¹⁶⁹Tm(pol t, α), (t, α) 1985Bu18 | History | | | | | | |-----------------|-----------------|----------------------|------------------------|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | Full Evaluation | Coral M. Baglin | NDS 111, 1807 (2010) | 15-Jun-2010 | | | $J^{\pi}(^{169}Tm)=1/2^{+}$. 1985Bu18: E(pol t)=17 MeV (polarization between 0.60 and 0.70); θ=12°, 15°, 20°, 25°, 30°, 35°, 40°, 45°; metallic Tm target; measured Eα (Q3D mag spect, FWHM≈15), differential cross sections, angular distributions, analyzing powers; used Nilsson calculations incorporating effects of pairing and Coriolis mixing to determine specific two-quasiproton structures for several bands; combined results with those from ¹⁶⁷Er(d,p), (t,d) to analyze configuration mixing. 1985Bu18 report additional preliminary measurements with unpolarized tritons; E=15, 17 MeV; measured $\sigma(\theta)$ ($\theta(\text{lab})=10^{\circ}$ -25°; 5° steps). see also 1983Da21. #### ¹⁶⁸Er Levels | E(level) [†] | Jπ# | $d\sigma/d\Omega(\mu b/sr)^{\ddagger}$ | Comments | |---|----------------|--|---| | 0.0 | 0+ | 5 | | | 80 <mark>&</mark> 2 | 2+ | 92 | | | 265 <mark>&</mark> 2 | 4+ | 9 | | | 548.7 [@] & | 6+ | 3 | | | 822 ^a 5 | 2+ | 20 | E(level): 822 2 from (t,α) At 15 MeV. | | 895.8 [@] a | 3 ⁺ | 44 | E(level): 894 2 from (t,α) At 15 MeV. | | 994 ^a 5 | 4+ | 9 | | | 1092 ^b 5 | 4- | 4 | | | 1191 <mark>b</mark> 5 | 5- | 12 | | | 1309 <mark>b</mark> 5 | 6- | 31 | | | ≈1490 | | ≈3 | | | 1708 | - 1 | ≈ <u>2</u> .5 | E(level): rounded value from Adopted Levels. | | ≈1825 ^c | 0+ | 7 | E(level),d σ /d Ω (μ b/sr): probably for an unresolved multiplet. E \approx 1819 from 15 MeV data. | | ≈1895 ^c | 2+ | 42 | E(level), $d\sigma/d\Omega(\mu b/sr)$: probably for an unresolved multiplet. | | ≈1895 ^d | 4- | 42 | E(level), $d\sigma/d\Omega(\mu b/sr)$: probably for an unresolved multiplet. | | 1984 5 | | 14 | | | $2001\frac{d}{5}$ | 5 | 37 | E(level), $d\sigma/d\Omega(\mu b/sr)$: probably for an unresolved multiplet. | | 2030° 5 | | ≈4 | | | 2091 5 | | 17 | | | 2120^{d} 5 | | 41 | | | 2147 <i>5</i>
2198 ^e <i>5</i> | 2+ | 8
120 | E(level), $d\sigma/d\Omega(\mu b/sr)$: for unresolved doublet. | | 2198 ⁸ 5 | 5 ⁻ | 120 | E(level), $d\sigma/d\Omega(\mu b/sr)$: for unresolved doublet. | | ≈2256 ^e | 3 ⁺ | 47 | $E(\text{level}), d\sigma/d\Omega(\mu b/\text{sr})$: probably for an unresolved multiplet. | | 2286 5 | | 8.5 | () | | ≈2330 <mark>8</mark> | 6- | 120 | E(level),d σ /d Ω (μb/sr): for unresolved doublet. | | ≈2330 ^e | 4+ | 120 | E(level),d σ /d Ω (μb/sr): for unresolved doublet. | | $\approx 2356^{f}$ | | ≈5 | E(level), $d\sigma/d\Omega(\mu b/sr)$: probably for an unresolved multiplet. | | ≈2394 <i>f</i> | | 62 | E(level), $d\sigma/d\Omega(\mu b/sr)$: probably for an unresolved multiplet. | | ≈2428 | | 11 | | | 2456 <i>5</i> | | 37 | | | ≈2482 ^f | | 30 | E(level),d σ /d Ω (μb/sr): probably for an unresolved multiplet. | | 2540 <i>5</i> 2602 <i>5</i> | | 20 | | | 2602 3
2657 5 | | 8
24 | | | 2031 3 | | <i>∟</i> ⊤ | | ### ¹⁶⁹Tm(pol t,α), (t,α) 1985Bu18 (continued) ### ¹⁶⁸Er Levels (continued) E(level)[†] $\frac{d\sigma/d\Omega(\mu b/sr)^{\frac{1}{2}}}{2790 5}$ 16 2875 5 25 - ‡ d σ /d Ω In μ b/sr for θ (lab)=30° and E(t)=17 MeV; from fits to $\sigma(\theta)$. - # Recommended value from 1985Bu18. - [®] Adopted value (rounded); used by authors for calibration. - & Band(A): $K^{\pi}=0^{+}$ g.s. band. - ^a Band(B): $K^{\pi}=2^{+}$ K+2 γ -vibration band. Populated In (t,α) through band's $(\pi \ 3/2[411])+(\pi \ 1/2[411])$ admixture. - ^b Band(C): $K^{\pi}=4^{-} (\nu 7/2[633])+(\nu 1/2[521])$ band. Populated In (t,α) through $(\pi 7/2[523])+(\pi 1/2[411])$ admixture. - ^c Band(D): $K^{\pi}=0^+$ (π 1/2[411])-(π 1/2[411]) band. - ^d Band(E): $K^{\pi}=4^{-}$ (π 7/2[523])+(π 1/2[411]) band. - ^e Band(F): $K^{\pi}=(2)^{+}$ (π [411])+(π 1/2[411]) band. - ^f Band(G): $K^{\pi} = (1^{+}) (\pi \ 3/2[411]) (\pi \ 1/2[411])$ band. - ^g Band(H): $K^{\pi}=3^{-}$ (π 7/2[523])-(π 1/2[411]) band. [†] from (pol t,α) At E=17 MeV, except where noted; the strongly populated 895.8 level was used for calibration. data from 15 MeV spectrum have uncertainties of 2-5 keV and are consistent with these values. approximately 10 additional peaks with E>2400 are evident In the spectrum In fig. 1 of 1985Bu18, but authors do not give their energies; probably many of these are multiplets. # 169 Tm(pol t, α), (t, α) 1985Bu18 Band(F): K^{π} =(2)⁺ (π [411])+(π 1/2[411]) band ≈2330 Band(E): $K^{\pi}=4^{-}$ (π 7/2[523])+(π 1/2[411]) band 3^{+} ≈ 2256 2^{+} 2198 Band(D): K^{π} =0⁺ (π 1/2[411])-(π 1/2[411]) band 2120 2030 2001 2+ ≈1895 4⁻ ≈1895 0^+ ≈ 1825 Band(C): $K^{\pi}=4^{-}$ (v 7/2[633])+(v 1/2[521]) band 6- 1309 5- 1191 Band(B): $K^{\pi}=2^+$ K+2 γ -vibration band γ -vibration band 4+ 994 **3**⁺ **895.8** 2+ 822 Band(A): $K^{\pi}=0^+$ g.s. band 6⁺ 548.7 4+ 265 2+ 80 0^{+} 0.0 $^{168}_{\ 68}\mathrm{Er}_{100}$ # ¹⁶⁹Tm(pol t, α), (t, α) 1985Bu18 (continued) Band(G): K^{π} =(1⁺) (π 3/2[411])-(π 1/2[411]) band ≈2482 ≈2394 ≈2356 Band(H): $K^{\pi}=3^{-}$ (π 7/2[523])-(π 1/2[411]) band <u>6</u>[−] ≈2330 5- 2198 $^{168}_{\ 68}\mathrm{Er}_{100}$