		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁶⁸Tm: E=0.0; $J^{\pi}=3^+$; $T_{1/2}=93.1$ d 2; $Q(\varepsilon)=1678.9$ 19; $\%\varepsilon+\%\beta^+$ decay=99.990 7

¹⁶⁸Tm-%ε+%β⁺ decay: from total I(γ+ce) to (g.s.(¹⁶⁸Er) + g.s.(¹⁶⁸Yb))=100%. Others: 1957Gr74, 1959Ko64, 1960Br37, 1960Ja08, 1961Re07, 1962Bo18, 1964Re05, 1966Ju02, 1967Gu04, 1968Ke01, 1968Ku03, 1968Mi12, 1969Ke06, 1971La11, 1973Ki09, 1983Ji01, 1983Me17, 1985Ad03, 1990Me15, 1993BaZR, 1994Va02, 1996Al31, 1998Al15.

The decay scheme and all data are from 1987Me04, except where noted.

1987Me04: Sources from Tm metal (99.9% pure) + neutrons (E(n)=14.8 MeV), Tm oxide (99.9% pure) + neutrons (E(n) up to 40 MeV, chem), and high-energy spallation of tantalum (chem, mass separation); measured $E\gamma$, $I\gamma$ (Ge(Li), high-purity germanium, LEPS spect). A few low-energy transitions were added from ce and (n,γ) data. Reference citations are given with data from other sources.

¹⁶⁸Er Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}	stable	
79.8038 [#] 17	2+	1.853 ns 25	T _{1/2} : adopted value (incorporates the following from ¹⁶⁸ Tm decay: 1.72 ns 6 (cece(t), 1974Aw03), 1.92 ns 2 ($\gamma\gamma$ (t), 1972BeVM), 1.92 ns 4 ($\gamma\gamma$ (t), 1962Bo18), 1.90 ns 6 (γ ce(t), 1963Li04), and 1.88 ns 5 (γ ce(t), 1968Ku03). Others: 1959Be73, 1964Ja09).
264.0964 [#] 17	4+	114 ps 4	$T_{1/2}$: weighted average of 106 ps 6 (cece(t), 1974Aw03), 113 ps 13 ($\gamma\gamma$ (t), 1972BeVM), 121 ps 8 (γ ce(t), 1963Li04), and 119 ps 7 (γ ce(t), 1968Ku03).
548.757 [#] 4	6+		
821.1643 [@] 17	2^{+}		
895.7943 [@] 23	3+	≤120 ps	$T_{1/2}$: $\gamma\gamma(t)$ (1991De24).
994.7517 [@] 24	4+		
1094.0449 ^{&} 23	4-	109.0 ns 7	$T_{1/2}$: $\gamma\gamma(t)$; weighted average of 108.9 ns 7 (unpublished value quoted in 1981Iw04), 120 ns 20 (1957Mi01), 110 ns 15 (1959Ko64), 107 ns 10 (1966Ju02), 115.7 ns 33 (1967Gu04), and 107.3 ns 22 (1973Ki09).
1117.5721 [@] 25	5+		
1193.034 ^{&} <i>3</i>	5-		
1217.17 ^{<i>a</i>} 15	0^+		
1276.298 ^d 24	2*		
1358.910° 12	1		
$1403.718^{\circ} 10$ $1411.100^{a} 10$	(2) 4^+		
1422.3	0^{+}		
1431.454 ^b 6 1493.26 ^c 8	$3^{-}_{2^{+}}$	41 ps	$T_{1/2}$: deduced by 1987Me04 from Coulomb-excitation, (d,d'), and 168 Tm-decay data.
1541.5520 ^d 24	3-	8 ps	$T_{1/2}$: deduced by 1987Me04 from reanalysis of Coulomb excitation, (d,d') and ¹⁶⁸ Tm-decay data. Other: 1962Bo18 (≤ 800 ps).
1569.452 ^e 7	$(2)^{-}$		
1574.12 ^b 24	5-		
1615.339 ^d 4	4-		
1633.453 ^e 12	3-		
1653.53 ^J 4	3^+		
1030.312 14	(4)		

168 Tm ε decay 1987Me04 (continued)

¹⁶⁸Er Levels (continued)

[†] From least-squares fit to $E\gamma$.

- [‡] From Adopted Levels.
- [#] Band(A): $K^{\pi}=0^+$ g.s. band member.
- [@] Band(B): $K^{\pi}=2^+ \gamma$ -vibration band member.
- [&] Band(C): $K^{\pi}=4^{-}$ band member.
- ^{*a*} Band(D): $K^{\pi}=0^+$ band member.
- ^{*b*} Band(E): $K^{\pi} = 1^{-}$ octupole band member.
- ^{*c*} Band(F): $K^{\pi}=0^+$ band member.
- ^{*d*} Band(G): $K^{\pi}=3^{-}$ band.
- ^{*e*} Band(H): $K^{\pi}=2^{-}$ band.

^{*f*} Band(I): $K^{\pi}=3^+$ band.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	Ιε‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(22.6 19)	1656.312		<1.7×10 ⁻⁵	>10.3	$<1.7 \times 10^{-5}$	ϵ L=0.57 3; ϵ M+=0.43 3
(25.4 19)	1653.53		0.009 3	7.74 18	0.009 3	εL=0.607 22; εM+=0.393 22
(45.4 19)	1633.453		0.020 8	8.05 18	0.020 8	εL=0.698 5; εM+=0.302 5
(63.6 19)	1615.339		0.70 4	6.87 5	0.70 4	εK=0.06 4; εL=0.681 22; εM+=0.261 11
(104.8 19)	1574.12		0.00010 6	$10.3^{1u} 3$	0.00010 6	εK=0.080 9; εL=0.651 6; εM+=0.269 4
(109.4 19)	1569.452		0.591 8	7.82 3	0.591 8	εK=0.576 9; εL=0.316 7; εM+=0.108 3
(137.3 19)	1541.5520		43.66 12	6.258 19	43.66 12	εK=0.663 5; εL=0.253 3; εM+=0.0838 12
						measured εK(exp)=0.72 4 (1994Va02; x-γ summing), 0.71 3 (1982Se07).
(185.6 19)	1493.26		0.0015 5	11.09 15	0.0015 5	εK=0.7292 17; εL=0.2050 12; εM+=0.0659 5
(247.4 19)	1431.454		0.151 11	9.41 4	0.151 11	εK=0.7650 8; εL=0.1787 6; εM+=0.05623 20
(267.8 19)	1411.100		0.0029 9	11.21 14	0.0029 9	εK=0.7722 7; εL=0.1735 5; εM+=0.05430 17
(275.2 19)	1403.718		0.0234 13	10.33 <i>3</i>	0.0234 13	εK=0.7745 6; εL=0.1718 5; εM+=0.05370 16
(320.0 19)	1358.910		0.0466 23	9.675 ¹ <i>u</i> 25	0.0466 23	εK=0.6788 15; εL=0.2405 11; εM+=0.0806 5
(402.6 19)	1276.298		0.0199 16	10.79 4	0.0199 16	εK=0.7983 3; εL=0.15433 17; εM+=0.04738 6
(584.9 19)	1094.0449		46.6 14	7.782 14	46.6 14	εK=0.8122 1; εL=0.14410 7; εM+=0.04372 3
						measured ε K=0.82 5 (1994Va02) from x- γ summing.
(783.1 [#] <i>19</i>)	895.7943		<0.6	>9.9	<0.6	ε K=0.8193; ε L=0.13884 4; ε M+=0.04184 2
(857.7 19)	821.1643		11.98 10	8.729 5	11.98 10	εK=0.8211; εL=0.13754 3; εM+=0.04138 1
(1414.8 19)	264.0964		0.43 25	10.6 3	0.43 25	εK=0.8274; εL=0.1323; εM+=0.039519 5
(1599.1 19)	79.8038	< 0.004	<1.0	>10.4	<1	av Eβ=274.21 84; εK=0.8263; εL=0.13102 2; εM+=0.039095 5
						I($\varepsilon + \beta^+$): deduced from I(γ^{\pm})=0.15 3, ε/β^+ from theory, and I β^+ for branch to 264.1 level.

[†] ε feedings are from intensity imbalance at each level (negligible g.s. feeding expected because $\Delta J=3$).

[±] Absolute intensity per 100 decays.
 [#] Existence of this branch is questionable.

					1	⁶⁸ Tm ε de	cay 1987Me	04 (continued)		
							$\gamma(^{168}\text{Er})$			
Iγ normali See 1959K 1981Iw0 E(aefgh) F	zation: from tot 664, 1960Ja08, 14, 1982Se07, 19 From Adopted G	al I(γ+ce) to 1961Re07, 1 996A131 and ammas.	(g.s.(¹⁶ 962B01 1998A1	8 Er) + g.s.(16 8, 1964Re05 15 for $\gamma\gamma$ and	⁵⁸ Yb))= , <mark>1968</mark>] d/or γγ	=100%. Ke01, 1968 (θ) data.	3Mi12, 1971La1	11, 1972BeVM, 1	1972BeVW	, 1973Ki09, 1975Be43, 1980Fu03,
K x ray d	ata (1982Se0) Er K α_2 x ray Er K α_1 x ray Er K β_1 ' x ra Er K β_2 ' x ra	7); intensi E(x 1 y 48.2 y 49.1 y 55.6 y 57.2	ities : ray) 22 13 8 1	relative to I(x ra 51.6 91.7 29.7 7.65	$\begin{array}{c} 1\gamma = 1 \\ 1\gamma = 1 \\ 12 \\ 20 \\ 6 \\ 15 \end{array}$	100 2 for	198.2γ.			
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	$I_{(\gamma+ce)}^{d}$	Comments
27.80		1569.452	(2)-	1541.5520	3-	M1,E2		5.×10 ² 5		$\begin{array}{l} \alpha(\text{L})=4.\text{E2 4; } \alpha(\text{M})=9.\text{E1 9; } \alpha(\text{N}+)=22 \ 21 \\ \alpha(\text{N})=19 \ 19; \ \alpha(\text{O})=2.2 \ 22; \ \alpha(\text{P})=0.0039 \ 24 \\ \text{E}_{\gamma},\text{Mult.: from 1993BaZR. L1/L2=1.2} \\ (1993BaZR); \ \text{L1:L2}=0.34:0.28 \ (1975Ab06). \end{array}$
(59.13 15)	0.00032 16	1276.298	2+	1217.17	0+	[E2]		24.3 5	0.008 4	$ce(K)/(\gamma+ce)=0.0749 \ 17; \ ce(L)/(\gamma+ce)=0.679 \ 9; \\ ce(M)/(\gamma+ce)=0.165 \ 4; \ ce(N+)/(\gamma+ce)=0.0416 \\ 11 \\ ce(N)/(\gamma+ce)=0.0373 \ 10; \ ce(O)/(\gamma+ce)=0.00430 \\ 11; \ ce(P)/(\gamma+ce)=5.46\times10^{-6} \ 13 \\ E_{\gamma}: \ from \ level-energy \ difference. \\ I_{(\gamma+ce)}: \ required \ for \ intensity \ balance \ at \ 1217.2 \\ level. \\ level.$
64.0		1633.453	3-	1569.452	(2)-	(E2)		17.36		
70.9		1493.26	2+	1422.3	0+	(E2)		11.35		E _γ ,Mult.: from 1993BaZR; L2≈L3 (1993BaZR). α (K)=1.98 3; α (L)=7.18 10; α (M)=1.750 25; α (N+)=0.441 7 α (N)=0.395 6; α (O)=0.0458 7; α (P)=9.56×10 ⁻⁵ 14
73.784 <i>3</i>	0.19 [@] 4	1615.339	4-	1541.5520	3-	M1+E2	0.11 +3-2	6.87		$\alpha(K)=5.68 \ 9; \ \alpha(L)=0.93 \ 4; \ \alpha(M)=0.207 \ 10; \ \alpha(N+)=0.0553 \ 24 \ \alpha(N)=0.00481 \ 22; \ \alpha(O)=0.00684 \ 25; \ \alpha(P)=0.000352 \ 6 \ Mult: \ \alpha(K)exp=5.9 \ 16 \ (1993BaZR).$
74.626 <i>3</i>	0.34 [@] 10	895.7943	3+	821.1643	2^{+}	M1+E2	+1.42 +4-5	8.35 13		$\alpha(K)=3.09 \ 8; \ \alpha(L)=4.04 \ 10; \ \alpha(M)=0.978 \ 24;$

ω

 $^{168}_{68}\mathrm{Er}_{100}$ -3

						¹⁶⁸ Tn	n ε decay	1987Me04 (con	ntinued)	
							γ (¹⁶⁸ E	r) (continued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
										α (N+)=0.248 6 α (N)=0.222 6; α (O)=0.0261 6; α (P)=0.000171 5 Mult.: K:L1:L2:L3=0.52:0.069:0.34:0.34 (1975Ab06). δ : sign from 75 γ -821 $\gamma(\theta)$ (1996Al31).
	75.466 7	0.0078 [@] 25	1193.034	5-	1117.5721	5+	E1		0.682	$\alpha(K)=0.561 \ 8; \ \alpha(L)=0.0945 \ 14; \ \alpha(M)=0.0210 \ 3; \ \alpha(N+)=0.00543 \ 8$
										α (N)=0.00478 7; α (O)=0.000626 9; α (P)=2.43×10 ⁻⁵ 4 Mult.: from α (K)exp=3.1 10 (1993BaZR). α (K)exp implies δ (E1,M2)=0.22 +4-5.
	79.804 2	201 4	79.8038	2+	0.0	0+	E2		7.04	$\alpha(K)=1.698\ 24;\ \alpha(L)=4.10\ 6;\ \alpha(M)=0.998\ 14;$ $\alpha(N+)=0.252\ 4$
										α(N)=0.226 4; α(O)=0.0262 4; α(P)=7.44×10 ⁻⁵ 11 Mult.: K:L1:L2:L3=37.4:3.7:37.4:37.0 (1975Ab06). %Iγ=10.94 13 assuming recommended decay scheme normalization.
	98.982 2	2.8 4	1193.034	5-	1094.0449	4-	E2		3.06	$\alpha(K)=1.101 \ 16; \ \alpha(L)=1.499 \ 21; \ \alpha(M)=0.364 \ 6; \ \alpha(N+)=0.0922 \ 13$
~										α (N)=0.0824 <i>12</i> ; α (O)=0.00968 <i>14</i> ; α (P)=4.58×10 ⁻⁵ 7 E γ =99.293 2 for doublet (1987Me04).
	99.289 2	77.7 4	1094.0449	4-	994.7517	4+	E1+M2 ^b	-0.06 ^b 5	0.43 23	$\alpha(K)=0.35\ 17;\ \alpha(L)=0.06\ 5;\ \alpha(M)=0.015\ 12;\ \alpha(N+)=0.004\ 3$ $\alpha(N)=0.003\ 3;\ \alpha(O)=0.0005\ 4;\ \alpha(P)=2.0\times10^{-5}\ 18$ Ev=99\ 293\ 2 for doublet (1987Me04).
	110.2		1541.5520	3-	1431.454	3-	M1(+E2)		2.10 7	Mult.: K:L1:L2=1.0:0.14:0.05 (1975Ab06). α (K)=1.3 5; α (L)=0.6 4; α (M)=0.14 9; α (N+)=0.036 20 α (N)=0.032 19; α (O)=0.0040 20; α (P)=7.E-5 4
	122.821 <i>I</i>	0.0023 [@] 5	1117.5721	5+	994.7517	4+	M1+E2	1.57 +7-9	1.434 21	Mult.: α (K)exp=1.6 5 (1993BaZR). α (K)=0.840 21; α (L)=0.457 11; α (M)=0.109 3;
	^x 138.15									$\alpha(N+)=0.02797$ $\alpha(N)=0.02497; \alpha(O)=0.003037; \alpha(P)=4.29\times10^{-5}15$ E_{γ} : from 1975Ab06; No other studies have confirmed this line, so placement from 1569 level is rejected by
	165.3		1569.452	(2)-	1403.718	(2)-	M1(+E2)		0.58 11	evaluator. $\alpha(K)=0.43 \ 15; \ \alpha(L)=0.12 \ 4; \ \alpha(M)=0.028 \ 9; \ \alpha(N+)=0.0072 \ 22$
	173.591 <i>19</i>	0.77 4	994.7517	4+	821.1643	2+	E2		0.406	α (N)=0.0064 20; α (O)=0.00083 19; α (P)=2.4×10 ⁻⁵ 12 Mult.: α (K)exp=0.48 16 (1993BaZR). α (K)=0.244 4; α (L)=0.1243 18; α (M)=0.0298 5; α (N+)=0.00760 11 α (N)=0.00777 10; α (O)=0.000825 12; α (D)=1.112×10 ⁻⁵
	184.295 2	333 <i>3</i>	264.0964	4+	79.8038	2+	E2		0.331	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.006 \ / \ 10; \ \alpha(\mathrm{O}) = 0.000825 \ 12; \ \alpha(\mathrm{P}) = 1.112 \times 10^{-5} \\ 16 \\ \alpha(\mathrm{K}) = 0.206 \ 3; \ \alpha(\mathrm{L}) = 0.0967 \ 14; \ \alpha(\mathrm{M}) = 0.0231 \ 4; \\ \alpha(\mathrm{N}+) = 0.00591 \ 9 \end{array} $

From ENSDF

 $^{168}_{68}\mathrm{Er}_{100}$ -4

 $^{168}_{68}\mathrm{Er}_{100}$ -4

						168 Tm ε d	ecay 1987	Me04 (conti	nued)
							γ ⁽¹⁶⁸ Er) (co	ntinued)	
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
^x 196.4			_		<u> </u>	M1(+E2)		0.35 8	$\alpha(N)=0.00526 \ 8; \ \alpha(O)=0.000644 \ 9; \ \alpha(P)=9.49\times10^{-6} \ 14$ Mult.: K:L1:L2:L3=6.64:0.68:1.0:0.76 (1975Ab06). $\alpha(K)=0.26 \ 10; \ \alpha(L)=0.064 \ 11; \ \alpha(M)=0.015 \ 3; \ \alpha(N+)=0.0038 \ 7$ $\alpha(N)=0.0034 \ 7; \ \alpha(O)=0.00045 \ 6; \ \alpha(P)=1.5\times10^{-5} \ 7$
198.251 2	1000 3	1094.0449	4-	895.7943	3+	E1+M2	-0.12 3	0.084 <i>18</i>	Mult.: from $\alpha(\mathbf{K})\exp=0.36$ 13 (1993Ba2K). $\alpha(\mathbf{K})=0.069$ 14; $\alpha(\mathbf{L})=0.012$ 3; $\alpha(\mathbf{M})=0.0027$ 7; $\alpha(\mathbf{N}+)=0.00072$ 18 $\alpha(\mathbf{N})=0.00062$ 16; $\alpha(\mathbf{O})=8.7\times10^{-5}$ 23; $\alpha(\mathbf{P})=4.2\times10^{-6}$ 12 Mult.: K:L1:L2:L3=4.13:0.8:0.12:0.12 (1975Ab06). δ : -0.12 3 from $\gamma\gamma(\theta)$ In text and abstract of 1981Iw04 (but -0.13 2 In table II and fig. 5). others: <0.095 (1975Ab06),
205.1		1422.3	0^+	1217.17	0^+	E0			+0.02 2 (1975Be43). E_{γ} ,Mult.: from 1993BaZR; conversion electrons but No photons
221.8 5	0.04 2	1117.5721	5+	895.7943	3+	E2		0.179	observed. $\alpha(K)=0.1200 \ 19; \ \alpha(L)=0.0454 \ 8; \ \alpha(M)=0.01077 \ 18; \ \alpha(N+)=0.00277 \ 5$
272.896 13	1.70 7	1094.0449	4-	821.1643	2+	M2		0.754	α (N)=0.00246 5; α (O)=0.000306 5; α (P)=5.79×10 ⁻⁶ 9 α (K)=0.602 9; α (L)=0.1175 17; α (M)=0.0270 4; α (N+)=0.00726 11
284.655 <i>14</i>	1.66 8	548.757	6+	264.0964	4+	E2		0.0811	$\begin{aligned} \alpha(N) &= 0.00631 \ 9; \ \alpha(O) &= 0.000898 \ 13; \ \alpha(P) &= 4.61 \times 10^{-3} \ 7 \\ \text{Mult.: } \text{K:L1:L2:L3} &= 0.14: 0.022: 0.005: 0.004 \ (1975 \text{Ab06}). \\ \alpha(K) &= 0.0586 \ 9; \ \alpha(L) &= 0.01734 \ 25; \ \alpha(M) &= 0.00407 \ 6; \\ \alpha(N+) &= 0.001052 \ 15 \end{aligned}$
348.509 2	6.49 7	1541.5520	3-	1193.034	5-	E2		0.0442	$ \begin{aligned} \alpha(N) &= 0.000930 \ 13; \ \alpha(O) &= 0.0001189 \ 17; \ \alpha(P) &= 2.99 \times 10^{-6} \ 5 \\ \alpha(K) &= 0.0334 \ 5; \ \alpha(L) &= 0.00837 \ 12; \ \alpha(M) &= 0.00194 \ 3; \\ \alpha(N+) &= 0.000506 \ 7 \end{aligned} $
422.305 7	5.59 8	1615.339	4-	1193.034	5-	M1		0.0540	α (N)=0.000446 7; α (O)=5.82×10 ⁻⁵ 9; α (P)=1.766×10 ⁻⁶ 25 Mult.: K:L1=0.021:0.003 (1975Ab06). α (K)=0.0455 7; α (L)=0.00662 10; α (M)=0.001464 21; α (N+)=0.000394 6
445.995 <i>4</i>	1.4 4	994.7517	4+	548.757	6+	[E2]		0.0222	$\alpha(N)=0.000341 5; \alpha(O)=4.95\times10^{-5} 7; \alpha(P)=2.76\times10^{-6} 4$ Mult.: K:L1=0.028:0.005 (1975Ab06). $\alpha(K)=0.01743 25; \alpha(L)=0.00370 6; \alpha(M)=0.000849 12;$ $\alpha(N+)=0.000222 4$ $\alpha(N)=0.000195 3; \alpha(O)=2.61\times10^{-5} 4; \alpha(P)=0.53\times10^{-7} 14$
447.515 <i>3</i>	440 2	1541.5520	3-	1094.0449	4-	M1+E2 ^{<i>a</i>}	-0.09^{a} 1	0.0463	$\begin{aligned} & \text{E}_{\gamma=447.501\ 2} \text{ for } (446_{\gamma}+448_{\gamma}) \text{ doublet } (1987\text{Me04}). \\ & \text{Mult.: } \text{K:L1:L2:L3=2.0:0.31:0.048:0.01 } (1975\text{Ab06}). \\ & \alpha(\text{K})=0.0390\ 6;\ \alpha(\text{L})=0.00567\ 8;\ \alpha(\text{M})=0.001253\ 18; \\ & \alpha(\text{N}+)=0.000337\ 5 \\ & \alpha(\text{N})=0.000292\ 4;\ \alpha(\text{O})=4.24\times10^{-5}\ 6;\ \alpha(\text{P})=2.36\times10^{-6}\ 4 \\ & \text{E}_{\gamma=447.501\ 2} \text{ for } (446_{\gamma}+448_{\gamma}) \text{ holds} (102716\ 24) \end{aligned}$
497.78 6	0.68 8	1615.339	4-	1117.5721	5+	E1		0.00564 8	$ε_{\gamma=44}$, 501 2 for (446γ+448γ) doublet (198/Me04). other δ: -0.09 +3-8 (1975Be43). α=0.00564 8; $α$ (K)=0.00478 7; $α$ (L)=0.000670 10;

S

						¹⁶⁸ T	$m \varepsilon $ decay	1987Me04 (co	ntinued)	
							γ (¹⁶⁸ Er	r) (continued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
	521.13 7	0.58 7	1615.339	4-	1094.0449	4-	M1+E2	1.1 +9-5	0.022 5	$\begin{array}{l} \alpha(\mathrm{M}) = 0.0001473 \ 21; \ \alpha(\mathrm{N}+) = 3.93 \times 10^{-5} \ 6\\ \alpha(\mathrm{N}) = 3.41 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 4.86 \times 10^{-6} \ 7; \\ \alpha(\mathrm{P}) = 2.56 \times 10^{-7} \ 4\\ \alpha(\mathrm{K}) = 0.018 \ 5; \ \alpha(\mathrm{L}) = 0.0030 \ 5; \ \alpha(\mathrm{M}) = 0.00067 \ 10; \\ \alpha(\mathrm{N}+) = 0.00018 \ 3\\ \alpha(\mathrm{N}) = 0.000155 \ 22; \ \alpha(\mathrm{O}) = 2.2 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.1 \times 10^{-6} \\ 3 \end{array}$
	535.642 21	0.0048 [@] 10	1431.454	3-	895.7943	3+				
	537.76 6	$0.0058^{\textcircled{0}}$ 12	1358.910	1-	821.1643	2^{+}				
	546.81 <i>3</i>	48.7 ^{&} 4	1541.5520	3-	994.7517	4+	E1(+M2) ^{<i>a</i>}	+0.007 ^{<i>a</i>} 23	0.00460 10	α =0.00460 10; α (K)=0.00390 8; α (L)=0.000543 12; α (M)=0.000119 3; α (N+)=3.19×10 ⁻⁵ 8 α (N)=2.77×10 ⁻⁵ 7; α (O)=3.95×10 ⁻⁶ 9; α (P)=2.10×10 ⁻⁷ 5 other δ : -0.01 3 (1975Be43)
	557.083 12	4.1 2	821.1643	2+	264.0964	4+	E2 ^C		0.01252	$\alpha(K) = 0.0108 \ 15; \ \alpha(L) = 0.00190 \ 3; \ \alpha(M) = 0.000430$ $6; \ \alpha(N+) = 0.0001135 \ 16$ $\alpha(N) = 9.94 \times 10^{-5} \ 14; \ \alpha(O) = 1.357 \times 10^{-5} \ 19;$ $\alpha(P) = 5.63 \times 10^{-7} \ 8$
	559.5 4	0.15 5	1653.53	3+	1094.0449	4-	E1		0.00437 7	$\alpha(I) = 5.05 \times 10^{-6} \text{ or } 0$ $\alpha = 0.00437 7; \ \alpha(K) = 0.00371 6; \ \alpha(L) = 0.000516 8;$ $\alpha(M) = 0.0001134 \ 16; \ \alpha(N+) = 3.03 \times 10^{-5} 5$ $\alpha(N) = 2.63 \times 10^{-5} 4; \ \alpha(O) = 3.76 \times 10^{-6} 6;$ $\alpha(P) = 2.00 \times 10^{-7} 3$
	568.8 4	0.11 5	1117.5721	5+	548.757	6+	E2+M1	3.6 3	0.01284 25	$\alpha(K) = 0.01042 \ 21; \ \alpha(L) = 0.00188 \ 3; \ \alpha(M) = 0.000424 7; \ \alpha(N+) = 0.0001123 \ 19 \alpha(N) = 9.81 \times 10^{-5} \ 16; \ \alpha(O) = 1.352 \times 10^{-5} \ 23; \alpha(P) = 5 \ 89 \times 10^{-7} \ 13$
	582.57 25	0.03 2	1403.718	(2)-	821.1643	2+	E1		0.00401 6	$\alpha(1) = 5.65 \times 10^{-15} \text{ a}(\text{K}) = 0.00340 \ 5; \ \alpha(\text{L}) = 0.000472 \ 7; \\ \alpha(\text{M}) = 0.0001037 \ 15; \ \alpha(\text{N}+) = 2.77 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 2.41 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.44 \times 10^{-6} \ 5; \\ \alpha(\text{P}) = 1.84 \times 10^{-7} \ 3 $
	^x 615.15 620.59 7	0.14 5	1615.339	4-	994.7517	4+	M1+E0			Mult.: from α (K)exp=0.029 6 (1993BaZR).
	x626.06	170.1	005 50 40	2+	264.0064	4	M1+E0	4.0.0	0.000/5.1/	Mult.: from $\alpha(K)\exp=0.0265$ (1993BaZR).
	631.705 3	170 1	895.7943	3*	264.0964	4*	M1+E2	-4.8 2	0.00965 14	$\alpha = 0.00965 \ 14; \ \alpha(K) = 0.00788 \ 12; \ \alpha(L) = 0.001376 \ 20; \alpha(M) = 0.000310 \ 5; \ \alpha(N+) = 8.22 \times 10^{-5} \ 12 \alpha(N) = 7.18 \times 10^{-5} \ 11; \ \alpha(O) = 9.95 \times 10^{-6} \ 15; \alpha(P) = 4.46 \times 10^{-7} \ 7 Mult.: \ K:L1 = 0.13:0.028 \ (1975Ab06). \delta: \ from \ \gamma\gamma(\theta) \ (1981Iw04). \ others: \ -4.9 \ 3 (1975Be43); \ \delta > 71 \ (1975Ab06).$
	644.277 5	0.23 [@] 4	1193.034	5-	548.757	6+	E1		0.00324 5	α =0.00324 5; α (K)=0.00276 4; α (L)=0.000380 6;

						168 Tm ε	decay 1987M	e04 (continued	d)
							γ (¹⁶⁸ Er) (contin	nued)	
	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
		27.08	1541 5500		005 7042 at			0.000000.5	$\alpha(M)=8.35\times10^{-5} \ 12; \ \alpha(N+)=2.23\times10^{-5} \ 4$ $\alpha(N)=1.94\times10^{-5} \ 3; \ \alpha(O)=2.78\times10^{-6} \ 4; \ \alpha(P)=1.493\times10^{-7} \ 21$ Ey=645.766 \ 3 for (644y+646y) doublet (1987Me04).
	645.775 15	21.2~ 2	1541.5520	3	895.7943 31	EI		0.00323 5	$ \begin{array}{l} \alpha = 0.00323 \ 5; \ \alpha(\text{K}) = 0.002/4 \ 4; \ \alpha(\text{L}) = 0.0003/8 \ 6; \\ \alpha(\text{M}) = 8.31 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.22 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 1.93 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.76 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.486 \times 10^{-7} \ 21 \end{array} $
	673.670 <i>15</i>	3.0 1	1569.452	(2)-	895.7943 3+	E1		0.00296 5	E γ =645.766 <i>3</i> for (644 γ +646 γ) doublet (1987Me04). α =0.00296 <i>5</i> ; α (K)=0.00252 <i>4</i> ; α (L)=0.000346 <i>5</i> ; α (M)=7.60×10 ⁻⁵ <i>11</i> ; α (N+)=2.03×10 ⁻⁵ <i>3</i> α (N)=1.764×10 ⁻⁵ <i>25</i> ; α (O)=2.53×10 ⁻⁶ <i>4</i> ; α (P)=1.364×10 ⁻⁷ <i>19</i>
	719.550 5	3.8 [@] 6	1615.339	4-	895.7943 3+	E1+M2	-0.007 4	0.00259 4	$ \begin{array}{l} \alpha = 0.00259 \ 4; \ \alpha(\mathrm{K}) = 0.00220 \ 3; \ \alpha(\mathrm{L}) = 0.000302 \ 5; \\ \alpha(\mathrm{M}) = 6.63 \times 10^{-5} \ 10; \ \alpha(\mathrm{N} +) = 1.772 \times 10^{-5} \ 25 \\ \alpha(\mathrm{N}) = 1.539 \times 10^{-5} \ 22; \ \alpha(\mathrm{O}) = 2.21 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.197 \times 10^{-7} \\ 17 \end{array} $
Г	720.392 5	224	1541.5520	3-	821.1643 2+	E1+M2 ^{<i>a</i>}	-0.012 ^a 10	0.00259 4	Ey=720.379 4 for (719.6y+720.4y) doublet (1987Me04). Mult.: K:L1=0.053:0.010 (1975Ab06). α =0.00259 4; α (K)=0.00220 4; α (L)=0.000302 5; α (M)=6.62×10 ⁻⁵ 10; α (N+)=1.77×10 ⁻⁵ 3 α (N)=1.537×10 ⁻⁵ 24; α (O)=2.21×10 ⁻⁶ 4; α (P)=1.196×10 ⁻⁷ 18
	730.660 4	96.8 <i>4</i>	994.7517	4+	264.0964 4+	M1+E2	+13 +16-3	0.00664 10	E _γ =720.379 4 for (719.6γ+720.4γ) doublet (1987Me04). other δ: -0.01 2 (1975Be43). α =0.00664 10; α (K)=0.00546 9; α (L)=0.000915 14; α (M)=0.000206 3; α (N+)=5.46×10 ⁻⁵ 8 α (N)=4.76×10 ⁻⁵ 7; α (O)=6.64×10 ⁻⁶ 10; α (P)=3.09×10 ⁻⁷ 5 Mult.: K:L1=0.055:0.014 (1975Ab06). $\gamma\gamma(\theta)$ data (1975Be43) consistent with D+Q and δ≥+12
	737.7 7	0.2 1	1633.453	3-	895.7943 3+	E1		0.00246 4	or≤-47; δ=+30 +170-14 from $\gamma\gamma(\theta)$ (1981Iw04). α=0.00246 4; α(K)=0.00209 3; α(L)=0.000287 4; α(M)=6.29×10 ⁻⁵ 9; α(N+)=1.682×10 ⁻⁵ 24 α(N)=1.461×10 ⁻⁵ 21; α(O)=2.10×10 ⁻⁶ 3; α(P)=1.139×10 ⁻⁷
	741.355 4	235 1	821.1643	2+	79.8038 2+	M1+E2 ^{<i>a</i>}	>25 ^a	0.00639 9	α = 0.00639 9; α(K)=0.00526 8; α(L)=0.000879 13; α(M)=0.000197 3; α(N+)=5.24×10-5 8 α(N)=4.57×10-5 7; α(O)=6.38×10-6 9; α(P)=2.98×10-7 5 Mult.: K:L1=0.13:0.024 (1975Ab06). δ: from ε decay: 1/(-0.003 8) (i.e. δ<-91 or δ>+200) from 720γ-741γ(θ) (1998Al15); δ=+32 +24-9 from 741γ-890γ(θ) (1998Al15); δ=-28 +6-12 from γγ(θ) (1981Iw04); -28 +9-23 (1975Be43); δ=+64 +135-26 from 720γ-741γ(θ) (1971La11).

					168 Tm ε de	cay 1987Me04	4 (continued)	
						$\gamma(^{168}\text{Er})$ (continue	ed)	
E _γ ‡	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	f Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
748.282 7	7.8 1	1569.452	(2)-	821.1643 2	+ E1		0.00239 4	$\begin{aligned} &\alpha = 0.00239 \ 4; \ \alpha(\text{K}) = 0.00204 \ 3; \ \alpha(\text{L}) = 0.000278 \ 4; \\ &\alpha(\text{M}) = 6.11 \times 10^{-5} \ 9; \ \alpha(\text{N}+) = 1.634 \times 10^{-5} \ 23 \\ &\alpha(\text{N}) = 1.419 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 2.04 \times 10^{-6} \ 3; \\ &\alpha(\text{P}) = 1.108 \times 10^{-7} \ 16 \end{aligned}$
812.287 <i>11</i> 815.989 <i>5</i>	0.17 [@] 9 935 <i>3</i>	1633.453 895.7943	3- 3+	821.1643 2 [°] 79.8038 2 [°]	+ + M1+E2	+17.7 23	0.00518 8	α=0.00518 8; α(K)=0.00429 6; α(L)=0.000694 10; α(M)=0.0001552 22; α(N+)=4.13×10 ⁻⁵ 6 α(N)=3.60×10 ⁻⁵ 5; α(O)=5.05×10 ⁻⁶ 7; α(P)=2.44×10 ⁻⁷ 4 Mult.: K:L1=0.43:0.076 (1975Ab06). δ: data from ε decay: 1/(+0.005 15) (i.e., δ<-100 or δ>+50) from 816γ-80γ(θ) (1998Al15); +20 4 from γγ(θ) (1981Iw04); +17 3 (1975Be43); +13 +9-3 (1975Ab06)
821.162 2	220 1	821.1643	2+	0.0 0	+ E2		0.00510 8	$\alpha = 0.00510 \ 8; \ \alpha(\text{K}) = 0.00422 \ 6; \ \alpha(\text{L}) = 0.000682 \ 10; \alpha(\text{M}) = 0.0001525 \ 22; \ \alpha(\text{N}+) = 4.06 \times 10^{-5} \ 6 \alpha(\text{N}) = 3.53 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 4.96 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 2.40 \times 10^{-7} \ 4$
829.948 6	128 <i>I</i>	1094.0449	4-	264.0964 4	+ E1+M2 ^{<i>a</i>}	-0.05^{a} 3	0.00201 10	Mult.: K:L1=0.11:0.010 (1975Ab06). α =0.00201 <i>10</i> ; α (K)=0.00171 <i>8</i> ; α (L)=0.000234 <i>13</i> ; α (M)=5.1×10 ⁻⁵ <i>3</i> ; α (N+)=1.37×10 ⁻⁵ <i>8</i> α (N)=1.19×10 ⁻⁵ <i>7</i> ; α (O)=1.71×10 ⁻⁶ <i>10</i> ; α (P)=9.4×10 ⁻⁸ <i>6</i> other δ :-0.04 <i>5</i> (1975Be43);0 <0.14 (1975Ab06).
832.36 <i>4</i> 853.468 <i>3</i>	0.015 [@] 6 0.63 3	1653.53 1117.5721	3+ 5+	821.1643 2 264.0964 4	+ + M1+E2	3.6 +24-8	0.00500 21	α =0.00500 21; α (K)=0.00416 18; α (L)=0.000655 23; α (M)=0.000146 5; α (N+)=3.89×10 ⁻⁵ 14 α (N)=3.39×10 ⁻⁵ 12; α (O)=4.79×10 ⁻⁶ 18;
862.6 3	0.027 15	1411.100	4+	548.757 6	+ E2		0.00458 7	$\alpha(P)=2.38\times10^{-12}$ $\alpha=0.00458\ 7;\ \alpha(K)=0.00381\ 6;\ \alpha(L)=0.000605\ 9;$ $\alpha(M)=0.0001353\ 19;\ \alpha(N+)=3.60\times10^{-5}\ 5$ $\alpha(N)=3.14\times10^{-5}\ 5;\ \alpha(O)=4.42\times10^{-6}\ 7;\ \alpha(P)=2.16\times10^{-7}$
914.933 4	57.2 3	994.7517	4+	79.8038 2	+ E2		0.00404 6	$ \begin{array}{l} & \overset{5}{\alpha = 0.00404} \ 6; \ \alpha(\text{K}) = 0.00337 \ 5; \ \alpha(\text{L}) = 0.000527 \ 8; \\ & \alpha(\text{M}) = 0.0001175 \ 17; \ \alpha(\text{N}+) = 3.13 \times 10^{-5} \ 5 \\ & \alpha(\text{N}) = 2.73 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.85 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 1.92 \times 10^{-7} \\ & 3 \end{array} $
928.916 7	1.17 3	1193.034	5-	264.0964 4	+ E1		0.001571 22	Mult.: K:L1=0.022:0.0034 (1975Ab06). $\delta(D,Q)=0.00 \ I \ \text{from} \ \gamma\gamma(\theta) \ (19811w04).$ $\alpha=0.001571 \ 22; \ \alpha(K)=0.001339 \ I9; \ \alpha(L)=0.000181 \ 3;$ $\alpha(M)=3.97\times10^{-5} \ 6; \ \alpha(N+)=1.063\times10^{-5} \ I$

 ∞

 $^{168}_{68}{
m Er}_{100}{
m -8}$

Т

						¹⁶⁸ Tm ε decay	1987Me04 (c	continued)	
						γ ⁽¹⁶	⁸ Er) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
1012.26 6	0.21 2	1276.298	2+	264.0964	4+	E2		0.00328 5	$\begin{aligned} \alpha(N) &= 9.23 \times 10^{-6} \ 13; \ \alpha(O) &= 1.330 \times 10^{-6} \ 19; \\ \alpha(P) &= 7.33 \times 10^{-8} \ 11 \\ \alpha &= 0.00328 \ 5; \ \alpha(K) &= 0.00274 \ 4; \ \alpha(L) &= 0.000418 \ 6; \\ \alpha(M) &= 9.30 \times 10^{-5} \ 13; \ \alpha(N+) &= 2.48 \times 10^{-5} \ 4 \\ \alpha(N) &= 2.16 \times 10^{-5} \ 3; \ \alpha(O) &= 3.07 \times 10^{-6} \ 5; \end{aligned}$
1014.226 10	1.35 5	1094.0449	4-	79.8038	2+	M2+E3 ^{<i>a</i>}	-0.55 ^{<i>a</i>} 2	0.01304 <i>21</i>	$\alpha(P)=1.561\times10^{-7}22$ $\alpha(K)=0.01086\ 18;\ \alpha(L)=0.00170\ 3;\ \alpha(M)=0.000380\ 6;$ $\alpha(N+)=0.0001020\ 16$ $\alpha(N)=8.85\times10^{-5}\ 14;\ \alpha(O)=1.274\times10^{-5}\ 20;$ $\alpha(P)=6.85\times10^{-7}\ 12$ other $\delta:=0.54\ 5\ (1075Pe42)$
1025.4 4	0.0006 4	1574.12	5-	548.757	6+	E1		0.001306 <i>19</i>	$\alpha = 0.001306 \ I9; \ \alpha(K) = 0.001114 \ I6; \ \alpha(L) = 0.0001501$ 21; \alpha(M) = 3.29 \times 10^{-5} \ 5; \alpha(N+) = 8.81 \times 10^{-6} \alpha(N) = 7.64 \times 10^{-6} \ I1; \alpha(O) = 1.103 \times 10^{-6} \ I6; \alpha(P) = 6.11 \times 10^{-8} \ 9
1137.36 <i>15</i>	0.008 4	1217.17	0+	79.8038	2+	E2		0.00259 4	$\alpha(1) = 0.011 \times 10^{-5} \ \alpha(K) = 0.00217 \ 3; \ \alpha(L) = 0.000324 \ 5; \alpha(M) = 7.18 \times 10^{-5} \ 10; \ \alpha(N+) = 2.02 \times 10^{-5} \ 3 \alpha(N) = 1.667 \times 10^{-5} \ 24; \ \alpha(O) = 2.38 \times 10^{-6} \ 4; \alpha(P) = 1.239 \times 10^{-7} \ 18; \ \alpha(IPF) = 1.007 \times 10^{-6} \ 15$
1146.998 9	0.011 [@] 4	1411.100	4+	264.0964	4+	M1		0.00443 7	$\alpha = 0.00443 \ 7; \ \alpha(K) = 0.00375 \ 6; \ \alpha(L) = 0.000527 \ 8; \alpha(M) = 0.0001161 \ 17; \ \alpha(N+) = 3.29 \times 10^{-5} \ 5 \alpha(N) = 2.71 \times 10^{-5} \ 4; \ \alpha(O) = 3.94 \times 10^{-6} \ 6; \alpha(P) = 2.23 \times 10^{-7} \ 4; \ \alpha(PE) = 1.658 \times 10^{-6} \ 24$
1167.357 6	1.36 <i>3</i>	1431.454	3-	264.0964	4+	E1		0.001043 15	$\alpha(1)=2.25\times10^{-4}, \alpha(111)=1.050\times10^{-24}$ $\alpha=0.001043 \ 15; \ \alpha(K)=0.000881 \ 13; \ \alpha(L)=0.0001180$ $17; \ \alpha(M)=2.58\times10^{-5} \ 4; \ \alpha(N+)=1.86\times10^{-5}$ $\alpha(N)=6.01\times10^{-6} \ 9; \ \alpha(O)=8.68\times10^{-7} \ 13;$ $\alpha(P)=4.84\times10^{-8} \ 7; \ \alpha(IPE)=1.163\times10^{-5} \ 17$
1196.51 5	0.074 9	1276.298	2+	79.8038	2+	M1+E2(+E0)	-5.0 +19-26	0.00241 10	$\alpha(1) = 4.64 \times 10^{-7}, \ \alpha(111) = 1.105 \times 10^{-17}, \ \alpha(2111) = 1.105 \times 10^{-17}, \ \alpha(2111) = 0.002297, \ \alpha(2110) = 0.00297, \ \alpha($
1217.1		1217.17	0^+	0.0	0^+	E0			E_{γ} ,Mult.: from 1993BaZR; conversion electrons but No
1229.08 <i>11</i>	0.015 9	1493.26	2+	264.0964	4+	E2		0.00223 4	$\alpha = 0.00223 \ 4; \ \alpha(K) = 0.00187 \ 3; \ \alpha(L) = 0.000274 \ 4; \alpha(M) = 6.07 \times 10^{-5} \ 9; \ \alpha(N+) = 2.47 \times 10^{-5} \ 4 \alpha(N) = 1.411 \times 10^{-5} \ 20; \ \alpha(O) = 2.02 \times 10^{-6} \ 3; \alpha(P) = 1.065 \times 10^{-7} \ 15; \ \alpha(IPF) = 8.45 \times 10^{-6} \ 12$
1276.27 <i>3</i>	0.074 [@] 17	1276.298	2+	0.0	0+	E2		0.00208 3	α =0.00208 3; α (K)=0.001738 25; α (L)=0.000253 4; α (M)=5.60×10 ⁻⁵ 8; α (N+)=3.01×10 ⁻⁵ 5

From ENSDF

					168 Tm ε deca	ay 1987Me0	4 (continued)	
					<u>γ(</u>	¹⁶⁸ Er) (continue	ed)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
1277.451 5	30.9 ^{&} 2	1541.5520	3-	264.0964 4+	E1+M2 ^a	-0.040^{a} 18	0.000947 19	$\alpha(N)=1.303\times10^{-5} \ 19; \ \alpha(O)=1.87\times10^{-6} \ 3; \\ \alpha(P)=9.91\times10^{-8} \ 14; \ \alpha(IPF)=1.509\times10^{-5} \ 22 \\ \alpha=0.000947 \ 19; \ \alpha(K)=0.000761 \ 15; \ \alpha(L)=0.0001017 \ 22; \\ \alpha(M)=2.23\times10^{-5} \ 5; \ \alpha(N+)=6.23\times10^{-5} \\ \alpha(N)=5.18\times10^{-6} \ 11; \ \alpha(O)=7.49\times10^{-7} \ 16; \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(IPF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 63\times10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 9; \ \alpha(PF)=5 \ 10^{-5} \ 8 \\ \alpha(P)=4 \ 19\times10^{-8} \ 10^{-5$
1279.100 23	0.66 4	1358.910	1-	79.8038 2+	E1		0.000934 <i>13</i>	other δ : -0.05 3 (1975Be43). α =0.000934 13; α (K)=0.000749 11; α (L)=0.0001000 14; α (M)=2.19×10 ⁻⁵ 3; α (N+)=6.30×10 ⁻⁵ α (N)=5.09×10 ⁻⁶ 8; α (O)=7.36×10 ⁻⁷ 11; α (P)=4.12×10 ⁻⁸
^x 1281.03					M1(+E0)		0.00341 5	6; α (IPF)=5.72×10 ⁻⁵ 8 α =0.00341 5; α (K)=0.00288 4; α (L)=0.000403 6; α (M)=8.87×10 ⁻⁵ 13; α (N+)=4.30×10 ⁻⁵ 6 α (N)=2.07×10 ⁻⁵ 3; α (O)=3.01×10 ⁻⁶ 5; α (P)=1.709×10 ⁻⁷ 24; α (IPF)=1.91×10 ⁻⁵ 3
1310.0 <i>3</i>	0.0012 9	1574.12	5-	264.0964 4+	E1		0.000914 13	Mult.: from α (K)exp=0.0040 <i>16</i> (1993BaZR). α =0.000914 <i>13</i> ; α (K)=0.000719 <i>10</i> ; α (L)=9.58×10 ⁻⁵ <i>14</i> ; α (M)=2.10×10 ⁻⁵ <i>3</i> ; α (N+)=7.83×10 ⁻⁵ <i>11</i> α (N)=4.88×10 ⁻⁶ <i>7</i> ; α (O)=7.06×10 ⁻⁷ <i>10</i> ; α (P)=3.96×10 ⁻⁸ (c) α (P)=7.26×10 ⁻⁵ <i>11</i>
1323.909 9	0.40 1	1403.718	(2)-	79.8038 2+	E1		0.000906 13	$\alpha = 0.000906 \ 13; \ \alpha(K) = 0.000706 \ 10; \ \alpha(L) = 9.41 \times 10^{-5} \ 14; \alpha(M) = 2.06 \times 10^{-5} \ 3; \ \alpha(N+) = 8.58 \times 10^{-5} \ 12 \alpha(N) = 4.78 \times 10^{-6} \ 7; \ \alpha(O) = 6.93 \times 10^{-7} \ 10; \ \alpha(P) = 3.88 \times 10^{-8} 6; \ \alpha(IPF) = 8.03 \times 10^{-5} \ 12$
1331.39 9	0.015 4	1411.100	4+	79.8038 2+	E2		0.00192 3	$\alpha = 0.00192 \ 3; \ \alpha(K) = 0.001603 \ 23; \ \alpha(L) = 0.000232 \ 4; \alpha(M) = 5.13 \times 10^{-5} \ 8; \ \alpha(N+) = 3.88 \times 10^{-5} \ 6 \alpha(N) = 1.192 \times 10^{-5} \ 17; \ \alpha(O) = 1.710 \times 10^{-6} \ 24; \alpha(P) = 9.13 \times 10^{-8} \ 13; \ \alpha(IPF) = 2.51 \times 10^{-5} \ 4$
1351.2	≈0.22	1615.339	4-	264.0964 4+				Ey=1351.575 5 for (1351.2 γ +1351.5 γ) doublet (1987Me04). E _{γ} : from level-energy difference. I _{γ} : estimate from apparent total I γ for doublet and I γ deduced for 1351.5 γ . δ : from 720 γ -821 $\gamma(\theta)$ (1998Al15).
1351.54 4	1.39 [@] 19	1431.454	3-	79.8038 2+	E1		0.000893 13	$\alpha = 0.000893 \ 13; \ \alpha(K) = 0.000681 \ 10; \ \alpha(L) = 9.07 \times 10^{-5} \ 13; \alpha(M) = 1.98 \times 10^{-5} \ 3; \ \alpha(N+) = 0.0001020 \alpha(N) = 4.61 \times 10^{-6} \ 7; \ \alpha(O) = 6.68 \times 10^{-7} \ 10; \ \alpha(P) = 3.75 \times 10^{-8} 6; \ \alpha(IPF) = 9.66 \times 10^{-5} \ 14 E_{\gamma} = 1351.575 \ 5 \ for \ (1351.2\gamma + 1351.5\gamma) \ doublet (1077 M = 04)$
1358.904 14	0.19 1	1358.910	1-	0.0 0+				(170/141004).

From ENSDF

Т

							$\gamma(^{168}\text{Er})$ (contin	nued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π} N	Mult. [#]	$lpha^\dagger$	Comments
1392.209 13	< 0.0004	1656.312	$(4)^{+}$	264.0964	4+			
1413.35 <i>15</i>	0.008 2	1493.26	2+	79.8038	2 ⁺ N	M 1	0.00274 4	α =0.00274 4; α (K)=0.00228 4; α (L)=0.000318 5; α (M)=7.00×10 ⁻⁵ 10; α (N+)=7.40×10 ⁻⁵ 11
								$\alpha(N)=1.632\times10^{-5} 23; \ \alpha(O)=2.38\times10^{-6} 4; \ \alpha(P)=1.351\times10^{-7} 19;$
								α (IPF)=5.52×10 ⁻⁵ 8
								Mult.: from α (K)exp=0.0029 8 (1993BaZR); small E0 admixture possible.
1422.2		1422.3	0^{+}	0.0	0+ E	EO		E_{γ} ,Mult.: from 1993BaZR; conversion electrons but No photons observed.
1431.7 4	0.0068 15	1431.454	3-	0.0	0^{+}			
1461.750 4	4.54 6	1541.5520	3-	79.8038	2+			
1489.66 <i>3</i>	0.039 2	1569.452	$(2)^{-}$	79.8038	2^{+}			_
1493.7 2	0.0037 6	1493.26	2+	0.0	0+ E	E2	0.001594 23	α =0.001594 23; α (K)=0.001290 18; α (L)=0.000184 3; α (M)=4.05×10 ⁻⁵ 6; α (N+)=8.08×10 ⁻⁵ 12
								$\alpha(N) = 9.42 \times 10^{-6} 14; \ \alpha(O) = 1.355 \times 10^{-6} 19; \ \alpha(P) = 7.35 \times 10^{-8} 11; \ \alpha(PE) = 7.00 \times 10^{-5} 10$
1541 56 2	0.042.2	1541 5520	3-	0.0	0^{+}			u(III)=7.00×10 10
1741 10 1	0.012 2	1611.5520	2-	79 8038	2+			
1541.56 3	0.0008.4	1633453	`					

^(a) Deduced from corresponding $I\gamma$'s for γ 's depopulating same level in ${}^{167}\text{Er}(n,\gamma)$ E=thermal. ^(b) Limit ($I\gamma$ <0.1) set for possible component depopulating 1541.7 level (see Adopted Gammas).

^{*a*} From $\gamma\gamma(\theta)$ (1981Iw04).

11

^{*b*} From $\gamma\gamma(\theta)$ (1975Be43).

^c From ce data (1975Ab06).

^d For absolute intensity per 100 decays, multiply by 5.4495×10^{-2} 4.

 $x \gamma$ ray not placed in level scheme.

 $^{168}_{68}{\rm Er}_{100}$

Decay Scheme (continued)

Decay Scheme (continued)

Decay Scheme (continued)

¹⁶⁸₆₈Er₁₀₀

 $^{168}_{68}\mathrm{Er}_{100}$

¹⁶⁸ Tm ε decay 1987 Me04 (continued)

