168 Ho β^- decay **1973Ti02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111, 1807 (2010)	15-Jun-2010

Parent: ¹⁶⁸Ho: E=0.0; $J^{\pi}=3^+$; $T_{1/2}=2.99$ min 7; $Q(\beta^-)=2930\ 30$; $\%\beta^-$ decay=100.0 Others: 1961Ta08, 1971Ha42, 1973Ka07, 1982Ge04.

The decay scheme is primarily from 1973Ti02, but some data have been added from 1973Ka07 and others added or moved by evaluator to achieve consistency with Adopted Levels, Gammas.

1973Ti02: sources from ¹⁶⁸Er(n,p) (E(n)=14 MeV; Er oxide target enriched to 95.47% in ¹⁶⁸Er); measured E γ , I γ (Ge(Li)). 1973Ka07: measured E γ , I γ , $\gamma\gamma$ coin, $\beta\gamma$ coin.

¹⁶⁸Er Levels

E(level) [†]	J ^{π‡} T _{1/2}	Comments
0.0	0 ⁺ stable	
79.820 22	2+	
264.081 24	4+	
548.36 6	6+	
821.113 22	2+	
895.73 <i>3</i>	3+	
994.67 <i>3</i>	4+	
1093.93 <i>3</i>	4-	
1117.71 6	5+	
1193.02 8	5-	
1276.29 14	2+	
1311.37 11	6-	
1541.35 <i>3</i>	3-	
1569.30 4	$(2)^{-}$	
1615.31 7	4-	
1653.1 <i>3</i>	3+	level introduced by evaluator to accommodate a previously unplaced γ known from Adopted Levels, Gammas.
1848.21 5	2+	
1915.44 20	$(3)^+$	
1930.24 7	2+	
1972.39 11	$(2)^{-}$	level introduced by evaluator to accommodate unplaced 1268γ As In Adopted Levels, Gammas.
1994.56 14	$(3)^{+}$	
1998.99 <i>4</i>	(3) ⁻	level introduced by evaluator to accommodate 3 unplaced gammas whose placements are known from Adopted Levels, Gammas.
2192.98 4	2+	
2254.72 5	(2+)	second 2255 level introduced by evaluator to accommodate 1359γ As In Adopted Levels, Gammas.
2254.81 5	$(3)^+$	
2262.61 12	(3) ⁻	level introduced by evaluator to accommodate 1268γ As In Adopted Levels, Gammas.
2267.43 5	$(3,4,5)^+$	level introduced by evaluator to accommodate 1173γ As In Adopted Levels, Gammas.
2270.40 17		level introduced by evaluator to accommodate unplaced 1176γ As In Adopted Levels, Gammas.
2424.86 8	$(2)^{+}$	
2484.57 15	(3+)	

[†] From least-squares fit to $E\gamma$, excluding $E\gamma$ data imported from Adopted Gammas and $E\gamma$ data for uncertain or doubly-placed lines.

[‡] From Adopted Levels.

168 Ho β^- decay 1973Ti02 (continued)

β^{-} radiations

 β^{-} feedings are from intensity imbalance at each level (g.s. feeding not expected ($\Delta J=3$)).

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(4.5 \times 10^2 \ 3)$	2484.57	0.072 12	5.98 13	av E β =132 11
$(5.1 \times 10^2 3)$	2424.86	0.45 6	5.37 11	av E β =152 11
$(6.6 \times 10^2 \ 3)$	2270.40	0.027 5	6.99 11	av E β =207 11
$(6.6 \times 10^{2} \ddagger 3)$	2267.43	0.08 5	6.5 <i>3</i>	av Eβ=208 11
$(6.7 \times 10^2 \ 3)$	2262.61	0.053 8	6.71 10	av Eβ=210 11
$(6.8 \times 10^2 \ 3)$	2254.81	0.19 3	6.17 10	av E β =213 11
$(6.8 \times 10^2 \ 3)$	2254.72	0.20 3	6.15 10	av E β =213 11
$(7.4 \times 10^2 \ 3)$	2192.98	1.84 23	5.32 9	av E <i>β</i> =236 <i>12</i>
$(9.3 \times 10^2 \ 3)$	1998.99	0.50 6	6.24 8	av Eβ=310 12
$(9.3 \times 10^2 \ 3)$				
$(9.4 \times 10^2 \ 3)$	1994.56	0.045 7	7.30 9	av Eβ=311 12
$(9.6 \times 10^2 \ 3)$	1972.39	0.031 5	7.50 9	av Eβ=320 <i>12</i>
$(1.00 \times 10^3 \ 3)$	1930.24	0.33 5	6.54 9	av Eβ=337 12
$(1.01 \times 10^3 \ 3)$	1915.44	0.124 16	6.98 8	av Eβ=343 12
$(1.08 \times 10^3 \ 3)$	1848.21	0.57 7	6.42 7	av E <i>β</i> =369 <i>12</i>
$(1.28 \times 10^3 \ 3)$	1653.1	0.022 9	8.10 19	av Eβ=449 <i>13</i>
$(1.31 \times 10^3 \ 3)$	1615.31	0.40 6	6.89 8	av Eβ=464 <i>13</i>
$(1.36 \times 10^3 \ 3)$	1569.30	0.039 12	7.96 14	av Eβ=484 <i>13</i>
$(1.39 \times 10^3 \ 3)$	1541.35	2.2 3	6.24 7	av Eβ=495 <i>13</i>
$(1.65 \times 10^3 \ 3)$	1276.29	0.044 8	8.22 9	av E β =607 13
$(1.84 \times 10^3 \ 3)$	1093.93	1.5 5	6.87 15	av E β =686 13
$(1.94 \times 10^3 \ 3)$	994.67	1.74 23	6.89 7	av E β =729 13
$(2.03 \times 10^3 \ 3)$	895.73	17.8 22	5.97 6	av E β =772 14
1.90×10 ³ 10	821.113	68 8	5.45 6	av Eβ=805 14
				E(decay): average from $\beta\gamma$ coin (1973Ka07). Other: 1963Ka10.
$(2.67 \times 10^{3 \ddagger} 3)$	264.081	1.5 11	7.5 4	av Εβ=1052 <i>14</i>

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{168}\mathrm{Er})$

Iγ normalization: from Σ (I(γ+ce) to g.s.)=100%. negligible feeding to g.s. is expected (Δ J=3). Photon branching, as measured in ¹⁶⁸Ho β^- decay, often agrees poorly with that from other data sets.

${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
(73.784 [@] 3)	0.022 5	1615.31	4-	1541.35	3-	M1+E2	0.11 +3-2	6.87	$\alpha(K)=5.68 \ 9; \ \alpha(L)=0.93 \ 4; \ \alpha(M)=0.207 \ 10; \ \alpha(N+)=0.0553 \ 24 \ \alpha(N)=0.0481 \ 22; \ \alpha(O)=0.00684 \ 25; \ \alpha(P)=0.000352 \ 6 \ I_{\gamma}: from I(423\gamma) and adopted I(74\gamma)/I(422\gamma)=0.036 \ 8.$
(74.626 [@] 3)	0.022 6	895.73	3+	821.113	2+	M1+E2	+1.42 +4-5	8.35 <i>13</i>	$\alpha(K)=3.09 \ 8; \ \alpha(L)=4.04 \ 10; \ \alpha(M)=0.978 \ 24; \ \alpha(N+)=0.248 \ 6 \ \alpha(N)=0.222 \ 6; \ \alpha(O)=0.0261 \ 6; \ \alpha(P)=0.000171 \ 5 \ I_{\gamma}: \text{ from I}(816\gamma) \text{ and adopted I}(75\gamma)/I(806\gamma)=0.00040 \ 10.$
79.83 <i>3</i>	24 ^{&} 4	79.820	2+	0.0	0+	E2		7.04	α (K)=1.697 24; α (L)=4.09 6; α (M)=0.997 14; α (N+)=0.252 4 α (N)=0.225 4; α (O)=0.0262 4; α (P)=7.44×10 ⁻⁵ 11 %I γ =8.1 5 assuming recommended decay scheme normalization.
99.22 ^d 3	0.59 ^d 8	1093.93	4-	994.67	4+	E1+M2	-0.06 5	0.43 23	$\alpha(K)=0.35\ 17;\ \alpha(L)=0.06\ 5;\ \alpha(M)=0.015\ 12;\ \alpha(N+)=0.004\ 3$ $\alpha(N)=0.003\ 3;\ \alpha(O)=0.0005\ 4;\ \alpha(P)=2.0\times10^{-5}\ 18$ I _{γ} : from adopted branching and I(99 γ doublet)=0.85\ 15 and I(198 γ) here, I(99 γ from 1094 level)=0.59\ 8 leaving I γ =0.26 17 to deexcite the 1193 level.
99.22 ^d 3	0.26 ^{<i>d</i>} 17	1193.02	5-	1093.93	4-	E2		3.03	$\alpha(K)=1.095 \ 16; \ \alpha(L)=1.482 \ 21; \ \alpha(M)=0.360 \ 5; \ \alpha(N+)=0.0912$ I3 $\alpha(N)=0.0815 \ 12; \ \alpha(O)=0.00957 \ 14; \ \alpha(P)=4.55\times10^{-5} \ 7$ Ly: see comment on 99 γ from 1094 level
^x 162.44 8	0.11 3								
184.275 20	16.2 ^{&} 22	264.081	4+	79.820	2+	E2		0.331	$\alpha(K)=0.206 \ 3; \ \alpha(L)=0.0967 \ 14; \ \alpha(M)=0.0231 \ 4; \ \alpha(N+)=0.00591 \ 9$
198.221 20	7.6 ^{&} 11	1093.93	4-	895.73	3+	E1+M2	-0.12 3	0.084 18	α (N)=0.00526 8; α (O)=0.000644 9; α (P)=9.50×10 ⁻⁶ 14 α (K)=0.069 14; α (L)=0.012 3; α (M)=0.0027 7; α (N+)=0.00072 19
									α (N)=0.00062 <i>16</i> ; α (O)=8.7×10 ⁻⁵ <i>23</i> ; α (P)=4.2×10 ⁻⁶ <i>12</i>
x209.20 19	0.09 3	1211 27	(-	1002.02	4-	EO		0 101	(X) = 0.1272 + 0.101 + 0.0402 + 0.001 + 0.011 + 7.17
217.44 10	0.062 10	1311.37	0	1095.95	4	E2		0.191	$\alpha(\mathbf{K})=0.1272$ 18; $\alpha(\mathbf{L})=0.0492$ 7; $\alpha(\mathbf{M})=0.01167$ 17; $\alpha(\mathbf{N}+)=0.00300$ 5
284.47 7	0.125 20	548.36	6+	264.081	4+	E2		0.0812	$\alpha(N)=0.00266\ 4;\ \alpha(O)=0.000331\ 5;\ \alpha(P)=6.11\times10^{-6}\ 9$ $\alpha(K)=0.0587\ 9;\ \alpha(L)=0.01738\ 25;\ \alpha(M)=0.00408\ 6;$ $\alpha(N+)=0.001055\ 15$
x207 77 25	0.040.14								$\alpha(N)=0.000932\ 13;\ \alpha(O)=0.0001192\ 17;\ \alpha(P)=2.99\times10^{-6}\ 5$
x365.71 ^b 7	0.121 14								
x381.67 <i>19</i>	0.057 12								
383.62 ^b 8	0.148 12	1998.99	(3)-	1615.31	4-	M1		0.0694	$\alpha(K)=0.0585 \ 9; \ \alpha(L)=0.00853 \ 12; \ \alpha(M)=0.00189 \ 3;$

 $\boldsymbol{\omega}$

From ENSDF

						$^{168}\mathrm{Ho}\beta^{-}$ (lecay 1973	<mark>3Ti02</mark> (continu	ed)
							$\gamma(^{168}\text{Er})$ (con	tinued)	
E_{γ}^{\ddagger}	Ι _γ ‡ <i>c</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	δ#	α^{\dagger}	Comments
422.28 3	0.62 ^{&} 5	1615.31	4-	1193.02	5-	M1		0.0540	α (N+)=0.000508 8 α (N)=0.000440 7; α (O)=6.38×10 ⁻⁵ 9; α (P)=3.55×10 ⁻⁶ 5 α (K)=0.0455 7; α (L)=0.00662 10; α (M)=0.001464 21; α (N+)=0.000394 6
429.79 ^b 4	0.386 18	1998.99	(3)-	1569.30	(2)-	M1		0.0516	$\alpha(N)=0.000341 5; \alpha(O)=4.95\times10^{-5} 7; \alpha(P)=2.76\times10^{-6} 4$ $\alpha(K)=0.0435 6; \alpha(L)=0.00632 9; \alpha(M)=0.001398 20;$ $\alpha(N+)=0.000376 6$
447.461 24	3.76 ^{&} 15	1541.35	3-	1093.93	4-	M1+E2	-0.09 1	0.0463	$\alpha(N)=0.000326 5; \alpha(O)=4.73\times10^{-5} 7; \alpha(P)=2.64\times10^{-6} 4$ $\alpha(K)=0.0390 6; \alpha(L)=0.00567 8; \alpha(M)=0.001254 18;$ $\alpha(N+)=0.000337 5$
457.59 ^b 3	0.88 <i>3</i>	1998.99	(3)-	1541.35	3-	M1		0.0438	$\alpha(N)=0.000292 \ 4; \ \alpha(O)=4.24\times10^{-5} \ 6; \ \alpha(P)=2.36\times10^{-6} \ 4 \\ \alpha(K)=0.0370 \ 6; \ \alpha(L)=0.00536 \ 8; \ \alpha(M)=0.001186 \ 17; \\ \alpha(N+)=0.000319 \ 5$
546.73 6	0.46 5	1541.35	3-	994.67	4+	E1+M2	+0.007 23	0.00460 10	$ \begin{aligned} &\alpha(\text{N}) = 0.000276 \ 4; \ \alpha(\text{O}) = 4.01 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 2.24 \times 10^{-6} \ 4 \\ &\alpha = 0.00460 \ 10; \ \alpha(\text{K}) = 0.00390 \ 8; \ \alpha(\text{L}) = 0.000543 \ 12; \\ &\alpha(\text{M}) = 0.000119 \ 3; \ \alpha(\text{N}+) = 3.19 \times 10^{-5} \ 8 \end{aligned} $
557.012 27	1.89 ^{&} 10	821.113	2+	264.081	4+	E2		0.01252	$\alpha(N)=2.77\times10^{-5} 7; \ \alpha(O)=3.95\times10^{-6} 9; \ \alpha(P)=2.10\times10^{-7} 5$ $\alpha(K)=0.01008 \ 15; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000431 \ 6; $ $\alpha(N+)=0.0001136 \ 16$ $\alpha(N)=9.94\times10^{-5} \ 14; \ \alpha(O)=1.358\times10^{-5} \ 19; \ \alpha(P)=5.63\times10^{-7} \ 8$
559.2 ^b 3 569.50 6	0.066 <i>24</i> 0.231 <i>17</i>	1653.1 1117.71	3+ 5+	1093.93 548.36	4 ⁻ 6 ⁺	E2		0.01186	$\alpha(K) = 0.00957 \ 14; \ \alpha(L) = 0.001780 \ 25; \ \alpha(M) = 0.000404 \ 6; \alpha(N+) = 0.0001066 \ 15 \alpha(N) = 9.33 \times 10^{-5} \ 13; \ \alpha(O) = 1.276 \times 10^{-5} \ 18; \ \alpha(P) = 5.35 \times 10^{-7} \ 8$
^x 579.92 <i>10</i> ^x 596.02 <i>9</i> 631.670 <i>27</i>	0.148 <i>17</i> 0.183 <i>19</i> 9.3 ^{&} 3	895.73	3+	264.081	4+	M1+E2	-4.8 2	0.00965 14	α=0.00965 14; α(K)=0.00788 12; α(L)=0.001377 20;
645.56 <i>4</i>	0.31 4	1541.35	3-	895.73	3+	E1		0.00323 5	$\alpha(M) = 0.000311 5; \ \alpha(N+) = 8.22 \times 10^{-5} 12$ $\alpha(N) = 7.18 \times 10^{-5} 11; \ \alpha(O) = 9.95 \times 10^{-6} 15; \ \alpha(P) = 4.46 \times 10^{-7} 7$ $\alpha = 0.00323 5; \ \alpha(K) = 0.00275 4; \ \alpha(L) = 0.000379 6;$ $\alpha(M) = 8.31 \times 10^{-5} 12; \ \alpha(N+) = 2.22 \times 10^{-5} 4$
(673.666 [@] 4)	0.144 12	1569.30	(2)-	895.73	3+	E1		0.00296 5	$\alpha(N) = 0.51 \times 10^{-5} 2; \ \alpha(N) = 0.222 \times 10^{-6} 4; \ \alpha(P) = 1.487 \times 10^{-7} 21$ $\alpha = 0.00296 5; \ \alpha(K) = 0.00252 4; \ \alpha(L) = 0.000346 5;$ $\alpha(M) = 7.60 \times 10^{-5} 11; \ \alpha(N+) = 2.03 \times 10^{-5} 3$ $\alpha(N) = 1.764 \times 10^{-5} 25; \ \alpha(O) = 2.53 \times 10^{-6} 4; \ \alpha(P) = 1.364 \times 10^{-7} 19$ Ever 573 48 13 Ever 0.106 14 reported by 1973Ti02 but half life
^x 679.08 <i>15</i> (719.550 [@] 5)	0.088 <i>14</i> 0.45 <i>6</i>	1615.31	4-	895.73	3+	E1+M2	-0.007 4	0.00259 4	was unexpectedly long. I_{γ} : from I(748 γ) and adopted I(674)/I(748 γ)=0.380 21. α =0.00259 4; α (K)=0.00220 3; α (L)=0.000302 5;

4

From ENSDF

					¹⁶⁸ Ho /	³⁻ decay 1973	Ti02 (continued	d)
						$\gamma(^{168}\text{Er})$ (cont	tinued)	
E _γ ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
								$\alpha(M) = 6.63 \times 10^{-5} \ 10; \ \alpha(N+) = 1.772 \times 10^{-5} \ 25$ $\alpha(N) = 1.539 \times 10^{-5} \ 22; \ \alpha(O) = 2.21 \times 10^{-6} \ 4; \ \alpha(P) = 1.197 \times 10^{-7} \ 17$ 17 17 17 17 17 10; \alpha(N+) = 1.772 \times 10^{-5} \ 25
								γ : from (425γ) and adopted $(720\gamma)/(422\gamma)=0.72$ 8. γ possibly unresolved from stronger 720 γ .
720.17 3	2.23 ^{&} 9	1541.35	3-	821.113 2+	E1+M2	-0.012 10	0.00259 4	$ \begin{array}{l} \alpha = 0.00259 \ 4; \ \alpha(\mathrm{K}) = 0.00220 \ 4; \ \alpha(\mathrm{L}) = 0.000302 \ 5; \\ \alpha(\mathrm{M}) = 6.62 \times 10^{-5} \ 10; \ \alpha(\mathrm{N}+) = 1.77 \times 10^{-5} \ 3 \\ \alpha(\mathrm{N}) = 1.538 \times 10^{-5} \ 24; \ \alpha(\mathrm{O}) = 2.21 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.197 \times 10^{-7} \end{array} $
								18 E _v .I _v : probably for $720\gamma + 719\gamma$ doublet.
730.58 <i>3</i>	4.19 ^{&} 17	994.67	4+	264.081 4+	M1+E2	+13 +16-3	0.00664 10	$\alpha = 0.00664 \ 10; \ \alpha(K) = 0.00546 \ 9; \ \alpha(L) = 0.000915 \ 14;$ $\alpha(M) = 0.000206 \ 3; \ \alpha(N+) = 5.46 \times 10^{-5} \ 8$ $\alpha(N) = 4.76 \times 10^{-5} \ 7; \ \alpha(Q) = 6.64 \times 10^{-6} \ 10; \ \alpha(P) = 3.09 \times 10^{-7} \ 5$
741.30 3	105.8 ^{&} 23	821.113	2+	79.820 2+	M1+E2	>25	0.00639 9	$\alpha(N) = 4.76 \times 10^{-7}, \ \alpha(S) = 0.004 \times 10^{-7}, \ \alpha(L) = 0.00639 \ J_3; \ \alpha(M) = 0.000197 \ J_3; \ \alpha(N+) = 5.24 \times 10^{-5} \ 8$
748.29 4	0.378 24	1569.30	(2) ⁻	821.113 2+	E1		0.00239 4	$ \begin{array}{l} \alpha(\mathrm{N}) = 4.5 / \times 10^{-5} \ /; \ \alpha(\mathrm{O}) = 6.38 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 2.98 \times 10^{-7} \ 5 \\ \alpha = 0.00239 \ 4; \ \alpha(\mathrm{K}) = 0.00204 \ 3; \ \alpha(\mathrm{L}) = 0.000278 \ 4; \\ \alpha(\mathrm{M}) = 6.11 \times 10^{-5} \ 9; \ \alpha(\mathrm{N}+) = 1.634 \times 10^{-5} \ 23 \\ \alpha(\mathrm{N}) = 1.419 \times 10^{-5} \ 20; \ \alpha(\mathrm{O}) = 2.04 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.108 \times 10^{-7} \\ 16 \end{array} $
815.90 3	53.9 ^{&} 14	895.73	3+	79.820 2+	M1+E2	+17.7 23	0.00518 8	$\alpha = 0.00518 \ 8; \ \alpha(K) = 0.00429 \ 6; \ \alpha(L) = 0.000694 \ 10;$ $\alpha(M) = 0.0001553 \ 22; \ \alpha(N+) = 4.13 \times 10^{-5} \ 6$ $\alpha(N) = 3.60 \times 10^{-5} \ 5; \ \alpha(O) = 5.05 \times 10^{-6} \ 7; \ \alpha(P) = 2.44 \times 10^{-7} \ 4$
821.09 <i>3</i>	100.0 ^{&} 23	821.113	2+	0.0 0+	E2		0.00510 8	$\alpha(1) = 5.66710^{-5} \text{ s}, \alpha(0) = 5.66710^{-5} \text{ s}, \alpha(1) = 2.17710^{-7} \text{ s}$ $\alpha=0.00510 \text{ s}; \alpha(\text{K})=0.00422 \text{ s}; \alpha(\text{L})=0.000682 \text{ I0};$ $\alpha(\text{M})=0.0001525 \text{ 22}; \alpha(\text{N}+)=4.06\times10^{-5} \text{ s}$ $\alpha(\text{N})=3.54\times10^{-5} \text{ s}; \alpha(0)=4.97\times10^{-6} \text{ 7}; \alpha(\text{P})=2.40\times10^{-7} \text{ s}$
829.89 4	0.63 ^{&} 6	1093.93	4-	264.081 4+	E1+M2	-0.05 3	0.00201 10	$\alpha(1)=2.15\times10^{-5} 3; \alpha(0)=1.57\times10^{-5} 7; \alpha(1)=2.15\times10^{-7} 7$ $\alpha=0.00201 \ 10; \ \alpha(K)=0.00171 \ 8; \ \alpha(L)=0.000234 \ 13; \ \alpha(M)=5.1\times10^{-5} \ 3; \ \alpha(N+)=1.37\times10^{-5} \ 8$ $\alpha(N)=1.19\times10^{-5} \ 7; \ \alpha(O)=1.71\times10^{-6} \ 10; \ \alpha(P)=0.4\times10^{-8} \ 6$
853.49 6	0.185 18	1117.71	5+	264.081 4+	M1+E2	3.6 +24-8	0.00500 21	$\begin{aligned} \alpha(N) = 1.19 \times 10^{-7}, \ \alpha(O) = 1.71 \times 10^{-7}, \ \alpha(I) = 9.4 \times 10^{-7}, \ \alpha(I) = 0.00500 \ 21; \ \alpha(K) = 0.00416 \ 18; \ \alpha(L) = 0.000655 \ 23; \\ \alpha(M) = 0.000146 \ 5; \ \alpha(N+) = 3.89 \times 10^{-5} \ 14 \\ \alpha(N) = 3.39 \times 10^{-5} \ 12; \ \alpha(O) = 4.79 \times 10^{-6} \ 18; \ \alpha(P) = 2.38 \times 10^{-7} \\ 12 \end{aligned}$
^x 904.95 18	0.045 8							
914.86 <i>3</i>	2.65 ^{&} 11	994.67	4+	79.820 2+	E2		0.00404 6	$\alpha = 0.00404 \ 6; \ \alpha(\text{K}) = 0.00337 \ 5; \ \alpha(\text{L}) = 0.000527 \ 8; \\ \alpha(\text{M}) = 0.0001176 \ 17; \ \alpha(\text{N}+) = 3.13 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 2.73 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.85 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 1.92 \times 10^{-7} \ 3 \\ \end{array}$
928.84 <i>11</i>	0.105 14	1193.02	5-	264.081 4+	E1		0.001571 22	$ \begin{array}{l} \alpha = 0.001571 \ 22; \ \alpha(\mathbf{K}) = 0.001340 \ I9; \ \alpha(\mathbf{L}) = 0.000181 \ 3; \\ \alpha(\mathbf{M}) = 3.97 \times 10^{-5} \ 6; \ \alpha(\mathbf{N}+) = 1.063 \times 10^{-5} \ I \\ \alpha(\mathbf{N}) = 9.23 \times 10^{-6} \ I3; \ \alpha(\mathbf{O}) = 1.330 \times 10^{-6} \ I9; \ \alpha(\mathbf{P}) = 7.33 \times 10^{-8} \\ II \end{array} $

S

 $^{168}_{68}\mathrm{Er}_{100}$ -5

					$^{168}\mathrm{Ho}\beta^-$ decay		1973Ti02 (contin	ued)	
						continued)			
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
952.49 6	0.158 12	1848.21	2+	895.73	3+	M1+E2	0.8 +9-6	0.0057 12	$\alpha = 0.0057 \ 12; \ \alpha(K) = 0.0048 \ 10; \ \alpha(L) = 0.00069 \ 13; \\ \alpha(M) = 0.00015 \ 3; \ \alpha(N+) = 4.1 \times 10^{-5} \ 8 \\ \alpha(N) = 3.6 \times 10^{-5} \ 7; \ \alpha(O) = 5.2 \times 10^{-6} \ 10; \\ \alpha(P) = 2.8 \times 10^{-7} \ 7 $
^x 994.93 11	0.085 8								
1012.05 15	0.094 12	1276.29	2+	264.081	4+	E2		0.00328 5	$\begin{aligned} &\alpha = 0.00328 \ 5; \ \alpha(\text{K}) = 0.00274 \ 4; \ \alpha(\text{L}) = 0.000419 \ 6; \\ &\alpha(\text{M}) = 9.31 \times 10^{-5} \ 13; \ \alpha(\text{N}+) = 2.48 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 2.16 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.07 \times 10^{-6} \ 5; \\ &\alpha(\text{P}) = 1.562 \times 10^{-7} \ 22 \end{aligned}$
1026.96 <i>17</i> 1034.48 <i>16</i>	0.067 <i>13</i> 0.064 <i>11</i>	1848.21 1930.24	2+ 2+	821.113 895.73	2+ 3+	E2		0.00314 5	$\begin{aligned} &\alpha = 0.00314 \ 5; \ \alpha(\text{K}) = 0.00262 \ 4; \ \alpha(\text{L}) = 0.000399 \ 6; \\ &\alpha(\text{M}) = 8.86 \times 10^{-5} \ 13; \ \alpha(\text{N}+) = 2.36 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 2.06 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.92 \times 10^{-6} \ 4; \\ &\alpha(\text{P}) = 1.495 \times 10^{-7} \ 21 \end{aligned}$
1076.66 ^b 10	0.090 7	1972.39	$(2)^{-}$	895.73	3+				
$x^{1104.55} 22$	0.055 9	1030 24	2+	821 113	2+				
1108.9 3	0.045 11 $0.066^{\&} 22$	1950.24 2254 81	$(3)^{+}$	021.115 1117 71	2 5+				
x1139.0 5 x1144.16 14	0.040 <i>18</i> 0.075 <i>9</i>	2234.01	(3)	1117.71	5				
1173.49 4	<0.48	2267.43	(3,4,5)+	1093.93	4-				 I_γ: 0.40 8 for γ contaminated with a ⁵⁶Co line. other I_γ: 0.88 8 (1973Ka07). placed by evaluator consistent with Adopted Levels, Gammas. 1973TiO2 and 1973Ka07 placed γ from 1995 level instead.
1176.46 ^b 16 1197.1 3	0.078 <i>9</i> 0.036 <i>9</i>	2270.40 1276.29	2+	1093.93 79.820	4 ⁻ 2 ⁺	M1+E2(+E0)	-5.0 +19-26	0.00241 10	$\alpha = 0.00241 \ 10; \ \alpha(K) = 0.00202 \ 9; \ \alpha(L) = 0.000297 \\ 12; \ \alpha(M) = 6.58 \times 10^{-5} \ 25; \ \alpha(N+) = 2.25 \times 10^{-5} \ 8 \\ \alpha(N) = 1.53 \times 10^{-5} \ 6; \ \alpha(O) = 2.19 \times 10^{-6} \ 9; \\ \alpha(P) = 1.16 \times 10^{-7} \ 6; \ \alpha(IPF) = 4.88 \times 10^{-6} \ 10$
1260.15 <i>6</i> ^x 1264.0 <i>4</i>	0.262 ^{&} 19 0.031 8	2254.81	(3)+	994.67	4+				
1267.94 ^b 11 ^x 1273.59 4	0.156 <i>12</i> 0.57 <i>5</i>	2262.61	(3)-	994.67	4+				E γ matches that for a γ known to deexcite a (5) ⁺ 2169 level, but β^- decay is not expected
1277.33 6	0.290 18	1541.35	3-	264.081	4+	E1+M2	-0.040 18	0.000947 19	to directly feed a level with that J^{π} . α =0.000947 <i>19</i> ; α (K)=0.000761 <i>15</i> ; α (L)=0.0001017 <i>22</i> ; α (M)=2.23×10 ⁻⁵ <i>5</i> ; α (N+)=6.22×10 ⁻⁵

6

$^{168}_{68}\mathrm{Er}_{100}$ -6

From ENSDF

 $^{168}_{68}\mathrm{Er}_{100}$ -6

						¹⁶⁸ Ho β ⁻	decay 1973	Ti02 (continued)
							$\gamma(^{168}\text{Er})$ (cont	inued)
Eγ‡	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
								$\begin{aligned} \alpha(\text{N}) &= 5.18 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 7.49 \times 10^{-7} \ 16; \ \alpha(\text{P}) = 4.19 \times 10^{-8} \ 9; \\ \alpha(\text{IPF}) &= 5.63 \times 10^{-5} \ 8 \\ \text{other I} \gamma: \ 0.45 \ 9 \ (1973\text{Ka07}). \end{aligned}$
1297.27 <i>4</i> ^x 1341.6 <i>3</i>	1.01 ^{&} 4 0.059 <i>10</i>	2192.98	2+	895.73	3+			
1350.9 4	≈0.044 ^{&}	1615.31	4-	264.081	4+			I_{γ} : 0.027 20 for γ contaminated by sum peak (1973Ti02). Other Iγ: 0.15 5 (1973Ka07).
1358.99 ^b 4	0.58 5	2254.72	(2^{+})	895.73	3+			other Iy: 0.74 8 (1973Ka07).
1371.85 <i>3</i>	4.40 ^{&} 19	2192.98	2+	821.113	2+	M1	0.00292 4	α =0.00292 4; α (K)=0.00244 4; α (L)=0.000342 5; α (M)=7.52×10 ⁻⁵ 11; α (N+)=6.19×10 ⁻⁵ 9
								α (N)=1.753×10 ⁻⁵ 25; α (O)=2.55×10 ⁻⁶ 4; α (P)=1.450×10 ⁻⁷ 21; α (IPF)=4.17×10 ⁻⁵ 6
1433.67 7	0.22 ^{&} 5	2254.81	$(3)^{+}$	821.113	2^{+}			
1461.20 8	0.243 11	1541.35	3-	79.820	2^{+}			
^x 1488.5 4	0.029 9							
1529.12 ^{<i>u</i>} 13	0.115 12	2424.86	$(2)^+$	895.73	3+	(12.0)	0.00000 (
1541.38 23	0.025 20	1541.35	3-	0.0	0+	[E3]	0.00282 4	$\alpha = 0.00282 \ 4; \ \alpha(\mathbf{K}) = 0.00231 \ 4; \ \alpha(\mathbf{L}) = 0.000364 \ 6; \ \alpha(\mathbf{M}) = 8.13 \times 10^{-5} \ 12; \\ \alpha(\mathbf{N}+) = 5.99 \times 10^{-5} \ 9 \\ \alpha(\mathbf{N}) = 1.89 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.69 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.380 \times 10^{-7} \ 20; \\ \alpha(\mathbf{IPE}) = 3.82 \times 10^{-5} \ 6$
								I_{α} : includes possible component from summing.
1603.72 8	0.337 20	2424.86	$(2)^{+}$	821.113	2^{+}			other I γ : 0.48 8 (1973Ka07).
1651.37 <i>21</i>	0.047 7	1915.44	$(3)^+$	264.081	4+	M1	0.00202 3	α =0.00202 3; α (K)=0.001580 23; α (L)=0.000220 3; α (M)=4.83×10 ⁻⁵ 7; α (N+)=0.0001689 24
								α (N)=1.126×10 ⁻⁵ <i>16</i> ; α (O)=1.640×10 ⁻⁶ <i>23</i> ; α (P)=9.35×10 ⁻⁸ <i>13</i> ; α (IPF)=0.0001559 <i>22</i>
^x 1711.86 21	0.043 6							<i>.</i>
1768.36 9	0.75 3	1848.21	2+	79.820	2+	E2	0.001288 18	α =0.001288 <i>18</i> ; α (K)=0.000943 <i>14</i> ; α (L)=0.0001316 <i>19</i> ; α (M)=2.90×10 ⁻⁵ <i>4</i> ; α (N+)=0.000185
								$\alpha(N)=6.74\times10^{-6} \ 10; \ \alpha(O)=9.73\times10^{-7} \ 14; \ \alpha(P)=5.37\times10^{-8} \ 8; \\ \alpha(IPF)=0.0001770 \ 25$
1005555	0.010 8 10	1015 44	(2)+	5 0.0 0 0	2 +	50	0.001044.10	other 1γ : 0.94 / (19/3KaU/).
1835.5 5	0.319 13	1915.44	(3)	79.820	21	E2	0.001244 18	$\alpha = 0.001244 \ 18; \ \alpha(\text{K}) = 0.000880 \ 13; \ \alpha(\text{L}) = 0.0001224 \ 18; \ \alpha(\text{M}) = 2.69 \times 10^{-3} \ 4; \ \alpha(\text{N}+) = 0.000214 \ 10^{-3} \ \alpha(\text{N}+) = 0.000214 \ 10^{-3} \ \alpha(\text{N}+) = 0.000214 \ \alpha(\text{N}+) = 0.$
1040 54 0	0.51	1046 54	a +		0^{\perp}	E.o.	0.001001.15	$\alpha(N) = 6.27 \times 10^{-9} \ 9; \ \alpha(O) = 9.06 \times 10^{-7} \ 13; \ \alpha(P) = 5.01 \times 10^{-6} \ 7; \ \alpha(IPF) = 0.000207 \ 3$
1848.24 9	0.71 4	1848.21	2*	0.0	0+	E2	0.001236 18	$\alpha = 0.001236 \ I8; \ \alpha(\text{K}) = 0.000869 \ I3; \ \alpha(\text{L}) = 0.0001208 \ I7; \ \alpha(\text{M}) = 2.66 \times 10^{-3}$ 4; $\alpha(\text{N}+) = 0.000220$
								$\alpha(N)=6.18 \times 10^{-6} 9; \ \alpha(O)=8.94 \times 10^{-7} 13; \ \alpha(P)=4.95 \times 10^{-6} 7; \ \alpha(IPF)=0.000213 3$
1850.42 10	0.51 3	1930.24	2+	79.820	2+	E2	0.001235 18	α =0.001235 <i>18</i> ; α (K)=0.000867 <i>13</i> ; α (L)=0.0001205 <i>17</i> ; α (M)=2.65×10 ⁻⁵ <i>4</i> ; α (N+)=0.000221

 \neg

						¹⁶⁸ Ho β	⁻ decay 1973	3Ti02 (continued)
							$\gamma(^{168}\text{Er})$ (con	tinued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{\dagger}	Comments
								α (N)=6.17×10 ⁻⁶ 9; α (O)=8.92×10 ⁻⁷ 13; α (P)=4.94×10 ⁻⁸ 7; α (IPF)=0.000214 3 other I γ : 1.38 8 (1973Ka07).
1914.73 <i>13</i>	0.132 ^{&} 9	1994.56	(3)+	79.820	2+	E2	0.001202 17	α =0.001202 <i>17</i> ; α (K)=0.000815 <i>12</i> ; α (L)=0.0001129 <i>16</i> ; α (M)=2.48×10 ⁻⁵
								$\alpha(N)=5.78\times10^{-6} \ 8; \ \alpha(O)=8.35\times10^{-7} \ 12; \ \alpha(P)=4.64\times10^{-8} \ 7; \ \alpha(IPF)=0.000243 \ 4$
1930.25 10	0.363 22	1930.24	2+	0.0	0^{+}	E2	0.001195 17	α =0.001195 <i>17</i> ; α (K)=0.000803 <i>12</i> ; α (L)=0.0001111 <i>16</i> ; α (M)=2.44×10 ⁻⁵ <i>4</i> ; α (N+)=0.000257
								$\alpha(N)=5.69\times10^{-6} 8; \alpha(O)=8.23\times10^{-7} 12; \alpha(P)=4.57\times10^{-8} 7; \alpha(PF)=0.000250 4$
								I_{γ} : weighted average of 0.358 <i>15</i> (1973Ti02), 0.45 <i>6</i> (1973Ka07).
^x 2094.8 3	0.044 7							
^x 2112.46 <i>13</i>	0.176 10							Includes unresolved ⁵⁶ Mn contaminant.
$x^{21}/5.03$	0.012 I2							Possible sum peak.
2220.7 4	0.090 21	2484.57	(3^{+})	264.081	4^{+}			i ossible sulli peak.
2345.08 ^{<i>a</i>} 12	0.602 20	2424.86	$(2)^{+}$	79.820	2^{+}			other Ιγ: 0.78 8 (1973Ka07).
^x 2379.8 6	0.014 5							
*2390.2 4	0.028 5	2101 57	(2+)	70.820	2^+			
2404.70 10	$0.121 / 0.026(\frac{8}{2} 12)$	2484.37	(3^{+})	/9.820	2 · 0+			
^x 2591.6 3	0.200 12	2424.80	(2)	0.0	0.			

- [†] Additional information 1.
 [‡] From 1973Ti02, except where noted.

[#] From Adopted Gammas, except where noted.

[@] From Adopted Gammas.

[&] Weighted average of data from 1973Ka07 and 1973Ti02.

^{*a*} E γ for the 1529 γ and 2345 γ fit placements from the 2425 level proposed by 1973TiO2 very well. however, $\gamma\gamma$ coin data from 1996GiO9 In (n, γ) E=thermal do not support these placements. Note that 2425-level branching from β^- decay, (n,γ) E=thermal and $(n,n'\gamma)$ agree well for these gammas and the 1604 γ (whose placement has not been questioned), so the 1529γ and 2345γ placements are retained here.

^b Placed by evaluator In accord with Adopted Levels, Gammas.

^c For absolute intensity per 100 decays, multiply by 0.34 4.

^d Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

 $^{168}_{68}\mathrm{Er}_{100}\text{--}8$

From ENSDF

¹⁶⁸Ho β^- decay 1973Ti02

¹⁶⁸Ho β^- decay 1973Ti02

Decay Scheme (continued)

