁻).
1992.70 ^b 20	(6 ⁻)		ΒD	J^{π} : (D) 1235 γ to 6 ⁺ 756; band assignment.
2047.91? 14			Α	J^{π} : 887 γ to 4 ⁽⁺⁾ 1160.
2067.01 [°] 19	(9 ⁻)		ΒD	
2081.44 ^m 24	(7 ⁻)		ΒD	J^{π} : D 1324 γ to 6 ⁺ 756; band assignment.
2108.71 11	$(2^+, 3, 4^+)$		Α	J^{π} : 1723 γ to 4 ⁺ 386; 1985 γ to 2 ⁺ 124.
2155.65 ¹ 15	(8-)		ΒD	
2193.66 ^b 16	(8 ⁻)		ΒD	
2306.09 ^d 23	12 ^{+<i>a</i>}	0.52 ps 18	BCD	
2321.46 ^m 17	(9 ⁻)		ΒD	
2353.04 9			Α	J^{π} : 1322 γ to 3 ⁺ 1031; 1477 γ to 2 ⁺ 875.
2466.78 ^b 18	(10 ⁻)		ΒD	
2474.00° 21	(11^{-})		ΒD	
2553.01 ¹ 19	(10 ⁻)		ΒD	
2646.29 ^m 20	(11^{-})		BD	
2706.4" 5	(10)		D	
2828.21 22	(12^{-})		B D	
$2852.4^{\circ} 4$	(11)	0.04 10	D	
$2857.5^{\circ\circ}3$	(13^{-})	0.84 ps 18	BCD	J [*] : stretched E2 552 γ to 12 ⁺ 2306.
2937.75 23	(13^{-})		עם	
2970.43 23 2000 6 ^e 3	(12) $14^{(+)}$		עם	I^{π} : stratched O_{1} 685% to 12 ⁺ 2306
3066.0^{m} 3	(13^{-})		ם פ	J. Stretched Q 0837 to 12 2500.
$3085.3^{n}.5$	(13^{-})		D	
$3269.2^{b}.3$	(14^{-})		B D	
3289.0° 4	(13^{-})		D	
3310.4 ^d 3	$(16^{+})^{a}$	1.82 ps 20	ВD	
3442.17 ^C 25	(15 ⁻)	r~	ΒD	
3452.0 ^{<i>l</i>} 3	(14 ⁻)		ВD	
3561.1 ⁿ 6	(14 ⁻)		D	
3589.4 ^m 4	(15 ⁻)		D	
3624.1 ^e 3	(16 ⁺)		ΒD	

¹⁶⁸Hf Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
3777.4 ^b 3	(16^{-}) (15^{-})	B D	
3837.5^{d} 3	$(13^{+})^{a}$	R D	
3088.6^{l} 3	(16^{-})	ם ם ת פ	
3989.6 [°] 3	(10^{-})	R D	
4086 5 ^P 6	(17) (14^{-})	ם ם	I^{π} : D intrahand 210v from (15 ⁻) 4296
$4118.5^{n} 6$	(16^{-})	D	
4190.1 ^{<i>m</i>} 4	(17^{-})	D	
4296.9 <mark>9</mark> 4	(15-)	D	J^{π} : D 1306 γ to 14 ⁺ ; 855 γ to 16 ⁺ .
4322.3 ^e 3	(18^{+})	ΒD	
4336.0 ^b 4	(18 ⁻)	ΒD	
4415.3 ° 5	(17 ⁻)	D	
4439.9 <mark>d</mark> 4	(20 ⁺) ^{<i>a</i>}	ΒD	
4450.4 ^v 4	(15 ⁻)	D	
4467.7 [‡] 5	(15 ⁻)	D	J^{π} : D 844 γ to 16 ⁺ 3623; D 1610 γ to 14 ⁺ 2856.
4528.8 ^{<i>p</i>} 5	(16 ⁻)	D	
4577.9 [°] 3	(19 ⁻)	ΒD	
4578.2 ¹ 3	(18 ⁻)	ΒD	
4615.7 ⁴ 5	(16^{-})	D	
46/1.5° 6	(10^{-})	D	
$4/14.9^{10}$ 0	(18) (17^{-})	ע	
$4773.3^{1}5$ $4809.7^{1}5$	(17^{-})	ם ח	
$4829.5^{m}.5$	(17^{-})	D	
4894.5 ^t 6	(17^{-})	D	
4934.0 ^b 4	(20^{-})	ВD	
5012.0 ^{<i>p</i>} 6	(18^{-})	D	
5027.6° 5	(19 ⁻)	D	
5030.0 ^µ 6	(18 ⁻)	D	
5049.2 ^e 4	(20^{+})	ΒD	
5124.3 ^d 4	(22 ⁺) ^{<i>a</i>}	B D	
5139.5 ^{\$} 7	(18 ⁻)	D	
5146.5 ⁵ 6	(19 ⁻)	D	
5168.8 ^r 4	(19 ⁺)	D	
5197.4° 4	(21^{-})	ΒD	
5212.9 ¹ 3	(20^{-})	ΒD	
5246.34 6	(19)	D	
$52/5.1^{\circ}$ 0 5328 5 ⁿ 6	(19)	ע	
$5328.5 \ 0$ $5412.6^{t} \ 7$	(20^{-})	ע	
$5479.0^{m}4$	$(1)^{-}$	D D	
5496.5 ^{<i>p</i>} 6	(21^{-})	D	
5544.8 ^u 7	(20 ⁻)	D	
5574.3 ^b 5	(22 ⁻)	ΒD	
5658.1 ⁰ 7	(21 ⁻)	D	
5695.5 ^{\$} 7	(20 ⁻)	D	
5763.2 ^e 4	(22^+)	B D	
5/68.49 /	(21 ⁻)	D	
5801.9 ^J 6	(21^{-})	D	

¹⁶⁸Hf Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	J ^{π#}	XREF
5833.3 ^v 7	(21^{-})	D	7860.8 ^b 6	(28 ⁻)	ΒD
5853.4 [°] 4	(23 ⁻)	ΒD	7919.1 <mark>0</mark> 9	(27 ⁻)	D
5874.7 ^d 4	(24 ⁺) ^{<i>a</i>}	ΒD	8037.6 ^f 5	(27 ⁻)	ΒD
5889.3 ^r 4	(21^{+})	D	8075.0 ^{‡h} 7	(27 ⁻) ^w	D
5893.7 ¹ 4	(22^{-})	ΒD	8117.0 ^e 4	(28^{+})	D
5942.1 ⁿ 6	(22 ⁻)	D	8197.5 ^C 6	(29 ⁻)	ΒD
6002.6 ^t 7	(21 ⁻)	D	8201.6 ^t 9	(27 ⁻)	D
6065.1 ^{<i>p</i>} 7	(22 ⁻)	D	8209.2 ^{<i>u</i>} 9	(28 ⁻)	D
6140.9^{u} 7	(22^{-})	D	8244.8 ^p 7	(28^{-})	D
6150.5 ^m 4	(23)	D	82/0.1 ⁿ /	(28)	D
6268.7° 5	(24^{-})	B D	$8329.5^{t} 8$	(28^{-})	D
6318.4° 8	(23)	D	8300.1 <i>11</i>	(27^{+})	D
6329.5 [°] 8	(22^{-})	D	8501.0^{4} 5	$(30^{+})^{u}$	B D
6461.2^{V} 8	(23)	ע	$8587.0^{\circ} 10$ $8504.1^{\circ} 8$	(29^{-})	ע
$64814^{e}4$	(23^{+})	ם ח	8620 5 ⁵ 9	(29^{-})	ם ח
6495.2f 5	(23^{-})	D	8665.89 7	(20^{-})	D
6565.5^{h} 0	(23^{-})	ם ח	8762.6 ^b 6	$(2)^{-})$	RD
6565 7 [°] 5	(25^{-})	B D	8812.0° 11	(30^{-})	ם ם
$6627.9^{l}5$	(23^{-})	R D	$8845 4^{h} 7$	(29^{-})	D
$6644.3^n 6$	(24^{-})	D	8988.1 ^{<i>u</i>} 10	$(2)^{-})$	D
6672.6 ^t 8	(23^{-})	D	9040.7 ^e 5	(30^{+})	D
6687.2^{d} 4	$(26^{+})^{a}$	ВD	9053.6 ^t 10	(29^{-})	D
6690.2^{r} 4	(23^+)	D	9102.5 ^{<i>p</i>} 8	(30^{-})	D
6720.5 ^P 7	(24-)	D	9114.2 ^c 6	(31 ⁻)	ΒD
6794.5 ^{<i>u</i>} 8	(24 ⁻)	D	9173.7 ⁿ 9	(30 ⁻)	D
6892.5 ^m 5	(25 ⁻)	D	9262.5 ¹ 9	(30 ⁻)	D
7028.5 ^{\$} 8	(24 ⁻)	D	9386.0 ^v 14	(31 ⁻)	D
7029.4 ^b 5	(26 ⁻)	ΒD	9500.7 ^d 6	(32 ⁺) ^{<i>a</i>}	ΒD
7076.6 ^{<i>q</i>} 7	(25 ⁻)	D	9501.5 ^s 10	(30 ⁻)	D
7084.60 8	(25 ⁻)	D	9552.2 ^m 9	(31 ⁻)	D
/136.4 8	(25)	D	9556.7 <u>9</u> 8	(31)	D
7241.1 5	(25 ⁻)	D	9661.2 ⁿ 9	(31 ⁻)	D
7260.8 ^e 4	(26^{+})	D	9730.5 ⁰ 7	(32 ⁻)	ΒD
7335.5 ⁿ 7	(25 ⁻)	D	9749.7 ⁰ 12	(31 ⁻)	D
7346.8 [°] 5	(27^{-})	ΒD	9962.6 ¹ 14	(31-)	D
7406.6 ^t 9	(25 ⁻)	D	10017.0 ^e 5	(32+)	D
7423.4" 5	(26 ⁻)	ΒD	10025.5 ^p 8	(32 ⁻)	D
7439.4 ^{<i>i</i>} 6	(26^{-})	D	10090.7 ^c 6	(33 ⁻)	BD
7452.0 ^p 7	(26)	D	10132.0^{11} 10	(32)	D
7487.24 9	(26^{-})	D	10226.5^{i} 14	(32^{-})	D
7520.1° 4	(25^{+})	D	10439.5° 14	(32)	D
7562.2 ^a 5	(28 ⁺) ^u	ВD	10513.79 8	(33-)	D
7662.2?+ 11	VV	В	10530.6" 10	(33 ⁻)	D
7705.6 ^m 6	(27^{-})	D	10551.4^{a} 6	$(34^+)^{a}$	B D
//96.5°9	(26 ⁻)	D	10567.2 ^m 14	(33 ⁻)	D
7838.64 7	(27^{-})	D	10756.50 8	(34^{-})	B D
/842.8 9	(27^{-})	ע	10/56.70 16	(35)	D

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF
11011.8 <mark>P</mark> 8	(34^{-})	D	17336.6 ^d 11	$(46^{+})^{a}$	D
11043.2 ^e 7	(34+)	D	17866.9 ^C 16	(47-)	D
11117.7 ^C 7	(35 ⁻)	ΒD	17890.8 ^h 17	(47 ⁻)	D
11139.2 ⁿ 12	(34-)	D	18605.6 ^d 15	(48 ⁺) ^{<i>a</i>}	D
11437.3 ^h 11	(35 ⁻)	D	19175.8 ^h 20	(49 ⁻)	D
11533.2 <mark>9</mark> 8	(35 ⁻)	D	$0.0+x^{\ddagger g}$	J≈(33) [₩]	D
11638.2 ^d 6	(36 ⁺) ^{<i>a</i>}	ΒD	677.2+x ^g 10	J+2	D
11828.4 ^b 8	(36 ⁻)	ΒD	1399.2+x ^g 15	J+4	D
12069.5 ^p 11	(36 ⁻)	D	2169.8+x ^g 18	J+6	D
12102.2 ^e 13	(36 ⁺)	D	2993.9+x ^g 20	J+8	D
12179.2 ^C 7	(37 ⁻)	ΒD	3871.2+x ^g 23	J+10	D
12186.2 ⁿ 15	(36 ⁻)	D	4802.6+x ^g 25	J+12	D
12384.3 ^h 12	(37^{-})	D	5787+x <mark>8</mark> 3	J+14	D
12619.2 ⁹ 13	(37 ⁻)	D	6828+x ^g 3	J+16	D
12742.7 <mark>d</mark> 7	(38 ⁺) ^{<i>a</i>}	ΒD	7926+x ^g 3	J+18	D
12931.5 ^b 10	(38-)	ΒD	9079+x <mark>8</mark> 4	J+20	D
13255.4 ^C 9	(39-)	ΒD	10294+x? 8 4	J+22	D
13374.3 <mark>h</mark> 13	(39-)	D	11567+x? ⁸ 4	J+24	D
13851.5 <mark>d</mark> 9	(40 ⁺) ^{<i>a</i>}	D	0.0+z ^{‡<i>i</i>}	J2≈(28) [₩]	D
14038.5 ^b 14	(40 ⁻)	D	811.1+z ⁱ 10	J2+2	D
14342.6 ^c 10	(41 ⁻)	ΒD	1673.3+z ⁱ 15	J2+4	D
14414.8 ^h 14	(41 ⁻)	D	2583.6+z ⁱ 18	J2+6	D
14972.0 ^d 10	(42 ⁺) ^{<i>a</i>}	D	3544.2+z ⁱ 20	J2+8	D
15461.7 ^c 11	(43 ⁻)	D	4560.8+z ⁱ 23	J2+10	D
15512.0 ^h 15	(43 ⁻)	D	5635.8+z ⁱ 25	J2+12	D
16127.5 ^d 10	(44 ⁺) ^{<i>a</i>}	D	6771+z ⁱ 3	J2+14	D
16632.9 [°] 12	(45 ⁻)	D	7966+z? ⁱ 3	J2+16	D
16670.0 ^h 16	(45^{-})	D	$9222 + 72^{i}$ 3	I_{2+18}	D

¹⁶⁸Hf Levels (continued)

[†] From least-squares fit to adopted $E\gamma$, assigning 1 keV uncertainty to $E\gamma$ data for which the authors did not state an uncertainty and omitting uncertainly-placed transitions unless all gammas from a given level are of that character.

[‡] Reported in (HI,xn γ) only. Should have been seen in (⁷⁶Ge,4n γ) also, but was not, so evaluator considers its existence questionable.

[#] From angular correlation data for γ rays in projected coincidence spectra, and fits of γ -ray cascades into interconnected bands in (HI,xn γ) reactions, except as noted. Cranking-model calculations explain the band-crossing at 14⁺ as resulting from alignment of the i_{13/2} neutrons. For superdeformed structures, the spins of the lowest levels are estimated (by 2001Am02) based on obtaining reasonable alignments when compared to normal-deformed structures and triaxial superdeformed structures in Lu nuclides. Uncertainty in this estimate is 2 or 3 units of spin.

[@] From recoil-distance Doppler-shift in (HI,xnγ), except as noted.

[&] From consistency of level-structure and γ-decay patterns in ¹⁶⁸Ta ε decay with predicted β-vibrational and γ-vibrational structure and high-energy quadrupole excitations.

^{*a*} Smooth progression of level energies within g.s. band, known $J^{\pi}=0^+$ for g.s. and E2-multipolarity for the J=2 to 0 124 γ enable assignment of definite J^{π} to J≤12 band members (viz. those below the first band crossing).

- ^b Band(A): $\pi = -$, $\alpha = 0$, AF band. β c crossing at $\hbar\omega = 290$ keV, alignment gain 6.8 \hbar ; fg crossing at $\hbar\omega = 550$ keV, alignment gain >3.5 \hbar . Partner with Am band for J≤14, but with AE band for J≥18.
- ^{*c*} Band(B): π =-, α =1, AE band. β c crossing at $\hbar\omega$ =300 keV, alignment gain 7.0 \hbar ; fg crossing at $\hbar\omega$ =540 keV, alignment gain 5.2 \hbar . Rotation aligned band. Lowest observed J=5.

¹⁶⁸Hf Levels (continued)

- ^d Band(C): g.s. band. Band parameters: A=21.3, B=-99 (J=0,2,4 levels). Sharp AB crossing at $\hbar\omega$ =265 keV (analogous to that in other N=96 nuclei), alignment gain 9.0 \hbar ; fg crossing at $\hbar\omega$ =550 keV, alignment gain 6.1 \hbar . Yrast band.
- ^e Band(D): α =0 BC band. Continuation of g.s. band after β c crossing. AD crossing at $\hbar\omega$ =360 keV.
- ^{*f*} Band(E): $\pi = -$, $\alpha = 1$ band. Lowest observed member is the (19⁻) 5145 level. Band has characteristics consistent with expectations for the BF band (2009Ya21).
- ^g Band(F): Triaxial SD-1 band (2001Am02). Q(transition)≈11.4 (2001Am02; from fractional centroid shift, allowing for side-feeding). Population relative to ¹⁶⁸Hf channel=0.26% 10 (2001Am02) in (⁷⁶Ge,4nγ). Probable

configuration= $\pi i_{13/2}^2 \otimes \nu(j_{15/2}i_{13/2})$, $\alpha = 1$. This band decays mainly to the negative-parity normal-deformation AE and AF

bands, as indicated by observed coincidence of all γ -rays in the SD-1 band with those in the AE and AF bands below J=31 and and J=30, respectively (2008Ya20).

- ^{*h*} Band(G): Enhanced-deformation band (2009Ya21). Population relative to ¹⁶⁸Hf channel=0.15% 6 (2001Am02) in (⁷⁶Ge,4n γ). Lowest observed J is \approx 23. This band was labeled as TSD-2 band in 2001Am02 but was renamed by 2008Ya20 and 2009Ya21; the latter authors also assign J values 3 \hbar higher than estimated by 2001Am02. Probable configuration= π (i_{13/2}h_{9/2}) \otimes vi²_{13/2}, α =1 (2008Ya20).
- ^{*i*} Band(H): Triaxial SD-2 band (2001Am02). Population relative to ¹⁶⁸Hf channel=0.12% 5 (2001Am02) in (⁷⁶Ge,4n γ). This is the triaxial SD-3 band from 2001Am02 which was relabelled as triaxial SD-2 band by 2008Ya20.
- ^{*j*} Band(I): $K^{\pi}=2^{+} \gamma$ -vibration band. Band parameters: A=21.7, B=-73 (J=2,4,6 members).
- ^{*k*} Band(J): $K^{\pi}=0^{+}\beta^{-}$ vibration band. Band parameters: A=20.4, B=-164 (J=0,2,4 members).
- ^{*l*} Band(K): π =-, α =0 BE band. Lowest observed J=4. Excitation energies higher than in AF band for J>10. AD crossing around $\hbar\omega$ =320 keV.
- ^{*m*} Band(L): $\pi = -$, $\alpha = 1$ AM band. Lowest observed J is 7. Energies are higher than AE sequence but lower than in Be band. β c crossing at $\hbar\omega=320$ keV, alignment gain 4.5 \hbar .
- ^{*n*} Band(M): $\pi = -$, $\alpha = 0$ AH band (2009Ya21). Slightly delayed βc crossing at $\hbar \omega = 300$ keV, alignment gain 6.2 \hbar . Lowest observed J=10.
- ^o Band(m): π =-, α =1 AG band (2009Ya21). β c crossing at $\hbar\omega$ ≈300 keV, alignment gain 5.4 \hbar .
- ^{*p*} Band(N): $\pi = -$, $\alpha = 0$ gaAB,gcAB mixed band (2009Ya21). Lowest observed J=14. Band crossing at $\hbar\omega \approx 240$ keV. Likely configuration (2009Ya21): (π 1/2[541])(π 7/2[404]) \otimes (ν 5/2[642])² mixed with (π 1/2[541])(π 5/2[402]) \otimes (ν 5/2[642])² and having K ≈ 3.5 .
- ^{*q*} Band(n): π =-, α =1 gbAB,gdAB mixed band (2009Ya21). See comment on signature partner band.
- ^{*r*} Band(O): π =(+), α =1 band. Possible extension of g.s. band with an Ac alignment (2009Ya21).
- ^s Band(P): $K^{\pi}=(10^{-})$, $\alpha=0$ geBE band (2009Ya21). Likely configuration (2009Ya21): (π 1/2[541])+(π 9/2[514])+(ν 5/2[642])+(ν 5/2[642])+(ν 5/2[523]),
- ^t Band(p): $K^{\pi} = (10^{-})$, $\alpha = 1$ gfBE band (2009Ya21). See comment on signature partner band.
- ^{*u*} Band(Q): K^{π} =(10⁻), α =0 geAE band (2009Ya21). Strongly-coupled high-K band. Likely configuration (2009Ya21): (π 1/2[541])+(π 9/2[514])+(ν 5/2[642])+(ν 5/2[523]), consistent with measured B(M1)/B(E2) ratios. β c crossing occurs at J=23, $\hbar\omega$ =315 keV, alignment gain 6.0 \hbar . Deformation aligned band.
- ^v Band(q): $K^{\pi} = (10^{-})$, $\alpha = 1$ gfAE band (2009Ya21). See comment on signature partner band.
- ^w Spin estimates for the lowest levels observed by 2001Am02 in the two triaxial SD bands and the enhanced deformation band were made by 2001Am02 based on obtaining reasonable alignments when compared to normal-deformation structures and triaxial superdeformed structures in Lu nuclides; the uncertainty in this estimate was thought to be 2 or 3 units of spin. 2008Ya20 revised the value for the SD-1 band (now 12 \hbar higher) and 2009Ya21 increased J for the enhanced deformation band by 3 \hbar , as shown here.

					Adopted	l Levels, Gamm	as (continued)
						$\gamma(^{168}\text{Hf})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{f}	Comments
124.10	2+	124.10 ^{&} 5	100 ^{&}	0.0 0+	E2		1.548	B(E2)(W.u.)=154 7 Mult.: Q from $\gamma\gamma(\theta)$ in ε decay; not M2 from RUL.
385.92	4+	261.85 ^{&} 5	100 ^{&}	124.10 2+	E2		0.1201	B(E2)(W.u.)=244 <i>12</i> Mult.: Q from $\gamma(\theta)$ in (HI,xn γ) and DCO in (⁷⁶ Ge,4n γ); not M2 from RUL.
757.29	6+	371.36 ^{&} 6	100 ^{&}	385.92 4+	E2		0.0426	B(E2)(W.u.)=285 18 Mult.: Q from $\gamma(\theta)$ in (HI,xn γ); not M2 from RUL.
875.94	2+	751.81 ^{&} 8 875.95 ^{&} 9	100 ^{&} 8 55.7 ^{&} 22	$124.10 \ 2^+ \ 0.0 \ 0^+$	E2+M1	-10 +3-9	0.00754 15	Mult.: D+Q from $\gamma\gamma(\theta)$ in ε decay; large δ .
942.09	0^+	817.98 ^{&} 7	100 ^{&}	124.10 2+	(E2)		0.00620 9	Mult.: Q from $\gamma\gamma(\theta)$ in ε decay; $\Delta\pi$ =no from level scheme.
1030.93	3+	645.05 ^{&} 10	14.7 ^{&} 17	385.92 4+	E2+M1	>10		Mult., δ : D+Q, δ >+10 or <-20 from $\gamma\gamma(\theta)$ in ε decay; large δ .
		906.81 ^{&} 7	100 <mark>&</mark> 8	124.10 2+	E2+M1	+11 +13-4	0.00504 10	Mult.: D+Q from $\gamma\gamma(\theta)$ in ε decay; large δ .
1058.62	2+	672.75 ^{&} 8	61 ^{&} 5	385.92 4+	(E2)		0.00953 14	Mult.: Q from $\gamma\gamma(\theta)$ in ε decay; $\Delta\pi$ =no from level scheme.
		934.51 <mark>&</mark> 10	51 ^{&} 5	124.10 2+	E2+M1	-8 +4-10	0.00477 24	Mult.: D+Q from $\gamma\gamma(\theta)$ in ε decay; large δ .
		1058.60 ^{&} 10	100 ^{&} 7	0.0 0+				
1160.71	4 ⁽⁺⁾	774.80 ^{&} 9	100 ^{&}	385.92 4+	(M1+E2)	+0.8 +6-4	0.0123 24	Mult.: D+Q from $\gamma\gamma(\theta)$ in ε decay; $\Delta\pi$ =no if band assignment is correct.
1213.70	8+	456.3 2	100	757.29 6+	E2		0.0244	B(E2)(W.u.)=350 50 Mult.: Q from $\gamma(\theta)$ in (HI,xn γ); not M2 from RUL.
1284.66	(4^{+})	527.4 ^{&} 1	15.7 <mark>&</mark> 20	757.29 6+				
		898.8 <mark>&</mark> 2	7.5 <mark>&</mark> 14	385.92 4+				
		1160.5 <mark>&</mark> 1	100 ^{&} 13	124.10 2+				
1373.11	(2)	987.21 <mark>&</mark> 9	100 <mark>&</mark> 8	385.92 4+				
		1248.98 <mark>&</mark> 10	68 <mark>&</mark> 7	124.10 2+				
1386.38	(5+)	629.1 <mark>&</mark> 9	25 ^{&} 3	757.29 6+				
		1000.46 ^{&} 9	100 ^{&} 11	385.92 4+				
1401.53		370.62 ^{&} 8	70 ^{&} 7	1030.93 3+				
		525.6 ^{&} 1	32 ^{&} 4	875.94 2+				

100[&] 11

100<mark>&</mark> 8

100[&] 21.8[&] 26

1277.4[&] 1

1284.2[&] 1

380.88[&] 8 535.88[&] 7

124.10 2+

124.10 2+

875.94 2+

1030.93 3+

1408.30

1411.81

(4)

(≤4)

From ENSDF

 $^{168}_{72}\mathrm{Hf}_{96}\text{--}7$

	Adopted Levels, Gammas (continued)									
γ ⁽¹⁶⁸ Hf) (continued)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{f}	Comments			
1411.81	(≤4)	1287.7 ^{&} 2	53 ^{&} 6	124.10 2+						
1497.24	(4 ⁻)	739.98 <mark>&</mark> 11	46 ^{&} 6	757.29 6+						
		1111.29 <mark>&</mark> 8	100 ^{&} 11	385.92 4+						
1551.34	(6 ⁺)	165 ^b		1386.38 (5+)						
		390.65 <mark>&</mark> 10	11.0 ^{&} 10	1160.71 4 ⁽⁺⁾						
		520.5 ^{&} 1	50 ^{&} 10	1030.93 3+						
		1165.4 ^{&} 1	100 ^{&} 13	385.92 4+						
1568.51	(3)	1182.57 <mark>&</mark> 8	93 <mark>&</mark> 7	385.92 4+						
		1444.42 ^{&} 10	100 & 9	124.10 2+						
1618.00	(≤4)	559.4 ^{&} 1	17.0 20	$1058.62 \ 2^+$						
		742.0 2 1	48 ^{&} 5	875.94 2+						
		1493.92 8	100 & 8	124.10 2+						
1644.21?	(≤4)	1520.1 ^{&h} 1	100	124.10 2+						
1671.41	$(1^+, 2^+)$	612.8 ^{&} 1	100 2 9	1058.62 2+						
		640.5 ^{&} 1	95 ^{&} 11	1030.93 3+						
		729.3 ^{&} 1	73 ^{&} 9	942.09 0+						
		795.4 ^{&} 2	80 ^{&} 9	875.94 2+						
1734.03	$(2^+, 3, 4^+)$	858.03 ^{&} 8	46 ^{&} 4	875.94 2+						
		1348.1 ^{<i>x</i>} <i>1</i>	23 3	385.92 4+						
1725.00		1610.0 [∞] 1	100 17	$124.10\ 2^+$						
1/35.33	(/) 10 ⁺	978.0 2 522 4 2	100	/5/.29 6 ⁺ 1213 70 8 ⁺	F2	0.01734	$B(F2)(W_{11}) - 370.60$			
1750.00	10	522.4 2	100	1215.70 0	L2	0.01754	Mult.: O from DCO in $({}^{76}$ Ge 4n γ): not M2 from RUL			
1797.22	(4)	1411.4 ^{c&} 2	100 ^{&} 30	385.92 4+			Additional information 2			
		1673.0 ^{c&} 2	70 ^{&} 20	$124.10\ 2^+$						
1799.52	$(2^+, 3.4^+)$	$1413.5^{\circ} & 2$	60 ^{&} 13	385.92 4+						
		1675.5 ^{c&} 2	100 ^{&} 23	124.10 2+						
1813.75	(6 ⁻)	262.8 2	55 14	1551.34 (6+)						
		316.0 5	23 9	$1497.24 (4^{-})$						
		427.4 2	45 5	1386.38 (5')	(T1)d					
1066 622		1036.3 2	100 14	151.29 6	(EI)"					
1966.63? 1992.70	(6^{-})	1280.7007	100~	385.92 4' 757 29 6+	(\mathbf{D})					
2047 912		$\frac{1255.72}{887.7\&h}$	100	$1160\ 71\ 4^{(+)}$						
2077.71:		007.2 1	100	1100./1 +						

 $^{168}_{72}\mathrm{Hf}_{96}\mathrm{-8}$

From ENSDF

 $^{168}_{72}\mathrm{Hf}_{96}\text{--}8$

$\gamma(^{168}\text{Hf})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
2067.01	(9^{-})	331.8.5	11 3 16	1735 33	(7^{-})	(E2)	0.0588	
2007.01	())	853.0.2	100 11	1213 70	8+	(E1)	0.0000	Mult : D from $({}^{76}\text{Ge} 4n\gamma)$: (E1) from (HI xn γ)
2081.44	(7^{-})	1324.0.5	100 11	757.29	6 ⁺	D		
2108 71	$(2^+ 3 4^+)$	1722 8 2 1	36 & 7	385.02	<u></u> 4+	_		
2100.71	(2,,5,7)	10945 2	100° 21	124.10	- 2+			
	(2-)	1984.5 2	100-21	124.10	2	(Ta) d		
2155.65	(8 ⁻)	342.0 2	100 25	1813.75	(6 ⁻)	(E2) ⁴	0.0537	
		420.3 2	/5 10	1/35.33	(7)	4		
		942.0 2	50 5	1213.70	8+	(E1) ^{<i>u</i>}		Other 1γ : <25 from (HI,xn γ).
	(2-)							Mult.: D $\Delta J=0$ or Q $\Delta J=2$ from DCO in (⁷⁰ Ge,4n γ); (E1) from (HI,xn γ).
2193.66	(8 ⁻)	200.9 5	273	1992.70	(6^{-})	0		
		380.0 2	91 18	1813.75	(6)	Q		Other 1γ : 58 from (HI, $xn\gamma$).
2206.00	12+	980.0 2	100 12	1213.70	8 10 ⁺	D E2	0.01402	$D(E2)(W_{11}) = 220,120$
2300.09	12	570.0 2	100	1750.00	10	EΔ	0.01402	$D(E2)(W.u.) = 520 \ 120$ Mult: O from DCO ratio in (⁷⁶ Go 4no)): not M2 from DUI
2321 46	(0^{-})	127.8.5	~20	2103.66	(9^{-})			Mult Q from DCO failo in ($Oe,4ir\gamma$), not M2 from KOL.
2321.40	(9)	240.0.2	59 12	2193.00	(7^{-})			
		586.1.2	65 12	1735 33	(7^{-})			
		1107.8 2	100 18	1213.70	8+	D		Other mult: (E1) from (HI, $xn\gamma$).
2353.04		1322 0 ^{&} 1	58 <mark>&</mark> 11	1030 93	3+			
2555.01		1322.0 1	100 2 19	875.04	2+			
2466 78	(10^{-})	1477.2 1 145.4 5	11917	2321.46	(0^{-})	(M1)	1 377	Other Iv: 19 from (HI xnv)
2100.70	(10)	115.15	11.9 17	2521.10	(\mathcal{F})	(111)	1.577	Mult : D from $(^{76}Ge 4n_2)$: $\Lambda \pi - (n_0)$ from level scheme
		273 2 2	100.10	2193.66	(8^{-})	(E2)	0 1053	Mult. D from ($Ge, Hig), \Delta x = (ho)$ from level scheme.
		311.2.2	34.3	2155.65	(8^{-})	$(\underline{D}\underline{2})$	0.1022	
		399.7 5	8.5 17	2067.01	(9 ⁻)			Other I γ : 16.5 from (HI,xn γ) for (M1) γ .
2474.00	(11^{-})	406.9 2	43 5	2067.01	(9-)	(E2)	0.0331	
		738.0 2	100 10	1736.06	10^{+}	D		
2553.01	(10 ⁻)	359.4 2	40 4	2193.66	(8 ⁻)			
		397.4 2	100 12	2155.65	(8-)	(E2)	0.0354	
		485.9 5	24.8	2067.01	(9 ⁻)	D		
2646.20	(11-)	817.0 5	<20	1/36.06	10^{+}			
2646.29	(11)	1/9.4 5	<33	2400.78	(10)	(E2)	0.0626	
		524.8 Z	100 <i>13</i> 67 <i>13</i>	2067.01	(9)	(E2)	0.0626	
2706.4	(10^{-})	970 4 5	100	1736.06	10+			
2700.7	(10^{-})	101 Ab 2	-5 1	2646.20	(11=)	(M 1)	0.720	L from (III ypa)
2828.21	(12)	181.4° 3	<3.4	2040.29	(11)	(111)	0.739	I_{γ} : ITOIII (TII,XIIY). Mult D from (⁷⁶ Co (mult (M1) from (III and))
		361.6.2	100.0	2166 70	(10^{-})	$(\mathbf{F2})$	0.0460	Mult.: D from ($^{\circ}$ Ge,4n γ); (M1) from (HI,Xn γ).
2852 1	(11^{-})	1116 4 5	100 9	2400.78 1736.06	(10^{+})	(E2) D	0.0400	
2002.4	(11)	1110.4 J	100	1750.00	10	D		

9

Adopted Levels, Gammas (continued)								
						$\gamma(^{168}$ I	Hf) (continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	αf	Comments	
2857.5	14+	551.3 2	100	2306.09 12+	E2	0.01520	B(E2)(W.u.)=240 50 Mult.: stretched O from $\gamma(\theta)$ in (HLxn γ): not M2 from RUL.	
2937.75	(13 ⁻)	463.7 2 631.7 2	100 7 73 7	2474.00 (11 ⁻) 2306.09 12 ⁺	(E2) D	0.0234		
2976.43	(12 ⁻)	423.5 2 502.5 5 509.7 5	100 <i>16</i> 47 <i>16</i> <26	2553.01 (10 ⁻) 2474.00 (11 ⁻) 2466.78 (10 ⁻)	(E2) D	0.0298		
2990.6	14 ⁽⁺⁾	684.5 2	100	2306.09 12+	Q ^e			
3066.0	(13 ⁻)	237.6 5 419.8 5 592.0 5	<56 89 22 100 11	2828.21 (12 ⁻) 2646.29 (11 ⁻) 2474.00 (11 ⁻)	(E2)	0.0305		
3085.3	(12 ⁻)	233.0 5 379.0 5	<56 100 22	$\begin{array}{ccc} 2852.4 & (11^{-}) \\ 2706.4 & (10^{-}) \end{array}$	D (E2)	0.0403		
3269.2	(14^{-})	441.0 2	100	$2828.21 (12^{-})$	(E2)	0.0267		
3289.0	(13 ⁻)	436.6 5 982.9 5	100 25 <63	2852.4 (11 ⁻) 2306.09 12 ⁺	(E2) D	0.0274		
3310.4	(16 ⁺)	319.8 2	4.4 4	2990.6 14 ⁽⁺⁾	E2	0.0655	B(E2)(W.u.)=69 14 Mult.: Q from (HI,xn γ); not M2 from RUL.	
		452.9 2	100 13	2857.5 14+	(E2) ^{<i>d</i>}	0.0249	B(E2)(W.u.)=260 60	
3442.17	(15 ⁻)	451.6 2	10.0 13	2990.6 14 ⁽⁺⁾	(E1) ^d			
		504.4 2	100 13	2937.75 (13 ⁻)	(E2)	0.0189		
3452.0	(14-)	475.8 ^b 3 514.3 5 623.6 5	100 <i>12</i> <20 <20	2976.43 (12 ⁻) 2937.75 (13 ⁻) 2828.21 (12 ⁻)	(E2)	0.0219		
3561.1	(14 ⁻)	475.9 5	100	3085.3 (12 ⁻)	(E2)	0.0219		
3589.4	(15 ⁻)	523.4 2 651.7 5	100 <i>10</i> <50	3066.0 (13 ⁻) 2937.75 (13 ⁻)				
3624.1	(16 ⁺)	633.5 2	100 13	2990.6 14 ⁽⁺⁾	(E2) ^d			
1 דדדנ	(16^{-})	766.6 2	24.0 27	$2857.5 14^+$	$(E2)^{\boldsymbol{\alpha}}$	0.0196		
3777.4 3817.5	(10) (15^{-})	508.2 2 528 5 2	100 13	3209.2 (14) $3289.0 (13^{-})$	(E2) (E2)	0.0180		
5017.5	(15)	827.0 5	<33	2990.6 $14^{(+)}$	(L2)	0.01005		
3832.5	(18^{+})	521.9 2	100	3310.4 (16 ⁺)	(E2) ^e	0.01738		
3988.6	(16 ⁻)	536.7 2 546.6 5 719.3 5	100 <i>13</i> <22 <22	3452.0 (14 ⁻) 3442.17 (15 ⁻) 3269.2 (14 ⁻)	(E2)	0.01623		
3989.6	(17-)	365.5 <i>5</i> 547.4 <i>2</i>	<3.6 100 <i>14</i>	3624.1 (16 ⁺) 3442.17 (15 ⁻)	D (E2)	0.01546		
4118.5	(16 ⁻)	557.5 5	100	3561.1 (14 ⁻)	(E2)	0.01479		
4190.1	(17 ⁻)	600.7 5	100 11	3589.4 (15 ⁻)	(E2)	0.01238		

From ENSDF

Т

$\gamma(^{168}\text{Hf})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}
4190.1	(17^{-})	748.0 5	<56	3442.17	(15^{-})		
4296.9	(15-)	210.4 5	100 29	4086.5	(14-)	(M1)	0.490
		854.7 <i>5</i>	<71	3442.17	(15^{-})		
		1306.3 5	<71	2990.6	$14^{(+)}$	D	
		1439.4 5	<71	2857.5	14^{+}		
4322.3	(18+)	698.3 <i>2</i>	100 16	3624.1	(16^{+})	(E2) <mark>d</mark>	
		1012.0 5	<11.4	3310.4	(16^{+})		
4336.0	(18^{-})	558.6 2	100	3777.4	(16 ⁻)	(E2)	0.01472
4415.3	(17^{-})	597.8 2	100	3817.5	(15^{-})	(E2)	0.01252
4439.9	(20^{+})	607.3 2	100	3832.5	(18^{+})	(E2)	0.01206
4450.4	(15^{-})	1140.0 5		3310.4	(16^{+})	D	
		1459.8 <i>5</i>		2990.6	14(+)		
		1592.9 5		2857.5	14+		
4467.7	(15^{-})	843.6 5	<50	3624.1	(16^{+})	D	
		1610.2 5	100 20	2857.5	14+	D	
4528.8	(16^{-})	231.9 2	100 20	4296.9	(15^{-})	(M1)	0.374
		442.3 5	<50	4086.5	(14 ⁻)	(E2)	0.0265
4577.9	(19 ⁻)	255.4 5	<4.2	4322.3	(18^{+})		0.01001
	(10-)	588.2 2	100 17	3989.6	(17^{-})	(E2)	0.01301
4578.2	(18)	588.9 5	<28	3989.6	(17)		0.01000
		589.7 2	100 11	3988.6	(16^{-})	(E2)	0.01293
4615 7	(1(-))	800.8 5	<28	3///.4	(16)	A (1)	0.050.16
4615.7	(10)	105.3.5		4450.4	(15)	(M1)	0.959 10
4671 5	(16^{-1})	1305.3 5	100	3310.4	(10^{-})	(M 1)	0.524.0
40/1.5	(10)	203.9 3	100	440/./	(15)	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.554 9
4/14.9	(10)	390.3 Z	100 14	4110.3	(10)	(E2)	0.01238
4//5.5	(17)	244.3 J 176.1 5	71 100 14	4328.8	(10) (15^{-})	$(\mathbf{W}\mathbf{I}\mathbf{I})$ $(\mathbf{F}2)$	0.524
4800 7	(17^{-})	104.0.5	1</td <td>4290.9</td> <td>(15^{-})</td> <td>$(\mathbf{L}2)$ $(\mathbf{M}1)$</td> <td>0.613 10</td>	4290.9	(15^{-})	$(\mathbf{L}2)$ $(\mathbf{M}1)$	0.613 10
4009.7	(17)	350 3 5		4015.7	(10^{-})	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.015 10
4829 5	(19^{-})	639.3.5	100	4190.1	(13^{-})	$(\mathbf{F2})$	
4894 5	(17^{-})	223.1.5	100 73	4671.5	(16^{-})	$(\mathbf{L}\mathbf{L})$ $(\mathbf{M}1)$	0.416.7
10911.9	(17)	426.8 5	<63	4467.7	(15^{-})	(1011)	0.110 /
4934.0	(20^{-})	598.0 2	100	4336.0	(18^{-})	(E2)	0.01251
5012.0	(18^{-})	238.7 5		4773.3	(17^{-})	(M1)	0.346
		483.2 5		4528.8	(16 ⁻)	(E2)	0.0211
5027.6	(19-)	612.3 2	100	4415.3	(17-)	· /	
5030.0	(18 ⁻)	220.3 5	100 14	4809.7	(17^{-})	(M1)	0.431 7
	. ,	414.3 5	<71	4615.7	(16 ⁻)	(E2)	0.0316
5049.2	(20^{+})	726.9 2	100	4322.3	(18^{+})	(E2) <mark>d</mark>	
5124.3	(22^+)	684.1 2	100	4439.9	(20+)	(E2) ^e	0.00918 13

11

$\gamma(^{168}\text{Hf})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α^{f}	Comments
5139.5	(18 ⁻)	244.9 <i>5</i> 468.0 <i>5</i>	100 <i>14</i> <71	4894.5 (17 ⁻) 4671.5 (16 ⁻)	(M1)	0.322	
5146.5	(19 ⁻)	824.2 ^h 5	100	4322.3 (18+)			
5168.8	(19 ⁺)	846.5 2 1336.5 5	100 <i>14</i> <36	$\begin{array}{r} 4322.3 (18^+) \\ 3832.5 (18^+) \end{array}$	Q(+D)		
5197.4	(21^{-})	619.5 2	100	4577.9 (19 ⁻)	(E2)	0.01152	
5212.9	(20^{-})	634.8 2	100 13	4577.9 (19 ⁻)	(E2)	0.01088	
		635.5 5	<33	4578.2 (18 ⁻)			
		877.0 5	<33	4336.0 (18-)	Q		
5246.3	(19 ⁻)	234.3 5		5012.0 (18 ⁻)	(M1)	0.364	
		473.0 5		4773.3 (17 ⁻)	(E2)	0.0223	
5275.1	(19 ⁻)	245.1 5	100 20	5030.0 (18 ⁻)	(M1)	0.322	
		465.4 5	<100	4809.7 (17 ⁻)			
5328.5	(20 ⁻)	613.6 ⁸ 2	1008	4714.9 (18 ⁻)			
5412.6	(19 ⁻)	273.1 5		5139.5 (18 ⁻)	(M1)	0.240	
5 470 0	$(01\mathbf{-})$	518.0 5	100.17	4894.5 (17)		0.01022	
5479.0	(21)	649.5 5	100 17	4829.5 (19)	(E2)	0.01032	
		901.2.5	<83	4577.9(19)	Q		
5406 5	(20-)	1039.0 5	<83	$4439.9(20^{\circ})$	$(\mathbf{M}1)$	0.204	
5490.5	(20)	230.2 2	100 10	5240.5(19)	$(\mathbf{W}\mathbf{I}\mathbf{I})$	0.304	
5544.8	(20^{-})	464.5 5	100 20	5012.0(10) $5275.1(10^{-})$	(M1)	0.248	
5544.0	(20)	514.8.5	<100 20	5275.1(19) $5030.0(18^{-})$	(111)	0.248	
5574 3	(22^{-})	640 3 2	100	$4934.0(20^{-})$	(F2)	0.01067	
5658.1	(21^{-})	630 5 5	100	$5027.6(19^{-})$	(E2)	0.01105	
5695.5	(20^{-})	282.9.5	<71	$5412.6 (19^{-})$	(M1)	0.218	
000010	(=0)	556.0 5	100 14	5139.5 (18 ⁻)	(111)	0.210	
5763.2	(22^{+})	714.1.2	100.73	$5049.2(20^+)$	$(F2)^{d}$		
5765.2	(22)	1323 4 2	43.9	$4439.9(20^+)$	(112)		
5768.4	(21^{-})	271.9 2	100 17	$5496.5 (20^{-})$	(M1)	0.242	
	()	522.1 5	<28	5246.3 (19 ⁻)	(E2)	0.01737	
5801.9	(21^{-})	655.5 5		5146.5 (19-)			
		752.8 <mark>h</mark> 5		$5049.2(20^+)$			
5833.3	(21^{-})	288.5.5	100.20	$5544.8(20^{-})$	(M1)	0.206	
	()	558.2 5	<100	5275.1 (19 ⁻)	(E2)	0.01475	
5853.4	(23^{-})	656.0 2	100	5197.4 (21-)	(E2)	0.0101	
5874.7	(24+)	750.0 2	100	5124.3 (22+)	(E2)		Mult.: Q from (HI,xn γ); intraband transition.
5889.3	(21^{+})	720.5 2	80 13	5168.8 (19+)	(E2)	0.00817 12	
		840.1 2	100 13	5049.2 (20 ⁺)	Q(+D)		
5893.7	(22^{-})	680.8 2	100 10	5212.9 (20-)	(E2)	0.00928 13	
		959.8 <i>5</i>	<50	4934.0 (20 ⁻)			

				Ad	opted Levels, Gammas (continued	<u>d)</u>
					$\gamma(^{168}\text{Hf})$ (continued)	
\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^f	Comments
(22^{-})	613.6 <mark>8</mark> 2	1008	5328.5 (20-)			
(21^{-})	307.1 5	80 10	5695.5 (20-)	(M1)	0.174	
	590.0 2	100 10	5412.6 (19 ⁻)			
(22^{-})	296.7 2	100 10	5768.4 (21-)	(M1)	0.191	
. ,	568.6 <i>5</i>	<24	5496.5 (20-)	· · /		
(22^{-})	307.6 5		5833.3 (21-)	(M1)	0.174	
	596.1 5		5544.8 (20-)	(E2)	0.01260	
(23^{-})	671.7 5	100 20	5479.0 (21-)	(E2)	0.00956 14	
	953.4 5	<100	5197.4 (21-)	Q		
	1026.3 5	<100	5124.3 (22+)			
(24^{-})	694.4 2	100	5574.3 (22-)	(E2)	0.00887 13	
(23^{-})	660.3 <i>2</i>	100	5658.1 (21 ⁻)	(E2)	0.00994 13	
(22^{-})	326.9 5	58 8	6002.6 (21 ⁻)	(M1)	0.1475	
	634.0 2	100 17	5695.5 (20 ⁻)	(E2)	0.01091	
(23^{-})	317.2 2	100 13	6065.1 (22 ⁻)	(M1)	0.1599	
	613.9 2	67 <i>13</i>	5768.4 (21 ⁻)	(E2)	0.01176	
(23 ⁻)	320.4 5	<83	6140.9 (22 ⁻)	(M1)	0.1556	
	628.0 5	100 17	5833.3 (21 ⁻)	(E2)	0.01116	
(24^{+})	718.3 2	100 13	5763.2 (22 ⁺)			
	1357.3 2	34 <i>3</i>	5124.3 (22 ⁺)	Q		
(23 ⁻)	693.4 5		5801.9 (21 ⁻)			
	1371.1 5		5124.3 (22 ⁺)	D		
(25 ⁻)	712.3 2	100	5853.4 (23 ⁻)	(E2)		
(24^{-})	734.1 <mark>b</mark> 3	100	5893.7 (22 ⁻)	(E2)		
(24 ⁻)	702.2 2	100	5942.1 (22-)	(E2)		
(23^{-})	343.1 5	86 14	6329.5 (22 ⁻)	(M1)	0.1296	
	670.0 5	100 14	6002.6 (21-)	(Q)		
(26^{+})	812.2 2	100	5874.7 (24 ⁺)	(E2) ^e		
(23^{+})	800.9 2	79 14	5889.3 (21+)	(E2)		
	926.9 2	100 14	5763.2 (22+)	Q(+D)		
(24^{-})	338.2 2	100 27	6382.3 (23-)	(M1)	0.1346	

Mult.: DCO in 96 Zr(76 Ge,4n γ) too high for E1 Δ J=1 transition implied by level scheme.

 E_i (level)

5942.1 6002.6

6065.1

6140.9

6150.5

6268.7

6318.4 6329.5

6382.3

6461.3

6481.4

6495.2

6565.7

6627.9

6644.3

6672.6

6687.2

6690.2

6720.5

6794.5

6892.5

7028.5

7029.4

7076.6

64 9

100

655.4 5

333.2 5

653.6 5

742.3 5

1017.6 5

355.9 5

699.0 5

760.7 2

356.1 5

 (24^{-})

 (25^{-})

 (24^{-})

 (26^{-})

 (25^{-})

6065.1 (22⁻)

6461.3 (23⁻)

6140.9 (22⁻)

6150.5 (23⁻)

5874.7 (24⁺)

6672.6 (23⁻)

6329.5 (22⁻)

6268.7 (24⁻)

100 17 6720.5 (24⁻) (M1)

(E2)

(M1)

(E2)

(E2)

[E1]

(M1)

(E2)

(E2)

0.01011

0.1401

0.01018

0.1175

0.1173

Adopted Levels, Gammas (continued)										
	γ ⁽¹⁶⁸ Hf) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{f}	Comments			
7076.6	(25 ⁻)	694.3 5	83 17	6382.3 (23 ⁻)	(E2)					
7084.6	(25^{-})	766.2 2	100	6318.4 (23 ⁻)	(E2)					
7136.4	(25^{-})	341.9 5	100 20	6794.5 (24 ⁻)	(M1)	0.1308				
		675.1 <i>5</i>	<100	6461.3 (23 ⁻)	(E2)					
7241.1	(25^{-})	746.2 5		6495.2 (23 ⁻)						
72 (0.0		1366.3 5	100.14	5874.7 (24+)	D					
7260.8	(26 ⁺)	779.8 2	100 14	$6481.4 (24^+)$	0					
		1385.5 5	50 /	58/4.7 (24*)	Q					
7335.5	(25^{-})	770.00 5	100	6565.5 (23 ⁻)						
7346.8	(27^{-})	781.1 2	100	6565.7 (25 ⁻)	(E2)	0 1001				
/406.6	(25)	3/8.1 5	<100	7028.5(24)	(M1) (E2)	0.1001				
7422 4	(26^{-})	734.0 3	100 20	00/2.0 (23)	(E2) (E2)					
7423.4	(20)	719.2 J	100 17	(0044.3 (24))	(E2)					
7420 4	(2(-))	795.5° 3	100 17	6627.9(24)	0					
/439.4	(26)	/95.2.5		6644.3 (24)	Q (E2)					
7452.0	(26^{-})	811.5 J 375 4 5	-12	0027.9(24)	(E2) (M1)	0 1020				
7452.0	(20)	731 5 2	<42 100 <i>17</i>	$6720.5 (23^{-})$	$(\mathbf{W}\mathbf{I})$ (E2)	0.1020				
7487 2	(26^{-})	350.8.5	100 17	$71364(25^{-})$	(L2) (M1)	0 1221				
/10/.2	(20)	692.7.5		$6794.5 (24^{-})$	(1011)	0.1221				
7520.1	(25^{+})	829.9 2	100	$6690.2 (23^+)$						
7562.2	(28^{+})	874.8 2	100	6687.2 (26 ⁺)	(E2) ^d					
7662.22	(-)	975 bh 1	100	$6687.2(26^+)$						
7705.6	(27^{-})	813 3 5	100 20	$6892.5(25^{-})$	(E2)					
1100.0	(27)	1018 3 5	<100 20	$6687.2(26^+)$	(E2)		Mult · DCO in 96 Zr(76 Ge 4n γ) too high for E1 AI=1 implied by level scheme			
7796.5	(26^{-})	389.9.5	(100	$7406.6 (25^{-})$	(M1)	0.0922				
119010	(20)	768.0 5		7028.5 (24 ⁻)	(E2)	010722				
7838.6	(27 ⁻)	386.6 2	100 12	7452.0 (26 ⁻)	(M1)	0.0943				
		762.0 2	71 12	7076.6 (25-)	(E2)					
7842.8	(27 ⁻)	355.6 5	<100	7487.2 (26 ⁻)						
		706.4 5	100 20	7136.4 (25 ⁻)	(E2)					
7860.8	(28 ⁻)	831.4 2	100	7029.4 (26 ⁻)	(E2)					
7919.1	(27^{-})	834.5 5	100	7084.6 (25 ⁻)						
8037.6	(27)	/02.1 5		/335.5 (25 ⁻)						
		/96.5 2		1241.1(25)						
8075.0	(27^{-1})	1330.2 3		008/.2 (20') 7335 5 (25 ⁻)	$(\mathbf{F2})$					
0075.0	(27)	129.5 J		(697.2) (25)	(E2)					
0117.0	(20+)	138/.0" 3	100 12	$008/.2 (20^{\circ})$ 7260.8 (26 ⁺)						
0117.0	(28))	830.4 Z	100 13	$1200.8 (20^{\circ})$						
		1427.3 3	<33	0007.2 (20)						

 $^{168}_{72}\mathrm{Hf}_{96}\text{-}14$

Т

$\gamma(^{168}\text{Hf})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ [‡]	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]
8197.5 8201.6	(29 ⁻) (27 ⁻)	850.7 2 405.1 5 705.0 5	100	7346.8 7796.5	(27^{-}) (26^{-}) (25^{-})	(E2)	9730.5 9749.7	(32^{-}) (31^{-}) (21^{-})	967.9 ^b 3 937.6 5	100 100	8762.6 8812.0	(30^{-}) (29^{-}) (20^{-})	(E2)
8209.2	(28 ⁻)	366.4 <i>5</i> 722.0 <i>5</i>		7842.8 7487.2	(25^{-}) (27^{-}) (26^{-})	(E2)	10017.0 10025.5	(31^{-}) (32^{+}) (32^{-})	909 976.2 2 468.8 2	100 100 100 <i>15</i>	9033.0 9040.7 9556.7	(30^+) (31^-)	
8244.8	(28 ⁻)	406.2 2 792.8 2	100 <i>15</i> 100 <i>15</i>	7838.6 7452.0	(27 ⁻) (26 ⁻)	(E2)	10090.7	(33-)	923.0 2 976.5 2	100 <i>15</i> 100	9102.5 9114.2	(30 ⁻) (31 ⁻)	
8270.1 8329.5 8366.1	(28^{-}) (28^{-}) (27^{+})	846.7 5 890.1 5 846 1	100 100	7423.4 7439.4 7520.1	(26^{-}) (26^{-}) (25^{+})	(E2) (E2)	10132.0 10226.5 10439.5	(32^{-}) (32^{-}) (32^{-})	958.3 5 964 1 938 1	100 100 100	9173.7 9262.5 9501.5	(30^{-}) (30^{-}) (30^{-})	(E2)
8501.0 8587.0	(30^+) (29^-)	938.8 2 377.8 5	100	7562.2 8209.2	(28^+) (28^-)	(E2) ^d	10513.7	(32 ⁻)	488.2 <i>2</i> 957.0 <i>5</i>	100 <i>15</i> 69 8	10025.5 9556.7	(32^{-}) (31^{-})	
	(22-)	744.2 5	100	7842.8	(27 ⁻)		10530.6	(33 ⁻)	869.4 5	100	9661.2	(31 ⁻)	(E2)
8594.1 8620.5	(29^{-}) (28^{-})	888.5 5 418.9 5	100 <83	7705.6 8201.6	(27^{-}) (27^{-})		10551.4 10567.2	(34^{+}) (33^{-})	1050.7 2 1015 <i>I</i>	100 100	9500.7 9552.2	(32^+) (31^-)	(E2) ^u (E2)
8665.8	(29 ⁻)	824.0 <i>5</i> 421.0 <i>2</i> 827.2 <i>2</i>	100 <i>17</i> 100 <i>19</i> 75 <i>19</i>	7796.5 8244.8 7838.6	(26 ⁻) (28 ⁻) (27 ⁻)	(E2)	10756.5 10756.7 11011.8	(34 ⁻) (33 ⁻) (34 ⁻)	1026.0 ^b 3 1007 1 498.1 5	100 100 50 7	9730.5 9749.7 10513.7	(32 ⁻) (31 ⁻) (33 ⁻)	(E2) (E2)
8762.6 8812.0	(30 ⁻) (29 ⁻)	901.8 2 892.9 5	100 100	7860.8 7919.1	(28 ⁻) (27 ⁻)	(E2) (E2)	11043.2	(34+)	986.3 2 1026.2 5	100 <i>14</i> 100	10025.5 10017.0	(32 ⁻) (32 ⁺)	
8845.4	(29 ⁻)	770.4 <i>5</i> 807.8 <i>5</i>		8075.0 8037.6	(27^{-}) (27^{-})	(E2) Q	11117.7 11139.2	(35 ⁻) (34 ⁻)	1027.0 <i>2</i> 1007.2 <i>5</i>	100 100	10090.7 10132.0	(33 ⁻) (32 ⁻)	(E2) ^d (E2)
8988.1	(30-)	401 <i>1</i> 779 <i>1</i>		8587.0 8209.2	(29 ⁻) (28 ⁻)	-	11437.3 11533.2	(35 ⁻) (35 ⁻)	906.7 5 521.4 5	100 70 <i>10</i>	10530.6 11011.8	(33 ⁻) (34 ⁻)	(E2)
9040.7	(30 ⁺)	923.9 2 1477.6 5	100 <i>13</i> <33	8117.0 7562.2	(28^+) (28^+)		11638.2	(36+)	1019.5 2 1086.8 2	100 <i>20</i> 100	10513.7 10551.4	(33 ⁻) (34 ⁺)	(E2) ^d
9053.6	(29 ⁻)	433.1 5 852.0 5		8620.5 8201.6	(28^{-}) (27^{-})		11828.4 12069.5	(36^{-}) (36^{-})	1071.9 ^b 3 536 1	100 100 <i>14</i>	10756.5	(34^{-}) (35^{-})	(E2)
9102.5	(30 ⁻)	436.7 <i>5</i> 857.7 <i>5</i>	75 <i>13</i> 100 <i>13</i>	8665.8 8244.8	(29^{-}) (28^{-})		12102.2	(36 ⁺)	1058 <i>1</i> 1059 <i>1</i>	86 <i>14</i> 100	11011.8 11043.2	(34^{-}) (34^{+})	
9114.2 9173.7	(31 ⁻) (30 ⁻)	916.7 2 903.6 5	100 100	8197.5 8270.1	(29 ⁻) (28 ⁻)	(E2) ^d (E2)	12179.2 12186.2	(37 ⁻) (36 ⁻)	1061.5 2 1047 <i>1</i>	100 100	11117.7 11139.2	(35 ⁻) (34 ⁻)	(E2)
9262.5 9386.0	(30 ⁻) (31 ⁻)	933.0 <i>5</i> 799 <i>1</i>	100 100	8329.5 8587.0	(28 ⁻) (29 ⁻)	(E2)	12384.3 12619.2	(37 ⁻) (37 ⁻)	947.0 <i>5</i> 1086 <i>1</i>	100 100	11437.3 11533.2	(35 ⁻) (35 ⁻)	(E2)
9500.7 9501.5	(32 ⁺) (30 ⁻)	999.7 2 447.9 5 881.0 5	100	8501.0 9053.6 8620.5	(30^+) (29^-) (28^-)	(E2) ^d	12742.7 12931.5 13255.4	(38^+) (38^-) (39^-)	1104.5 ^b 3 1103.1 5 1076.2 5	100 100 100	11638.2 11828.4 12179.2	(36 ⁺) (36 ⁻) (37 ⁻)	(E2) ^d (E2) (E2)
9552.2 9556.7	(31 ⁻) (31 ⁻)	958.1 5 454.2 2	100 71 <i>14</i> 100 <i>14</i>	8594.1 9102.5	(29^{-}) (30^{-}) (20^{-})	(E2)	13374.3 13851.5 14038 5	(39^{-}) (40^{+}) (40^{-})	990.0 5 1108.8 5	100 100 100	12384.3 12742.7 12021 5	(37^{-}) (38^{+}) (38^{-})	(E2) (E2)
9661.2	(31 ⁻)	890.9 2 815.8 5	100 14	8845.4	(29 ⁻)	(E2) (E2)	14038.5	(40^{-}) (41^{-})	1087.2 5	100	13255.4	(39 ⁻)	$(E2)^d$

15

γ (¹⁶⁸Hf) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult
14414.8	(41^{-})	1040.5 5	100	13374.3	(39^{-})	(E2)
14972.0	(42^+)	1120.5 5	100	13851.5	(40^+)	()
15461.7	(43-)	1119.1 5	100	14342.6	(41^{-})	(E2)
15512.0	(43-)	1097.2 5	100	14414.8	(41-)	(E2)
16127.5	(44^{+})	1155.5 2	100	14972.0	(42^+)	
16632.9	(45^{-})	1171.2 5	100	15461.7	(43 ⁻)	(E2)
16670.0	(45-)	1158.0 5	100	15512.0	(43 ⁻)	
17336.6	(46^{+})	1209.1 5	100	16127.5	(44^{+})	
17866.9	(47^{-})	1234 <i>I</i>	100	16632.9	(45 ⁻)	
17890.8	(47^{-})	1220.8 5	100	16670.0	(45 ⁻)	
18605.6	(48^{+})	1269	100	17336.6	(46^{+})	
19175.8	(49 ⁻)	1285 <i>1</i>	100	17890.8	(47^{-})	
677.2+x	J+2	677.2	0.73 ^a 12	0.0+x	J≈(33)	(E2)
1399.2+x	J+4	722.0		677.2+x	J+2	(E2)
2169.8+x	J+6	770.6	0.97 ^a 7	1399.2+x	J+4	(E2)
2993.9+x	J+8	824.1	0.96 ^a 7	2169.8+x	J+6	(E2)
3871.2+x	J+10	877.3	0.89 ^a 7	2993.9+x	J+8	
4802.6+x	J+12	931.4	0.75 ^a 7	3871.2+x	J+10	
5787+x	J+14	984.4	0.66 ^a 8	4802.6+x	J+12	
6828+x	J+16	1041.4	0.54 ^a 10	5787+x	J+14	
7926+x	J+18	1097.4	0.34 ^a 9	6828+x	J+16	
9079+x	J+20	1153.5	0.23 ^a 10	7926+x	J+18	
10294+x?	J+22	1215 <mark>h</mark>		9079+x	J+20	
11567+x?	J+24	1273 <mark>/</mark>		10294 + x?	J+22	
811.1+z	J2+2	811.1		0.0+z	J2≈(28)	
1673.3+z	J2+4	862.2	0.98 ^a 13	811.1+z	J2+2	
2583.6+z	J2+6	910.3	1.00 ^a 8	1673.3+z	J2+4	
3544.2+z	J2+8	960.6	0.89 ^a 10	2583.6+z	J2+6	
4560.8+z	J2+10	1016.6	0.89 ^a 12	3544.2+z	J2+8	
5635.8+z	J2+12	1075.0	0.67 ^a 10	4560.8+z	J2+10	
6771+z	J2+14	1135.6	0.37 ^{<i>a</i>} 12	5635.8+z	J2+12	
7966+z?	J2+16	1195 <mark>h</mark>		6771+z	J2+14	
9222+z?	J2+18	1256 <mark>h</mark>		7966+z?	J2+16	

[†] From (HI,xn γ), except as noted.

16

[‡] Photon branching from each level, relative to 100 for the strongest branch, except as noted; values are from (⁷⁶Ge,4n γ), unless indicated to the contrary. [#] From DCO ratio in (⁷⁶Ge,4n γ), assigning $\Delta \pi$ =(no) for intraband transitions, except as noted.

$\gamma(^{168}\text{Hf})$ (continued)

[@] From $\gamma\gamma(\theta)$ in ε decay. [&] From ¹⁶⁸Ta ε decay.

^{*a*} Relative intensity within band, normalized to ≈ 1.0 for the strongest γ in band.

^{*b*} From (HI,xn γ).

^c 1411.4 γ +1413.5 γ and 1673.0 γ +1675.5 γ form doublets in ε decay. Each γ -ray intensity may include some unresolved contribution from its second component.

^d Inferred from level scheme in (HI,xn γ); 1983Ch44 report that J^{π} values were established from ce and $\gamma(\theta)$ data, but those data were not enumerated.

^{*e*} From $\gamma(\theta)$ in (HI,xn γ), assigning $\Delta \pi$ =(no) to intraband transitions.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*g*} Multiply placed with undivided intensity.

^h Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ----1256 <u>J2+18</u> <u>9222+z</u> 2617 .0.3> <u>J2+16</u> <u>7966+z</u> 1135,6 1 2025.01 J2+14 6771+z 1016,0.89 5635.8+z J2+12 080 J2+10 4560.8+z ³00.61 ŝ J2+8 3544.2+z 910.3 °66.0 J2+6 2583.6+z <u>______</u> J2+4 1673.3+z 811 J2+2 J2≈(28) 811.1+z 0.0+z ¥ 5 <u>11567+x</u> <u>J+24</u> 1215 + 1/53.5 9.23 <u>J+22</u> _1<u>0294+x</u> 9079+x J+20 + 1041.4 7926+x J+18 0.00 6828+x J+16 -285. V ا 9_{3/4} J+14 5787+x 68° 4802.6+x J+12 ^رکی ع Â 1 (E) 1 (G) <u>3871.2+x</u> J+10 رجع جع 2993.9+x J+8 101 <u>J+6</u> 2169.8+x (E) (2) (2) Ð J+4 1399.2+x -22-0-J+2 J≈(33) 677.2+x 0.0+x (49-) 6 19175.8 (48^+) 18605.6 * (47^{-}) 17890.8 8 (47^{-}) 17866.9 8 8 (46^{+}) 17336.6 (45-) 16670.0 8 (45^{-}) 16632.9 (44^{+}) 16127.5 8 (43-) 15512.0 (43^{-}) 15461.7 (42^{+}) 14972.0 14414.8 (41⁻) (41^{-}) 14342.6 (40^{+}) 13851.5 (39-) 13374.3 0^+ 0.0

25.95 min 20

¹⁶⁸₇₂Hf₉₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁸₇₂Hf₉₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁸₇₂Hf₉₆

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{168}_{72}{\rm Hf}_{96}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{168}_{72}{
m Hf}_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

0.0 25.95 min 20

 $^{168}_{\ 72}{\rm Hf}_{96}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $\gamma = - - - \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{168}_{72}{\rm Hf}_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁶⁸₇₂Hf₉₆

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

¹⁶⁸₇₂Hf₉₆

		Band(C): g.s. band		
	Band(B): π =-, α =1, AE band	(48 ⁺) 18605.6		
	(47 ⁻) 17866.9	1269		
		(46 ⁺) 17336.6		
	(45 ⁻) 16632.0			
		(44 ⁺) 16127 5		
	1171			
Bond(A): $\pi - \alpha - 0$ AF	(43) 15461.7	1156 (42 ⁺) 14072 0		
band	1119	(42) 14972.0		
(40 ⁻) 14038.5	(41 ⁻) 14342.6	1120		
	1087			
(38^{-}) 12931.5	(39 ⁻) 13255.4	1109		
	1076	(38+) 12742.7	Band(D): α =0 BC band	
(36^{-}) 1103 (11828.4)	(37 ⁻) 12179.2	1104	(36 ⁺) 12102.2	
(1062	(36 ⁺) <u>11638.2</u>	1059	
(34^{-}) 1072 (34^{-}) 10756 5	(35 ⁻) 11117.7	1087	(34 ⁺) <u>11043.2</u>	
(1027	<u>(34⁺)</u> <u>10551.4</u>	1026	
(32^{-}) 9730.5	(33 ⁻) 10090.7	1051	(32 ⁺) 10017.0	
	976 (31 ⁻) 0114.2	(32 ⁺) 9500.7	976	
(30 ⁻) 8762.6	(31) 9114.2	1000	(30 ⁺) 9040.7 Band(E): $\pi = -, \alpha = 1$ band	d
902	(29 ⁻) 8197.5		(28^+) (28^+) (27^-) (27^-) (27^-)	
(28 ⁻) 7860.8	851	(28 ⁺) 7562.2		
(26 ⁻) 7029.4	(27 ⁻) 7346.8	975	$(26^+) \begin{array}{c} 7260.8 \\ \hline 7260.8 \\ \hline 7241.1 \\$	
761	(25 ⁻) 781 6565.7		780 746 746 746 746 6495.2	
(24 ⁻) 6268.7	(23-) 712 5952.4	(24 ⁺) 5874.7	718 (1-) 693	
(22^{-}) $\overset{694}{\checkmark}$ 5574.3	656	750	(22^+) 5763.2 (21^-) 5801.9	
(20 ⁻) 640 4934.0	(21 ⁻) 5197.4	(22+) 5124.3	$(20^+) \stackrel{714}{\downarrow} 5049.2 \checkmark (19^-) \stackrel{656}{\downarrow} 5146.5$	
(18 ⁻) ⁵⁹⁸ 4336.0	$(19^{-}) \stackrel{620}{\bullet} 4577.9$	(20 ⁺) 684 4439.9	(18^+) 4322.3	
(16^{-}) 559 3777.4	(17 ⁻) 588 3989.6	(18^+) $\overset{607}{\bullet}$ 3832.5	698	
(14^-) 508 3269.2	(15 ⁻) 547 3442.17	(16 ⁺) 522 3310.4		
(12^{-}) 441 2828.21 (10^{-}) 2426.79	(13 ⁻) 504 2937.75	14+ 453 2857.5	$14^{(+)}$ $\stackrel{6.34}{\downarrow}$ 2990.6	
$\begin{array}{c} (10^{\circ}) & 362 \\ \hline (8^{\circ}) & 273 \\ \hline 273 & 2193.66 \\ \hline \end{array}$	(11^{-}) 464 2474.00 (9^{-}) 407 2007 01	12 ⁺ 551 2306.09		
(6^{-}) 201 1992.70	$\begin{array}{c} (7^{-}) & \frac{107}{2067.01} \\ \hline (7^{-}) & \frac{332}{332} & \frac{1735.33}{2007} \end{array}$	10 ⁺ 570 1736.06		
	\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`	8 ⁺ 522 1213.70		
		$\begin{array}{c} 0 & 757.29 \\ \hline 4^+ & 456 & 385.92 \\ \hline 385.92 & 757.29 \\ \hline 4^+ & 385.92 \\ \hline 385.92 & 757.29 \\ \hline 4^+ & 385.92 \\ \hline 4^+ & $		
		$\frac{2^+}{0^+} \underbrace{\begin{array}{c}371\\262\end{array}}_{262} 124.\overline{10}\\0.0$		
		124		

 $^{168}_{72}{
m Hf}_{96}$

		Band(H): band (2	Triaxial SD-2 2001Am02)
		J2+18	<u>9222+z</u>
		J2+16	256 <u>7966+z</u>
		J2+14 1	195 6771+z
		J2+12 1	¹³⁶ 5635.8+z
		J2+10 1	⁰⁷⁵ 4560.8+z
		J2+8 ¹	⁰¹⁷ 3544.2+z
		J2+6 9	⁶¹ 2583.6+z
Band(F): Triaxial SD-1 band (2001Am02)		J2+4 9	¹⁰ 1673.3+z
build (2001/11102)		J2+2 8	62 811.1+z
J+24 11567+x		J2≈(28) 8	0.0+z
$\underline{J+22}$ <u>1273</u> <u>10294+x</u>			
J+20 ¹²¹⁵ 9079+x			
J+18 ¹¹⁵⁴ 7926+x			
J+16 ¹⁰⁹⁷ 6828+x			
J+14 ¹⁰⁴¹ 5787+x			
J+12 ⁹⁸⁴ 4802.6+x			
J+10 ⁹³¹ 3871.2+x			
J+8 877 2993.9+x			
J+6 ⁸²⁴ 2169.8+x	Band(G)		
J+4 771 1399.2+x	band (2009Ya21)		
J+2 722 677.2+x			
$J \approx (33) 677 0.0+x$	<u>(49⁻) 19175.8</u>		
	(47 ⁻) 1285 17890.8		
	(45 ⁻) 1221 16670.0		
	(43 ⁻) 1158 15512.0		
	$\underbrace{(41^-)}^{1097} 14414.8}_{\bullet}$		
	(39 ⁻) ¹⁰⁴⁰ 13374.3		
	(37 ⁻) ⁹⁹⁰ 12384.3		
	(35 ⁻) 947 11437.3		
	(33 ⁻) 907 10530.6		
	(31 ⁻) 869 9661.2		
	(29 ⁻) 816 8845.4		
	(27 ⁻) 770 8075.0		
	(25 ⁻) 740 7335.5		
	(23^{-}) 770 6565.5		

¹⁶⁸₇₂Hf₉₆

		Band(M): π=-, α=0 AH band (2009Ya21)	
		(36 ⁻) 12186.2	
		1047	
	Band(L): π =-, α =1 AM	(34 ⁻) 11139.2	Band(m): π=-, α=1 AG band (2009Ya21)
Band(K): <i>π</i> =−, <i>α</i> =0 BE band	(33 ⁻) 10567.2	1007	(33 ⁻) 10756.7
(32 ⁻) 10226.5		(32 ⁻) 10132.0	1007
	1015	() 10132.0	(31 ⁻) 9749.7
964	(31 ⁻) 9552.2	958	
(30) 9262.5	958	(30 ⁻) 9173.7	938
933	(29 ⁻) 8594.1	904	(29 ⁻) 8812.0
(28 ⁻) 8329.5	999	(28 ⁻) 8270.1	893
890	(27 ⁻) 7705.6	847	<u>(27⁻)</u> 7919.1
(26 ⁻) 7439.4		(26 ⁻) 7423.4	834
812	(25 ⁻) 6892.5	779	<u>(25⁻)</u> 7084.6
<u>(24⁻)</u> 6627.9		(24 ⁻) 6644.3	766
734	(23 ⁻) 6150.5	702	(23 ⁻) 6318.4
(22 ⁻) 5893.7	672	(22 ⁻) 5942.1	660 (21 ⁻) 5658.1
681 (20 ⁻) 5212.9	(21 ⁻) 5479.0	(20 ⁻) 5328.5	630
(10) <u>5212.5</u>	650 (19) 4829.5	614	<u>(19⁻)</u> 5027.6
(18 ⁻) 4578.2	639	(18 ⁻) 4714.9	(17^{-}) 4415 3
590 (16 ⁻) 3988.6	(17 ⁻) 4190.1	(16 ⁻) 4118.5	598
537	601 (15) 3589.4	558 (14 ⁻) 25(1.1	(15 ⁻) 3817.5
(14 ⁻) 3452.0	523	476	<u>(13⁻)</u> <u>528</u> <u>3289.0</u>
(12^{-}) 476 2976.43	(13 ⁻) 3066.0	(12^{-}) 3085.3	(11 ⁻) 437 2852.4
(10^{-}) $\overset{424}{-}$ 2553.01	$\frac{(11^{-})}{(9^{-})} \xrightarrow{325} 2646.29$	(10^{-}) (10^{-}) 2706.4	
(8 ⁻) ³⁹⁷ 2155.65	$\frac{(9)}{(7^{-})} \frac{240}{2081.44}$		
(6 ⁻) ³⁴² 1813.75	Ť		

Band(I): K ^{<i>π</i>} =2 ⁻ ban	⁺ γ-vibration d	1
$\begin{array}{c} (6^+) \\ \hline (5^+) \\ \hline 4^{(+)} \\ \hline 3^+ \\ 2^+ \end{array} $	1551.34 1386.38 391 1160.71 1030.93 875 94	$\frac{\beta}{\frac{(4^+}{2^+})}$

³¹⁶ 1497.24

(4-)

 $^{168}_{72}{
m Hf}_{96}$