	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Parent: ¹⁶⁷Lu: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=51.46 \text{ min } 15$; $Q(\varepsilon)=3060 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100

¹⁶⁷Lu-J^{π},T_{1/2}: From Adopted Levels of ¹⁶⁷Lu.

¹⁶⁷Lu-Q(ε): From 2021Wa16.

1976Me06: ¹⁶⁷Lu from ¹⁶⁹Tm(³He,5n),E(³He)=45 MeV, and ¹⁷⁰Yb(p,4n),E(p)=45 MeV, Yb oxide targets enriched to 67% in ¹⁷⁰Yb. Measured Eγ, Iγ, prompt and delayed γγ-coin using Ge(Li)-NaI(Tl) Compton-suppression spectrometer, and Ge(Li) surface barrier detector. Authors state that below 300 keV, Eγ values were taken from 1971Ab04 as these values were more precise in this earlier work. Note that 1971Ab04 and later papers 1976Gr06 and 1975VyZY are from the same experimental group.

1976Gr06, 1975VyZY (also 1987BaZB, 1977Gr21, 1965Gr20): ¹⁶⁷Lu from spallation of tantalum by 660-MeV protons, followed by chemical and electromagnetic isotope separations. Measured E γ , I γ , E(ce), I(ceK), Ice(L1), Ice(L2), Ice(L3), prompt and delayed $\gamma\gamma$ -coin with 20-30 ns resolving time using Ge(Li) and Si(Li) detectors, and a magnetic spectrograph with a resolution of 0.05%. Detailed tabular data for E γ , I γ , Ice(K), Ice(L1), Ice(L2), Ice(L3), multipolarity assignments, and mixing ratios are given in 1975VyZY. See also 1975VaYV from the same group for lifetime measurements of excited states. In earlier work in 1971Ab04, E γ , I γ , E(ce), I(ce) for 80 γ rays were measured using Ge(Li), Si(Li) and a magnetic spectrographs with a uniform-field and 0.05% resolution. These transitions were placed amongst 22 levels.

1981Kr08: ¹⁶⁷Lu from spallation of tantalum by 660-MeV protons, followed by chemical and mass separations. Measured $\gamma(\theta)$ from oriented nuclei at low temperature using a Ge(Li) detector.

Others:

1969Ar23: measured $E\gamma$, $I\gamma$.

1960Ba32: measured positron spectrum, deduced two branches with end-point energies of 1530 200 and 1100 100 with equal relative intensities of one unit each. A third branch of 600 50 keV with relative intensity of 5 units was assigned to the decay of 167 Yb.

1960Ba32: measured conversion electron spectrum.

1960Bu27: ¹⁶⁷Lu activity produced and half-life measured.

1959Ha09: measured conversion electron spectrum.

1959Ka08: ¹⁶⁷Lu activity produced.

Theory for the decay of ¹⁶⁷Lu: 1979Mi17.

The decay scheme is from 1976Me06 and 1976Gr06 (with detailed data provided in 1975VyZY), which is considered incomplete by evaluators, as about 15% of the transition intensity remains unplaced, and multipolarities and mixing ratios of some of the low-energy transitions are not well established thus their transition intensities are only crude estimates. Additionally, several γ rays are multiply placed without intensity division. Angular distributions for a large number of γ transitions were measured by 1981Kr08 using low-temperature nuclear orientation method, but it still seems difficult to assign definite spin-parity assignments for many levels and well-defined mixing ratios for many transitions, as in general these cover a large range of values.

¹⁶⁷Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	5/2-	17.5 min 2	
29.656 [@] 8	5/2+	<14 ns	$T_{1/2}$: γγ(t) (1976Me06); other values: ≤20 ns (γγ(t), 1975VyZY), ≈400 ns (γγ(t), 1975Bu10).
33.916 [@] 8	7/2+	<16 ns	$T_{1/2}$: $\gamma\gamma(t)$ (1976Me06).
58.539 [@] 9	9/2+		
78.679 [#] 10	$7/2^{-}$	0.84 ns 4	$T_{1/2}$: ce γ (t) (1975VaYV).
125.918 [@] 21	$11/2^{+}$		
178.863 [#] <i>13</i>	9/2-	≤0.23 ns	$T_{1/2}$: ce γ (t) (1975VaYV).
179.750 ^a 21	$(3/2^{-})$		Level proposed only by 1976Me06. 1976Gr06 placed 179.69 γ from the 258 level.
185.94 [@] 6	$13/2^{+}$		
188.704 ^{&} 21	1/2-	≈23 ns	$T_{1/2}$: γγ(t) (1975VyZY). Apparent 1.6% 3 ε branch to this level presumably results from incompleteness of the

Continued on next page (footnotes at end of table)

¹⁶⁷₇₀Yb₉₇-2

¹⁶⁷Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)

¹⁶⁷Yb Levels (continued)

decay scheme. decay scheme. 233.167.46 (5/2) ⁻ $F: 5/2^-$ assigned in 1981Kr08. 238.252.47 3/2 ⁻ $F: 5/2^-$ assigned in 1981Kr08. 237.2104.47 $9'$ $7/2^-$ 237.2104.47 $9'$ $7/2^-$ 237.2104.47 $9'$ $7/2^-$ 237.2104.47 $9'$ $7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 237.2104.47 $7/2^ 7/2^-$ 240.0704.47 $7/2^ F'/2^-$ assigned in 1981Kr08. 240.0704.47 $7/2^ F'/2^-$ assigned in 1981Kr08. 253.33 $9/2^ F'/2^ F'/2^-$ from $7/6^-$ in 1981Kr08. 253.33 $9/2^ F'/2^-$ from $7/6^-$ in 1981Kr08. from 1976Ac66 and 1977Gc21. 253.33 $9/2^ F'/2^-$ from $7/6^-$ in 1981Kr08. from 1976Ac66 and 1977Gc21. 253.33	E(level) [†]	J^{π}	T _{1/2}	Comments
213.167.16 (5/2) ⁻ 239.163 ² (5/2) ⁻ 238.528 ² 18 32 ⁻ 238.128 ⁴ 11/2 ⁻ F: 5/2 ⁻ assigned in 1981 Kr08. 278.210 ⁴ 19 5/2 ⁻ F: 5/2 ⁻ assigned in 1981 Kr08. 278.210 ⁴ 11/2 ⁻ F: 11/2 ⁻ assigned in 1981 Kr08. 303.401.14 (72) ⁻ F: 7/2 ⁻ assigned in 1981 Kr08. 410.579.17 7/2 ⁻ 197(Gr06 placed 552.6y from this level, but 1976Me06 assigned 352.03y from 430 level. 419.540 ⁰ 17 (9/2) ⁻ F: 7/2 ⁻ assigned in 1981 Kr08. 419.540 ⁰ 7/2 ⁻ F: 7/2 ⁻ assigned in 1981 Kr08. 419.540 ⁰ 7/2 ⁻ F: 7/2 ⁻ assigned in 1981 Kr08. 419.540 ⁰ 7/2 ⁻ F: 7/2 ⁻ assigned in 1981 Kr08. 53.38 9/2 ⁻ F: 9/2 ⁻ assigned in 1981 Kr08. 53.38 9/2 ⁻ F: 9/2 ⁻ assigned in 1981 Kr08. 51.489 ⁶ 9/2 (11/2) ⁻ ~180 ns 71.12 ⁻ F: 7/2 ⁻ assigned in 1981 Kr08 sep 2/6() and 427y(0) exclude J(553)=11/2. 569.39 10 (7/2) ⁺ F: 7/2 ⁻ assigned in 1981 Kr08. 571.489 ⁶ 6/2,7/2 ⁻ F: 7/2 ⁻ assigned in 1981 Kr0				decay scheme.
239.163 ⁴ 13 (52) ⁻ F: 5/2 ⁻ assigned in 1981Kr08. 288.525 ⁶ 18 3/2 ⁻ F: 5/2 ⁻ assigned in 1981Kr08. 278.210 ⁶ 19 5/2 ⁻ F: 5/2 ⁻ assigned in 1981Kr08. 278.210 ⁶ 19 5/2 ⁻ F: 5/2 ⁻ assigned in 1981Kr08. 278.210 ⁶ 17 7/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 277.48 ⁶ 7 7/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 410.979 7/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 419.540 ⁶ 7/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 477.74 ³ 9/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 553.38 9/2 ⁻ F: 7/2 ⁻ assigned in 1981Kr08. 571.489 ^b 9/2 ⁻ F: 9/2 ⁻ from 7(0 ^b in 1981Kr08. 571.489 ^b 19 (11/2) ⁻ =180 ms	213.167 16	$(5/2)^{-}$		•
258.525 ⁸ 18 3/2 F: 3/2 assigned in 1981 Kr08. 278.210 ⁶ 19 5/2 F: 11/2 ⁻ assigned in 1981 Kr08. 301.48 ⁴¹ 3 11/2 F: 17/2 assigned in 1981 Kr08. 301.48 ⁴¹ 3 11/2 F: 17/2 assigned in 1981 Kr08. 301.48 ⁴¹ 3 11/2 F: 17/2 assigned in 1981 Kr08. 301.48 ⁴¹ 3 11/2 F: 17/2 assigned in 1981 Kr08. 410.579 17 7/2 F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 17 (9/2) F: 7/2 assigned in 1981 Kr08. 419.540 ⁶¹ 19 (11/2) F: 7/2 assigned in 1981 Kr08. 553.38 3 9/2 F: 9/2 from 7/61 in 1981 Kr08 wa 2567(4) and 4277(4) exclude J(553)=11/2. 569.39 10 (7/2) F: 9/2 rassigned in 1981 Kr08 wa 2567(4) and 4277(4) exclude J(553)=11/2. 571.489 ⁶¹ 19 (11/2) ==180 as 17/2 ⁻ 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.489 ⁶¹ 19 (11/2) ==180 as 17/2 ⁻ 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (11/2) F: 5/2 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (11/2) F: 5/2 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (11/2) F: 5/2 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (7/2) F: 5/2 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (7/2) F: 5/2 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (7/2) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 571.480 ⁶¹ 19 (7/2) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 572.49 (5/2,4) F: 5/2 ⁻ 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 573.57 (7/2 ⁻) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 574.77 (7/2 ⁻) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 574.74 (7/2 ⁻) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 574.74 (7/2 ⁻) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data. 574.74 (7/2 ⁻) F: 7/2 ⁻ assigned in 1981 Kr08 from 7(0.temp) data.	239.163 ^{<i>a</i>} 13	$(5/2)^{-}$		J^{π} : $5/2^{-}$ assigned in 1981Kr08.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	258.525 ^{&} 18	3/2-		J^{π} : 3/2 ⁻ assigned in 1981Kr08.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	278.210 ^{&} 19	5/2-		J^{π} : 5/2 ⁻ assigned in 1981Kr08.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	301.48 [#] 3	$11/2^{-}$		J^{π} : 11/2 ⁻ assigned in 1981Kr08.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	308.401 14	$(7/2)^{-}$		J^{π} : 7/2 ⁻ assigned in 1981Kr08.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	317.488 ^a 17	$(7/2)^{-}$		J^{π} : 7/2 ⁻ assigned in 1981Kr08.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	410.979 17	7/2-		1976Gr06 placed 352.6 γ from this level, but 1976Me06 assigned 352.03 γ from 430
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				level. I_{π}^{π} 7/2 and in 1081 Kr09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 540 ^a 17	$(0/2)^{-}$		J : 1/2 assigned in 1981Kr08. $I^{\pi} \cdot 0/2^{-}$ assigned in 1081Kr08
440.676 ^{&} 15 $7/2^ F$: $7/2^-$ assigned in 1981Kr08. 477.43 ^{&} 3 $9/2^ F$: $9/2^-$ from $\gamma(\theta)$ in 1981Kr08 as 245 $\gamma(\theta)$ and $427\gamma(\theta)$ exclude 1(553)=11/2. 553.38 $9/2^ F$: $9/2^-$ from $\gamma(\theta)$ in 1981Kr08 from $\gamma(\theta)$ exclude 1(553)=11/2. 569.39 10 $(7/2)^+$ Level from 1976Me06 and 1977Gr21. 571.489 ^b 19 (11/2)^- ≈ 180 ns $T_{1/2}$: $\gamma\gamma(0)$ (1075VyZY). Placement of 332.36 γ from 411 or 571 levels in 1976Me06, whereas 1976Gr06 placed this γ only from 411 level. F^+ : $11/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 628.62 $7/2^+$ F^+ : $7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1022.27 $(7/2)^ F^+$: $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1022.27 $(5/2, 9/2)^+$ F^+ : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1022.27 $(5/2, 9/2)^+$ F^+ : $9/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1025.27 $(5/2, 9/2)^+$ F^+ : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1025.27 $(7/2^-)$ F^+ : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1267.24 $5/2^+$ F^+ : $5/2^-$: $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1267.24 $5/2^+$ F^+ : $9/2^-$ assigned in 1981	430.87 5	$7/2^+$		J^{π} : $7/2^+$ assigned in 1981Kr08.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	440 676 ^{&} 15	7/2-		I^{π} : 7/2 ⁻ assigned in 1981Kr08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ATT A3 & 3	$0/2^{-}$		J^{π} : $0/2^{-}$ assigned in 1021 Kr08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	553 38 3	9/2 $9/2^{-}$		J . $9/2^{-}$ assigned in 1981Kr08. $I^{\pi} \cdot 9/2^{-}$ from $\gamma(\theta)$ in 1981Kr08 as 236 $\gamma(\theta)$ and 427 $\gamma(\theta)$ exclude I(553)=11/2
371.489 ^b 19 (112) ≈180 ns T _{1/2} : y?(0 (1975V)2Y). Placement of 332.367 from 411 or 571 levels in 1976Me06, whereas 1976Gr06 placed this y only from 411 level. J [#] : 1/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 628.62 7/2 ⁺ J [#] : 1/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 677.18 (5/2,7/2) ⁻ Level from 1976Me06 and 1977Gr21. 719.61 9 (7/2) ⁻ J [#] : 9/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 788.36 6 (9/2) ⁻ J [#] : 9/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 1022.27 7 (5/2,9/2) ⁺ J [#] : 9/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 1022.27 7 (5/2,9/2) ⁺ J [#] : 9/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 1022.27 7 (5/2,9/2) ⁺ J [#] : 5/2 ⁺ assigned in 1981Kr08 from y(0,temp) data. 1267.24 6 5/2 ⁺ J [#] : 5/2 ⁺ assigned in 1981Kr08 from y(0,temp) data. 1305.53 7 (7/2 ⁻) Level from 1976Me06 and 197Gr26 ⁻ rejected by 1981Kr08 based on inconsistent \delta value from y(0) data. 1356.32 8 (9/2 ⁺ , 11/2 ⁺) J [#] : 7/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 1971.06 (9/2) J [#] : 9/2 ⁻ assigned in 1981Kr08 from y(0,temp) data. 1973.96 5/2,7/2 Level from 1976Me06 and 197Gr26 ⁻ .	569.39 10	$(7/2)^+$		Level from $1976Me06$ and $1977Gr21$.
571.489 ^b 19 (11/2) ⁻ ≈180 ns T _{1/2} : γγ(t) (1975VyZY). Placement of 332.365 from 411 or 571 levels in 1976Me06, whereas 1976Gr06 placed this y only from 411 level. <i>F</i> : 11/2 ⁻ assigned in 1981Kr08 from γ(0,temp) data. 628.62 7/2 ⁺ <i>F</i> : 71/2 ⁺ assigned in 1981Kr08 from γ(0,temp) data. 677.18 (5/2,7/2) ⁻ Level from 1976Me06 and 1977Gr21. 719.61 (7/2) ⁻ <i>F</i> : 5/2 ⁻ ,7/2 ⁻ assigned in 1981Kr08 from γ(0,temp) data. 1022.27 7 (5/2,9/2) ⁺ <i>F</i> : 9/2 ⁺ assigned in 1981Kr08 from γ(0,temp) data. 1022.27 7 (5/2,9/2) ⁺ <i>F</i> : 5/2 ⁻ assigned in 1981Kr08 from γ(0,temp) data. 1305.53 7 (7/2 ⁻) <i>F</i> : 5/2 ⁻ assigned in 1981Kr08 from γ(0,temp) data. 1305.53 7 (7/2 ⁻) Level from 1976Me06 and 1977Gr21. Alternative placement of 1275y from the 1305 level suggested by 1976Me06 and 1970Gr06 rejected by 1981Kr08 based on inconsistent δ value from γ(0, data. 1355.32 8 (9/2 ⁺ , 11/2 ⁺) <i>F</i> : 7/2 ⁻ assigned in 1981Kr08 from γ(0, temp) data. 195.106 (9/2) <i>F</i> : 9/2 ⁻ assigned in 1981Kr08 from γ(0, temp) data. 1973.96 9 5/2.7/2 <i>F</i> : 7/2 ⁻ assigned in 1981Kr08 from γ(0, temp) data. 1973.96 9 5/2.7/2 <i>F</i> : 7/2 ⁻ assigned in 1981Kr08 from γ(0, temp) data. 1973.96 9 5/		(.,-)		J^{π} : $3/2^+$, $5/2^+$, $7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
Placement of 332.36y from 411 or 571 levels in 1976Me06, whereas 1976Gr06 placed this y only from 411 level. 628.62 6 7/2 ⁺ 677.18 6 (5/2,7/2) ⁻ 179.61 9 (7/2) ⁻ 719.61 9 (7/2) ⁻ 710.02 27 7 (5/2,9/2) ⁺ 710.03 28.00 28.01	571.489 ^b 19	$(11/2)^{-}$	≈180 ns	$T_{1/2}$: $\gamma\gamma(t)$ (1975VvZY).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Placement of 332.36y from 411 or 571 levels in 1976Me06, whereas 1976Gr06 placed
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				this γ only from 411 level.
$\begin{array}{llllllllllllllllllllllllllllllllllll$				J^{π} : 11/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
6/7.18 0 $(5/2, 1/2)$ Level from 19/0Me00 and 197/0721. 719.61 9 $(7/2)^ F: 5/2^-7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 788.36 6 $(9/2)^ F: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1022.27 7 $(5/2, 9/2)^+$ $F: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1022.27 7 $(5/2, 9/2)^+$ $F: 5/2^-7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1267.24 6 $5/2^+$ $F: 5/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1305.53 7 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. Alternative placement of 1275y from the 1305 1267.24 6 $5/2^+$ $F: 5/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1305.53 7 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. Alternative placement of 1275y from the 1305 1267.24 6 $9/2^+, 11/2^+$) $F: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1356.32 8 $(9/2^+, 11/2^+)$ $F: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1947.48 6 $(9/2)^+$ $F: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1951.10 6 $(9/2)^+$ $F: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. 1975.17 8 $(9/2)^+$ $F: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. <td< td=""><td>628.62 6</td><td>7/2+</td><td></td><td>J^{π}: $7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.</td></td<>	628.62 6	7/2+		J^{π} : $7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
11301 9 $(7/2)^{-}$ $(7/2)^{-}$ $(7/2)^{-}$ $(7/2)^{-}$ 788.36 $(9/2)^{-}$ $(5/2,9/2)^{+}$ F^{+} $(9/2)^{-}$ $(5/2,9/2)^{+}$ 1022.27 7 $(5/2,9/2)^{+}$ F^{+} $(9/2)^{-}$ $(5/2,9/2)^{+}$ F^{+} $(9/2)^{+}$ $(5/2,9/2)^{+}$ F^{+} $(9/2)^{+}$ $(9/2)^{+}$ $(7/2)^{-}$ Placement of 833.61 yrin 19/6 Me06 only from 1022 to 188, 1/2 ⁻ level is rejected due to ΔJ^{μ} and dominant M1 multipolarity of this γ . 1267.24 6 $5/2^{+}$ J^{+} $(7/2^{-})$ Level from 19/6 Me06 and 1977Gr21. Alternative placement of 1275y from the 1305 level suggested by 1976Me06 and 1976Gr06 rejected by 1981Kr08 based on inconsistent δ value from $\gamma(\theta)$ data. J^{+} <	6//.18 0 710.61 0	(5/2, 1/2)		Level from 19/6Me06 and 19//Gr21. $W_{\rm r}$ 5/2 ⁻ 7/2 ⁻ assigned in 1021/rf02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	719.01 9	(1/2) $(9/2)^{-}$		J. $3/2$, $1/2^{-}$ assigned in 1981Kr08 from $\gamma(A \text{ temp})$ data
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1022.27 7	$(5/2.9/2)^+$		J^{π} : 9/2 ⁺ assigned in 1981Kr08, while eliminating 7/2 based on comparison of δ from
Placement of 833.61γ in $1976Me06$ only from 1022 to $188, 1/2^-$ level is rejected due to ΔJ^{π} and dominant M1 multipolarity of this γ . $1267.24.6$ $5/2^+$ $J^{\pi}: 5/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data. $1305.53.7$ $(7/2^-)$ Level from $1976Me06$ and $1977Gr21$. Alternative placement of 1275γ from the 1305 level suggested by $1976Me06$ and $1976Gr06$ rejected by $1981Kr08$ based on inconsistent δ value from $\gamma(\theta)$ data. $1356.32.8$ $(9/2^+, 11/2^+)$ $J^{\pi}: 7/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1947.48.6$ $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ as for $7/2, \delta(O/Q) > 0.19$ for 1376γ ; and for $11/2, \delta(O/Q) > 0.30$ for 1507γ , both from $\gamma(\theta, temp)$ data. $1951.10.6$ $(9/2)^+$ $J^{\pi}: 7/2^+$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1952.66.6$ $(7/2)^+$ $J^{\pi}: 7/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1973.96.9$ $5/2.7/2$ Level from $1976Me06$ and $1977Gr21$. $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1975.17.8$ $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1979.49.8$ $(7/2^-)$ Level from $1976Me06$ and $1977Gr21$. $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $1995.32.10$ $(9/2^-)^+$ $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $2012.32.12$ $(7/2,9/2^-)$ Level from $1976Me06$ and $1977Gr21$. $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $2012.32.12$ $(7/2)^+$ $J^{\pi}: 9/2^-$ assigned in $1981Kr08$ from $\gamma(\theta, temp)$ data. $2012.32.12$ $(7/2)^+$ <td< td=""><td></td><td>(-,-,-,-)</td><td></td><td>$591\gamma(\theta)$ and that from $\alpha(K)$exp.</td></td<>		(-,-,-,-)		$591\gamma(\theta)$ and that from $\alpha(K)$ exp.
to ΔJ^{π} and dominant M1 multipolarity of this γ .1267.24 6 $5/2^+$ J^{π} : $5/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1305.53 7 $(7/2^-)$ Level from 1976Me06 and 1976Gr10. Alternative placement of 1275 γ from the 13051305.53 7 $(7/2^-)$ Level from 1976Me06 and 1976Gr10. Friender placement of 1275 γ from the 13051356.32 8 $(9/2^+, 11/2^+)$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1356.32 8 $(9/2^+, 11/2^+)$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1947.48 6 $(9/2)^+$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1951.10 6 $(9/2)^+$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1952.66 6 $(7/2)^+$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1973.96 9 $5/2, 7/2$ Level from 1976Me06 and 1977Gr21.1975.17 8 $(9/2)^+$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.1953.2 10 $(9/2^-)$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1995.32 10 $(9/2^-)$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1995.32 10 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.1998.42 6 $(9/2)^+$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21.1974.72 assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.2				Placement of 833.61 γ in 1976Me06 only from 1022 to 188, 1/2 ⁻ level is rejected due
1267.24 6 $5/2^+$ J^{π} : $5/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1305.53 7 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. Alternative placement of 1275 γ from the 1305 level suggested by 1976Me06 and 1976Gr06 rejected by 1981Kr08 based on inconsistent δ value from $\gamma(\theta)$ data. 1356.32 8 $(9/2^+, 11/2^+)$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1947.48 6 $(9/2)^+$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1951.10 6 $(9/2)$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1952.66 6 $(7/2)^+$ J^{π} : $7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1973.96 9 $5/2, 7/2$ Level from 1976Me06 and 1977Gr21. J^{π} : $5/2^-$, $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. Level from 1976Me06 and 1977Gr21. 1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. Level from 1976Me06 and 1977Gr21. J^{π} : $9/2^-$ J^{\pi}: $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. J^{π} : $9/2^ J^{\pi}$: $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^-)$ J^{π} : $9/2^-$				to ΔJ^{π} and dominant M1 multipolarity of this γ .
1305.53 / $(1/2)$ Level from 1976Me06 and 197/Gr21. Alternative placement of 1275y from the 1305 level suggested by 1976Me06 and 1976Gr20 rejected by 1981Kr08 based on inconsistent δ value from $\gamma(\theta)$ data. J^{π} : $7/2^{-}$ assigned in 1981Kr08.1356.32 8 $(9/2^+, 11/2^+)$ J^{π} : $7/2^-$, $9/2^-$ assigned in 1981Kr08.1947.48 6 $(9/2)^+$ J^{π} : $9/2^-$ assigned in 1981Kr08.1951.10 6 $(9/2)$ J^{π} : $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1952.66 6 $(7/2)^+$ J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1973.96 9 $5/2,7/2$ Level from 1976Me06 and 1977Gr21.1975.17 8 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21.1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.1978.42 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21.1978.42 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.17": $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.17": $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21.	1267.24 6	5/2+		J^{π} : 5/2 ⁺ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1305.53 /	(7/2)		Level from 19/6Me06 and 19//Gr21. Alternative placement of $12/5\gamma$ from the 1305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				inconsistent δ value from $\alpha(\theta)$ data
1356.32 8 $(9/2^+, 11/2^+)$ $J^{\pi}: 7/2^-, 9/2^-$ assigned in 1981Kr08.1947.48 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08.1951.10 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1952.66 6 $(7/2)^+$ $J^{\pi}: 7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1973.96 9 $5/2,7/2$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 5/2^-,7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1995.32 10 $(9/2^-)$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.1998.42 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, temp)$ data.2052.79 11 $9/2^{(-)}$				I^{π} : 7/2 ⁻ assigned in 1981 Kr08 from $\gamma(\theta$ temp) data
1947.48 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 as for 7/2, $\delta(O/Q)>0.19$ for 1376 γ ; and for 11/2, $\delta(O/Q)>0.30$ for 1507 γ , both from $\gamma(\theta, \text{temp})$ data. 1951.10 6 $(9/2)$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1952.66 6 $(7/2)^+$ $J^{\pi}: 7/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1973.96 9 $5/2,7/2$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. $J^{\pi}: 9/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^-)$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2012.32 12 $(7/2, 9/2^-)$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21.	1356.32 8	$(9/2^+, 11/2^+)$		J^{π} : 7/2 ⁻ ,9/2 ⁻ assigned in 1981Kr08.
$\delta(O/Q) > 0.30 \text{ for } 1507\gamma, \text{ both from } \gamma(\theta, \text{temp}) \text{ data.}$ $1951.10 6 (9/2) \qquad J^{\pi}: 9/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1952.66 6 (7/2)^{+} \qquad J^{\pi}: 7/2^{+} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1973.96 9 5/2,7/2 \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 5/2^{-},7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1975.17 8 \qquad (9/2)^{+} \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 9/2^{+} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1979.49 8 \qquad (7/2^{-}) \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1995.32 \ 10 \qquad (9/2^{-}) \qquad J^{\pi}: 9/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $1998.42 6 \qquad (9/2)^{+} \qquad J^{\pi}: 9/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $2012.32 \ 12 \qquad (7/2,9/2^{-}) \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $2013.04 \ 13 \qquad (7/2^{-}) \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $2052.79 \ 11 \qquad 9/2^{(-)} \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $2052.79 \ 11 \qquad 9/2^{(-)} \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$ $J^{\pi}: 7/2^{-} \text{ assigned in } 1981\text{Kr08 from } \gamma(\theta, \text{temp}) \text{ data.}$ $2052.79 \ 11 \qquad 9/2^{(-)} \qquad \text{Level from } 1976\text{Me06 and } 1977\text{Gr21.}$	1947.48 6	$(9/2)^+$		J^{π} : 9/2 ⁻ assigned in 1981Kr08 as for 7/2, δ (O/Q)>0.19 for 1376 γ ; and for 11/2,
1951.10 6 $(9/2)$ J^{π} : $9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1952.66 6 $(7/2)^{+}$ J^{π} : $7/2^{+}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1973.96 9 $5/2,7/2$ Level from 1976Me06 and 1977Gr21. J^{π} : $5/2^{-},7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1975.17 8 $(9/2)^{+}$ Level from 1976Me06 and 1977Gr21. J^{π} : $9/2^{+}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1979.49 8 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. J^{π} : $9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^{-})$ J^{π} : $9/2^{-}$ assigned in 1981Kr08, while $7/2$ is rejected based on $\delta(Q/D)=0.47 + 5-10$ for 1988.42 6 $(9/2)^{+}$ J^{π} : $9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2012.32 12 $(7/2,9/2^{-})$ Level from 1976Me06 and 1977Gr21. J^{π} : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. J π : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. J $^{\pi}$: $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21. Level from 1976Me06 and 1977Gr21.				$\delta(O/Q) > 0.30$ for 1507 γ , both from $\gamma(\theta, \text{temp})$ data.
1952.66 6 $(7/2)^{+}$ $J^{+}: 7/2^{+}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1973.96 9 $5/2, 7/2$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 5/2^{-}, 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1975.17 8 $(9/2)^{+}$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 9/2^{+}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1979.49 8 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1995.32 10 $(9/2^{-})$ $J^{\pi}: 9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1998.42 6 $(9/2)^{+}$ $J^{\pi}: 9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2012.32 12 $(7/2,9/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2013.04 13 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.	1951.10 6	(9/2)		J^{π} : 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
1973.90 9 $3/2,7/2$ Level from 1970/0000 and 1977/0121. $J^{\pi}: 5/2^-,7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 9/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1995.32 10 $(9/2^-)$ $J^{\pi}: 9/2^+$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1998.42 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21.	1952.66 0	$(1/2)^{+}$		J [*] : $//2'$ assigned in 1981 Kr08 from $\gamma(\theta, \text{temp})$ data.
1975.17 8 $(9/2)^+$ Level from 1976Me06 and 1977Gr21. J ^π : 9/2 ⁺ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. J ^π : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1995.32 10 $(9/2^-)$ J ^π : 9/2 ⁺ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.1998.42 6 $(9/2)^+$ J ^π : 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21. J ^π : 7/2 assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. J ^π : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21. Level from 1976Me06 and 1977Gr21.	1973.90 9	5/2,7/2		$I^{\pi} \cdot 5/2^{-} 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta \text{ temp})$ data
$(7/2^{-})$ $J^{\pi}: 9/2^{+}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1979.49 8 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^{-})$ $J^{\pi}: 9/2^{-}$ assigned in 1981Kr08, while 7/2 is rejected based on $\delta(Q/D)=0.47 + 5-10$ for 1961 γ . 1998.42 6 $(9/2)^{+}$ $J^{\pi}: 9/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2012.32 12 $(7/2,9/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 $9/2^{(-)}$	1975.17 8	$(9/2)^+$		Level from 1976Me06 and 1977Gr21.
1979.49 8 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. 1979.49 8 $(7/2^-)$ J ^{π} : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^-)$ J ^{π} : 9/2 ⁻ assigned in 1981Kr08, while 7/2 is rejected based on $\delta(Q/D)=0.47 + 5-10$ for 1961 γ . 1998.42 6 $(9/2)^+$ J ^{π} : 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21. J ^{π} : 7/2 or 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. J ^{π} : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 9/2 ⁽⁻⁾				J^{π} : 9/2 ⁺ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
J^{π} : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 1995.32 10 $(9/2^{-})$ J^{π} : $9/2^{-}$ assigned in 1981Kr08, while 7/2 is rejected based on $\delta(Q/D)=0.47 + 5-10$ for 1961 γ . 1998.42 6 $(9/2)^{+}$ $2012.32 12$ $(7/2,9/2^{-})$ Level from 1976Me06 and 1977Gr21. J^{π} : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^{-})$ Level from 1976Me06 and 1977Gr21. J^{π} : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21. Level from 1976Me06 and 1977Gr21. J^{\pi}: $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. Level from 1976Me06 and 1977Gr21. J^{\pi}: $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.	1979.49 8	$(7/2^{-})$		Level from 1976Me06 and 1977Gr21.
1995.32 10 $(9/2^-)$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08, while 7/2 is rejected based on $\delta(Q/D)=0.47 + 5-10$ for 1961 γ . 1998.42 6 $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2012.32 12 $(7/2,9/2^-)$ Level from 1976Me06 and 1977Gr21. $J^{\pi}: 7/2$ or $9/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^-)$ 2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21. Level from 1976Me06 and 1977Gr21. J^{\pi}: 7/2^- assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. Level from 1976Me06 and 1977Gr21. J^{\pi}: 7/2^- assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.				J^{π} : $7/2^{-}$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
1961γ . $1998.42.6$ $(9/2)^+$ $J^{\pi}: 9/2^-$ assigned in 1981 Kr08 from $\gamma(\theta, \text{temp})$ data. $2012.32.12$ $(7/2,9/2^-)$ Level from 1976 Me06 and 1977 Gr21. $J^{\pi}: 7/2$ or $9/2^-$ assigned in 1981 Kr08 from $\gamma(\theta, \text{temp})$ data. $2013.04.13$ $(7/2^-)$ $2052.79.11$ $9/2^{(-)}$ Level from 1976 Me06 and 1977 Gr21.	1995.32 10	$(9/2^{-})$		J^{π} : 9/2 ⁻ assigned in 1981Kr08, while 7/2 is rejected based on δ (Q/D)=0.47 +5-10 for
$(7/2)^{-1}$ $(7/2)^{-1}$ $(7/2)^{-1}$ Level from 1976Me06 and 1977Gr21. J ^{π} : 7/2 or 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^{-1})$ Level from 1976Me06 and 1977Gr21. J ^{π} : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 9/2 ⁽⁻⁾ Level from 1976Me06 and 1977Gr21. Level from 1976Me06 and 1977Gr21.	1008 12 6	$(0/2)^+$		1901 γ . $M_{\rm r}$ 0/2 ⁻ assigned in 1021 Kr08 from $\alpha(\theta \text{ tamp})$ data
2012.02 12 $(7/2, 7/2)$ J ^{π} : 7/2 or 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. 2052.79 11 $9/2^{(-)}$ Level from 1976Me06 and 1977Gr21.	1990.42 0 2012 32 12	$(9/2)^{-}$ $(7/2 9/2^{-})$		J^{-} , $J/2^{-}$ assigned in 1901 KIV6 from $\gamma(\sigma, \text{temp})$ data. Level from 1976 Me06 and 1977 Gr21
2013.04 13 $(7/2^-)$ Level from 1976Me06 and 1977Gr21. J^{π} : $7/2^-$ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 $9/2^{(-)}$	2012.32 12	(1/2, 2/2)		J^{π} : 7/2 or 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
J^{π} : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. 2052.79 11 9/2 ⁽⁻⁾ Level from 1976Me06 and 1977Gr21.	2013.04 13	$(7/2^{-})$		Level from 1976Me06 and 1977Gr21.
2052.79 <i>11</i> 9/2 ⁽⁻⁾ Level from 1976Me06 and 1977Gr21.				J^{π} : 7/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data.
	2052.79 11	$9/2^{(-)}$		Level from 1976Me06 and 1977Gr21.

Continued on next page (footnotes at end of table)

1976Me06,1976Gr06,1981Kr08 (continued) ¹⁶⁷Lu ε decay (51.46 min)

¹⁶⁷Yb Levels (continued)

E(level) [†]	Jπ‡	Comments									
2330.38 7	9/2+	J^{π} : 9/2 ⁻ assigned in 1981Kr08 from $\gamma(\theta, \text{temp})$ data. Level from 1976Me06 and 1977Gr21. J^{π} : 9/2 ⁺ assigned in 1981Kr08, while 2204 $\gamma(\theta)$ and 2272 $\gamma(\theta)$ do not permit 7/2.									
[†] From a $\chi^2 = 1.25$ [‡] From th	least-sq 5, with c ne Adop	uares fit of E γ data, including all the doubly-placed γ rays. Reduced $\chi^2 = 1.54$ is only slightly larger than critical nly five E γ values somewhat poorly fitted out of a total of 230 γ rays. ted Levels.									
# Band(A @ Band(B	(): $v5/2[$	523]. 5421									
& Band(C	c): v3/2[(521].									
a Band(D): v3/2[:	521].									

^b Band(E): v11/2[505].

ε, β^+ radiations

 $\varepsilon + \beta^+$ feedings are from intensity imbalance at each level, with the given normalization factor from 1976Me06. Note that results are in severe disagreement with the measured positron and intensity of the annihilation radiation, the latter in 1976Me06.

1976Me06 quote measured β end-point of 2060 keV, with 0.05% 2, and a second branch with an end-point energy of 1400 keV 100, with an an intensity of 0.07% 2 from V.A Ageev et al. Report, 14th Ann. Conf. on nuclear spectroscopy, Tbilisi, 1964. Total value of $I(\beta^+)=0.12\%$ 3 is 15 times lower than the measured intensity of annihilation radiation=38 4, equivalent to 3.64% 20 or $I(\beta^+)=1.82\%$ 10 (1976Me06), with the conclusion by 1976Me06 that discrepancy between the measured intensities of the positrons and that of the annihilation radiation remains. Evaluators find even more discrepant results from the total $I(\beta^+)$ in the present level scheme based on ε/β^+ ratios from the LOGFT code.

E(decay)	E(level)	Ιβ ⁺ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
$(7.3 \times 10^2 4)$	2330.38		4.0 6	5.76 9		εK=0.8132 17; εL=0.1411 12; εM+=0.04561 42
$(1.01 \times 10^3 4)$	2052.79		2.4 9	6.28 17		εK=0.8197 10; εL=0.1365 6; εM+=0.04383 27
$(1.05 \times 10^3 4)$	2013.04		2.3 3	6.33 7	2.3 3	εK=0.8203 9; εL=0.1360 6; εM+=0.04365 24
$(1.05 \times 10^3 4)$	2012.32		2.0 4	6.39 10	2.0 4	εK=0.8203 9; εL=0.1360 6; εM+=0.04365 24
$(1.06 \times 10^3 \ 4)$	1998.42	1.8×10 ⁻⁸ 18	5.2 6	5.99 6	5.2 6	av E β =17 28; ε K=0.8205 9; ε L=0.1359 6; ε M+=0.04359 24
$(1.07 \times 10^3 \ 4)$	1995.32	1.7×10 ⁻⁸ 16	3.0 4	6.23 7	3.0 4	av E β =19 27; ε K=0.8206 9; ε L=0.1359 6; ε M+=0.04358 24
$(1.08 \times 10^3 4)$	1979.49		3.3 4	6.21 7	3.3 4	εK=0.8208 9; εL=0.1357 6; εM+=0.04352 23
$(1.09 \times 10^3 \ 4)$	1975.17	2.3×10 ⁻⁷ 23	3.9 5	6.14 7	3.9 5	av E β =36 22; ε K=0.8209 9; ε L=0.1356 6; ε M+=0.04350 23
$(1.09 \times 10^3 4)$	1973.96		3.7 10	6.16 12	3.7 10	εK=0.8209 9; εL=0.1356 6; εM+=0.04350 23
$(1.11 \times 10^3 4)$	1952.66		6.3 8	5.95 7	6.3 8	εK=0.8212 9; εL=0.1354 6; εM+=0.04341 23
$(1.11 \times 10^3 4)$	1951.10		7.0 7	5.90 6	7.0 7	εK=0.8212 9; εL=0.1354 5; εM+=0.04341 23
$(1.11 \times 10^3 4)$	1947.48		7.7 7	5.86 6	7.7 7	εK=0.8212 9; εL=0.1354 5; εM+=0.04340 23
$(1.70 \times 10^3 4)$	1356.32	0.0045 25	0.8 4	7.24 22	0.8 4	av Eβ=321 18; εK=0.8216 13; εL=0.13105 36; εM+=0.04179 16
$(1.75 \times 10^3 \ 4)$	1305.53	0.012 4	1.6 4	6.96 11	1.6 4	av Eβ=342 18; εK=0.8204 15; εL=0.13063 37; εM+=0.04165 16
$(1.79 \times 10^3 4)$	1267.24	0.054 13	6.1 6	6.39 5	6.2 6	av Eβ=359 18; εK=0.8194 17; εL=0.13030 39; εM+=0.04153 16
$(2.04 \times 10^3 4)$	1022.27	0.058 12	2.44 30	6.91 6	2.5 3	av Eβ=467 17; εK=0.8084 31; εL=0.1277 5; εM+=0.04065 18
$(2.27 \times 10^3 4)$	788.36	0.065 24	1.3 5	7.27 16	1.4 5	av E β =569 18; ε K=0.7902 46; ε L=0.1241 8;

Continued on next page (footnotes at end of table)

		¹⁶⁷ Lu ε	decay (51.4	6 min) 197	<mark>6Me06,1976G</mark>	r06,1981Kr08 (continued)
				ϵ, β^+ radia	ations (continu	ed)
E(decay)	E(level)	Ιβ ⁺ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2.43×10 ³ 4)	628.62	0.07 4	0.9 6	7.5 3	1.0 6	ε M+=0.03950 22 av E β =639 18; ε K=0.773 6; ε L=0.1211 9; ε M+=0.03851 25
$(2.49 \times 10^3 4)$	571.489	0.026 18	1.2 8	8.76 ¹ <i>u</i> 29	1.2 8	av E β =673 17; ε K=0.8046 22; ε L=0.13163 46; ε M+=0.04213 18
$(2.49 \times 10^3 4)$	569.39	0.053 16	0.65 20	7.67 13	0.7 2	av E β =665 18; ε K=0.766 6; ε L=0.1198 10; ε M+=0.03811 27
$(2.51 \times 10^3 4)$	553.38	0.055 24	0.64 30	7.67 19	0.7 3	av $E\beta$ =672 18; ε K=0.764 6; ε L=0.1195 10; ε M+=0.03799 27
$(2.58 \times 10^3 4)$	477.43	≈0.21	≈2.1	≈7.2	≈2.3	av E β =706 18; ε K=0.753 7; ε L=0.1177 11; ε M+=0.03742.29
$(2.63 \times 10^3 4)$	430.87	0.27 5	2.4 4	7.14 7	2.7 4	av E β =726 18; ε K=0.747 7; ε L=0.1166 11; ε M+=0.03706 30
$(2.65 \times 10^3 4)$	410.979	0.32 9	2.8 8	7.09 11	3.1 8	av $E\beta$ =735 18; ε K=0.744 7; ε L=0.1161 11; ε M+=0.03690 30
$(2.75 \times 10^3 4)$	308.401	0.12 10	0.9 8	7.6 +7-3	1.0 8	av Eβ=780 18; εK=0.728 8; εL=0.1135 12; εM+=0.03605 32
$(2.76 \times 10^3 4)$	301.48	0.055 13	1.34 30	8.89 ¹ <i>u</i> 10	1.4 <i>3</i>	av E β =788 17; ε K=0.7911 31; ε L=0.1283 6; ε M+=0.04102 19
$(2.78 \times 10^3 4)$	278.210	0.12 12	0.8 8	>7.3	0.9 9	av Eβ=793 18; εK=0.723 8; εL=0.1127 13; εM+=0.03579 33
$(2.82 \times 10^3 4)$	239.163	0.53 30	3.4 22	7.06 25	3.9 22	av Eβ=811 18; εK=0.716 8; εL=0.1116 13; εM+=0.03545 34
$(2.85 \times 10^3 4)$	213.167	0.27 13	1.6 9	7.39 21	1.9 9	av E β =822 18; ε K=0.712 8; ε L=0.1109 13; ε M+=0.03521 34
$(2.88 \times 10^3 4)$	178.863	0.34 11	2.0 7	7.32 13	2.3 7	av E β =837 18; ε K=0.706 9; ε L=0.1099 13; ε M+=0.03490 35
(2.93×10 ³ [@] 4)	125.918					Apparent 4.5% 9 ε feeding inconsistent with assigned ΛI^{π}
$(2.98 \times 10^3 4)$	78.679	0.70 41	3.4 24	7.11 25	4.1 24	av $E\beta$ =882 18; ε K=0.688 9; ε L=0.1069 14; ε M+=0.03395 37
$(3.00 \times 10^3 4)$	58.539	0.9 7	4.1 39	7.0 +7-3	54	av E β =891 18; ϵ K=0.684 9; ϵ L=0.1063 14; ϵ M+=0.03377 37
$(3.03 \times 10^3 4)$	33.916	0.9 9	4.1 41	>6.6	5 5	av $E\beta$ =902 18; ϵ K=0.679 9; ϵ L=0.1056 15; ϵ M+=0.03352 37
$(3.03 \times 10^3 4)$	29.656	0.9 9	4.1 41	>6.6	5 5	av E β =903 18; ε K=0.679 9; ε L=0.1054 15; ε M+=0.03348 37
$(3.06 \times 10^3 @ 4)$	0.0					

[†] From transition intensity balances, unless otherwise noted. All feedings should be treated as approximate as there are many unsettled issues about the decay scheme.

[‡] All values should be treated as approximate due to incomplete decay scheme. [#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{167}\mathrm{Yb})$

I γ normalization: A value of 0.043 4 follows from I $\gamma(239.2\gamma)=8.6\%$ 6 (1976Me06), deduced by authors from measured ratio: I $\gamma(239.22\gamma)$ from ¹⁶⁷Lu decay)/I $\gamma(176.2\gamma)$ from ¹⁶⁷Yb decay) for an equilibrium decay of ¹⁶⁷Lu \rightarrow ¹⁶⁷Yb \rightarrow ¹⁶⁷Tm. Summed transition intensity equated to 100, with assumed no $\varepsilon+\beta^+$ feeding to the ground state of ¹⁶⁷Yb gives γ -normalization factor of 0.0388 *18*, in agreement with the adopted value of 0.0434 *38*, but it should be noted that many γ rays remain unplaced in the decay scheme.

All the A₂ values are from $\gamma(\theta, \text{temp})$, nuclear orientation data in 1981Kr08. All the $\alpha(K)$ exp values are deduced by evaluators from Ice(K) data in 1975VyZY and I γ in this dataset, both the intensities are normalized to the same scale.

For detailed $\gamma\gamma$ -coin data, see Table 2 in 1976Me06 and also Table 2 in 1975VyZY.

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments
(4.251)	33.916	7/2+	29.656 5/2+				6.9×10 ² 12	E_{γ} : from energy difference between 29.7 and 33.9 levels. Transition unobserved, but existence confirmed in γγ-coin (1976Me06). $I_{(\gamma+ce)}$: ≥568 81 and ≤813 102 based on I(γ+ce) balance at 34 and 30 levels, respectively.
19.4 ^{<i>d</i>} 1	258.525	3/2-	239.163 (5/2)	[M1,E2]		3.3×10 ³ <i>32</i>	≈30 ^{<i>a</i>}	$ce(L)/(\gamma+ce)=0.8 5; ce(M)/(\gamma+ce)=0.19 23 ce(N)/(\gamma+ce)=0.04 6; ce(O)/(\gamma+ce)=0.005 7; ce(P)/(\gamma+ce)=5.E-6 5 \alpha(L)=2.5\times10^3 25; \alpha(M)=6\times10^2 6 \alpha(N)=1.4\times10^2 14; \alpha(O)=15 15; \alpha(P)=0.017 4$
19.68 ^c 2	278.210	5/2-	258.525 3/2-	[M1,E2]		3.0×10 ³ <i>30</i>	20 18	L1:L2= \approx 14.0: \leq 5.0 (1975VyZY). ce(L)/(γ +ce)=0.8 5; ce(M)/(γ +ce)=0.19 23 ce(N)/(γ +ce)=0.04 6; ce(O)/(γ +ce)=0.005 7; ce(P)/(γ +ce)=5.E-6 5 α (L)=2.3 \times 10 ³ 23; α (M)=6 \times 10 ² 6
								α(N)=2.5×10-2.5, α(N)=0×10-0 0 α(N)=1.3×102 13; α(O)=14 14; α(P)=0.016 4 Eγ=19.68 2 (1975VyZY). Ice(M1)=0.23 (1971Ab04). Iγ<4, scaled to <9 (1976Me06). I(γ+ce): >2 from Ice(L1)≈1.5 (1975VyZY), ≤37 from intensity balance at 259 level.
20.19 ^d 3	78.679	7/2-	58.539 9/2+	E1		4.99 7	≈10 ^{<i>a</i>}	$\begin{aligned} \alpha(L) &= 3.88 \ 6; \ \alpha(M) = 0.896 \ 13 \\ \alpha(N) &= 0.1976 \ 29; \ \alpha(O) = 0.02086 \ 30; \ \alpha(P) = 0.000485 \ 7 \\ ce(L)/(\gamma + ce) &= 0.647 \ 6; \ ce(M)/(\gamma + ce) = 0.1495 \ 26 \\ ce(N)/(\gamma + ce) &= 0.0330 \ 6; \ ce(O)/(\gamma + ce) = 0.00348 \ 7; \\ ce(P)/(\gamma + ce) &= 8.09 \times 10^{-5} \ 15 \\ L1; L2; L3 &= 3.9; \approx 2.6; <2.6 \ (1975 VvZY). \end{aligned}$
21.16 ^d 3	440.676	7/2-	419.540 (9/2)	- M1+E2	0.10 2	94 18	≈12	$\begin{array}{l} \text{ce(L)}/(\gamma+\text{ce})=0.77 \ 10; \ \text{ce(M)}/(\gamma+\text{ce})=0.18 \ 4 \\ \text{ce(N)}/(\gamma+\text{ce})=0.041 \ 11; \ \text{ce(O)}/(\gamma+\text{ce})=0.0053 \ 13; \\ \text{ce(P)}/(\gamma+\text{ce})=0.000172 \ 32 \end{array}$

S

	¹⁶⁷ Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)											
					γ ⁽¹⁶	⁷ Yb) (contin	nued)		Yb ₉₇ -6			
E_{γ}^{\dagger}	E_i (level) J_i^{π}	E_f	J_f^{π} Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+\alpha)}$	$(e)^{f}$ Comments					
24.63 ^c 1	58.539	9/2+	33.916 7/2+	M1+E2	0.150 <i>10</i>	77 6	385 ^a	α(L)=73 14; α(M)=16.9 33 α(N)=3.9 8; α(O)=0.50 8; α(P)=0.01640 24 I(γ+ce): Ice(L1+L2)=6.7 and adopted mult; Iγ≈0.12 from I(γ+ce). L1:L2:L3=4.6:2.1:<2.0 (1975VyZY). ce(L)/(γ+ce)=0.76 4; ce(M)/(γ+ce)=0.179 18 ce(N)/(γ+ce)=0.041 4; ce(O)/(γ+ce)=0.0051 5; ce(P)/(γ+ce)=0.00134 10 α(L)=59 4; α(M)=13.9 11 α(N)=3.19 25; α(O)=0.399 28; α(P)=0.01035 15 Eγ=24.63 1 (1975VyZY). Iγ<1.6, scaled to <3.5 (1976Me06). L1:L2:L3=111:90:103 (1975VyZY). I = 1.2:13=11000:70 3:078 4 (1987Be7ZB)				
25.98 ^d 2	239.163	(5/2) ⁻	213.167 (5/2)-	M1+E2	0.190 +32-23	81 <i>18</i>	16 ^{<i>a</i>}	L1:L2:L3=1.00:0.70 3:0.78 4 (198/BaZB). L1:L2:L3:M2:M3:N=2.3:1.5:1.5:0.57:0.57:0.52 (1971Ab04 I γ in 1976Me06 implies α (L)exp>87. δ : from L-subshell ratios (1987BaZB). Other: 0.157 +19-2 (1975VyZY, L-subshell ratios). ce(L)/(γ +ce)=0.76 12; ce(M)/(γ +ce)=0.18 5 ce(N)/(γ +ce)=0.041 13; ce(O)/(γ +ce)=0.0051 15; ce(P)/(γ +ce)=0.000107 24 α (L)=62 14; α (M)=14.7 34 α (N)=3.4 8; α (O)=0.41 9; α (P)=0.00875 14 L1:L2:L3=6:54: \approx 3 (1975VyZY)	From ENSDF			
^x 26.23 ^c 1				M1+E2	0.078 +12-15	36.7 30	52 ^{<i>a</i>}	$\begin{aligned} \alpha(L) \exp > 5.3 \\ ce(N)/(\gamma + ce) = 0.040 \ 5; \ ce(O)/(\gamma + ce) = 0.0054 \ 6; \\ ce(P)/(\gamma + ce) = 0.000230 \ 19 \\ \alpha(L) = 28.5 \ 23; \ \alpha(M) = 6.5 \ 6 \\ \alpha(N) = 1.51 \ 13; \ \alpha(O) = 0.205 \ 14; \ \alpha(P) = 0.00868 \ 12 \\ ce(L)/(\gamma + ce) = 0.75 \ 4; \ ce(M)/(\gamma + ce) = 0.173 \ 18 \\ E\gamma = 26.23 \ 1, \ 1\gamma < 8 \ (1975 VyZY). \\ I\gamma < 1.2 \ (1976 Me06). \\ L1:L2:L3 = 31:7.7:3.8 \ (1975 VyZY). \\ L1:L2:L3:M1 = 0.91:0.19:0.09:0.23 \ (1971 Ab04). \end{aligned}$				
28.88 ^{<i>c</i>} 1	58.539	9/2+	29.656 5/2+	E2		893 <i>13</i>	85 ^{<i>a</i>}	$\begin{aligned} \alpha(\text{L}) = 684 \ 10; \ \alpha(\text{M}) = 167.1 \ 24 \\ \alpha(\text{N}) = 37.9 \ 5; \ \alpha(\text{O}) = 4.25 \ 6; \ \alpha(\text{P}) = 0.001646 \ 23 \\ \text{ce(L)}/(\gamma + \text{ce}) = 0.765 \ 7; \ \text{ce(M)}/(\gamma + \text{ce}) = 0.1870 \ 34 \\ \text{ce(N)}/(\gamma + \text{ce}) = 0.0424 \ 8; \ \text{ce(O)}/(\gamma + \text{ce}) = 0.00475 \ 9; \\ \text{ce(P)}/(\gamma + \text{ce}) = 1.84 \times 10^{-6} \ 4 \\ \text{E}\gamma = 28.88 \ 1 \ (1975 \text{VyZY}). \end{aligned}$	¹⁶⁷ 70 Yb ₉₇ -6			

	10^{10} Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)												
							$\gamma(^{167}\text{Yb})$ ((continued)					
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments			
29.66 ^{<i>c</i>} 1	420 36	29.656	5/2+	0.0	5/2-	E1		1.737 24		I _γ <20, scaled to <44 (1976Me06). L1:L2:L3=0.5:34:34 (1975VyZY). L1:L2:L3:M2=LT 0.12:1.15:1.37:0.46 (1971Ab04). %I _γ =18.2 23 α (L)exp=0.8 α (L)=1.352 <i>19</i> ; α (M)=0.308 <i>4</i> α (N)=0.0690 <i>10</i> ; α (O)=0.00788 <i>11</i> ; α (P)=0.0002134 30			
										E γ =29.66 <i>I</i> , I γ =420 <i>36</i> (1975VyZY). I γ =170 <i>20</i> , scaled to 374 <i>44</i> (1976Me06). L1:L2:L3=1.00:0.71 <i>5</i> :1.02 <i>6</i> (1987BaZB). L1:L2:L3=124:93:129 (1975VyZY). L1:L2:L3:M1:M2:M3:N=5.25:3.52:4.40:1.55:0.97:1.37: 0.91 (1971Ab04).			
x33.50 ^d 3	d					M1+E2	0.25 +12-11	38 26	15 ^a	ce(L)/(γ +ce)=0.75 34; ce(M)/(γ +ce)=0.18 15 ce(N)/(γ +ce)=0.04 4; ce(O)/(γ +ce)=0.005 4; ce(P)/(γ +ce)=1.0×10 ⁻⁴ 7 α (L)=29 20; α (M)=7 5 α (N)=1.6 11; α (O)=0.20 12; α (P)=0.00402 22 L1:L2:L3=3.1:6.5:2.6 (1975VyZY).			
33.91 ^{<i>c</i>} 1	81 8	33.916	7/2+	0.0	5/2-	El		1.200 <i>17</i>		$ \begin{split} & & \text{Min}(2135, 5) \\ & & \text{Mi}(\gamma=3.5, 5) \\ & & \text{a}(\text{L}) \text{exp}=1.25 \\ & & \text{a}(\text{L}) = 0.934 \ 13; \ \alpha(\text{M}) = 0.2122 \ 30 \\ & & \text{a}(\text{N}) = 0.0477 \ 7; \ \alpha(\text{O}) = 0.00557 \ 8; \ \alpha(\text{P}) = 0.0001588 \ 22 \\ & \text{E}\gamma=33.91 \ I, \ I\gamma=81 \ 8 \ (1975\text{VyZY}). \\ & & \text{I}\gamma=35 \ 4 \ (1976\text{Me06}). \\ & & \text{L}1:\text{L}2:\text{L}3=1.00:0.69 \ 3:1.01 \ 5 \ (1987\text{BaZB}). \\ & & \text{L}1:\text{L}2:\text{L}3=6:26:39 \ (1975\text{VyZY}). \\ & & \text{L}1:\text{L}2:\text{L}3=36:26:39 \ (1975\text{VyZY}). \\ & & \text{L}1:\text{L}2:\text{L}3:\text{M}1:\text{M}2:\text{M}3:\text{N}=1.65:1.03:1.82:0.38:0.21:0.34: \\ & & 0.21 \ (1971\text{Ab04}). \end{split} $			
36.79 ^d 3	≈0.23 ^d	477.43	9/2-	440.676	7/2-	M1+E2	0.10 +4-6	12.9 <i>24</i>	≈3.2	%Iγ≈0.010 α (L)exp≥2 α (L)=10.0 <i>19</i> ; α (M)=2.3 5 α (N)=0.53 <i>10</i> ; α (O)=0.073 <i>12</i> ; α (P)=0.00318 5 I _(γ+ce) : from Ice(L1)=1.8 and adopted mult. I _γ : ≈0.23 from I(γ+ce), adopted mult and δ . Other: ≤1.3 (1975VyZY). L1:L2:L3=1.8:≈0.4:≈0.4 (1975VyZY).			
x37.70 ^d 3	≤0.8 ^d					E2		238.8 35		%Iγ≤0.035 α (L)exp≥34 α (L)=182.6 27; α (M)=44.9 7 α (N)=10.19 15; α (O)=1.144 17; α (P)=0.000493 7 L1:L2:L3=<0.8:13:13 (1975VyZY).			

¹⁶⁷₇₀Yb₉₇-7

			$^{167}\mathbf{L}$	u <i>ɛ</i> decay (51.	46 min) 19	76Me06,1976Gr06	,1981Kr08	(continued)	167 70
					$\gamma(^{167})$	Yb) (continued)			Yb ₉₇ -8
E_{γ}^{\dagger} I_{γ}^{\dagger}	$f = E_i(\text{level})$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^g	$I_{(\gamma+ce)}f$	Comments	
39.33 ^d 4	<i>d</i> 317.488	(7/2)-	278.210 5/2-	[M1,E2]		1.0×10 ² 9	≈2 ^{<i>a</i>}	ce(L)/(γ+ce)=0.8 5; ce(M)/(γ+ce)=0.19 22 ce(N)/(γ+ce)=0.04 5; ce(O)/(γ+ce)=0.005 6; ce(P)/(γ+ce)=1.5×10 ⁻⁵ 17 α (L)=8.E1 7; α (M)=19 17 α (N)=4 4; α (O)=0.5 4; α (P)=0.0015 11 I _(γ+ce) ,Mult.: Ice(L1)=1.5, Iγ≤0.8 (1975VyZY), so	
44.77 ^c 2 29	9 7 78.679	7/2-	33.916 7/2*	E1		0.556 8		 α(L1)exp≥1.9, consistent with M1(+E2), with E1 ruled out. I(γ+ce)<3 if M1, ≈440 if E2. %Iγ=1.3 3 α(L)exp=0.47 α(L)=0.433 6; α(M)=0.0978 14 α(N)=0.02215 31; α(O)=0.00269 4; α(P)=8.47×10⁻⁵ 12 Eγ=44.77 2, Iγ<80 (1975VyZY). Iγ=13 3, scaled to 29 7 (1976Me06). I_γ: from 1976Me06. L1:L2:L3=7.7:3.1:4.6 (1975VyZY). 	FI
45.35 ^d 10	258.525	3/2-	213.167 (5/2) ⁻ [M1]		5.58 9	≈15 ^{<i>a</i>}	L1:L2=10:1.6 (1975VyZY) $\alpha(L)=4.34$ 7; $\alpha(M)=0.973$ 15 $\alpha(N)=0.2284$ 35; $\alpha(O)=0.0326$ 5; $\alpha(P)=0.001729$ 27 ce(L)/(γ +ce)=0.660 6; ce(M)/(γ +ce)=0.1479 27 ce(N)/(γ +ce)=0.0347 7; ce(O)/(γ +ce)=0.00495 10; ce(P)/(γ +ce)=0.000263 5 L1/L2 consistent with M1 not with E1 or E2	rom ENSDF
49.02 [°] 2	78.679	7/2-	29.656 5/2+	E1		0.432 6	13 ^a	$\begin{aligned} \alpha(L) &= 0.337 \ 5; \ \alpha(M) = 0.0759 \ 11 \\ \alpha(N) &= 0.01724 \ 24; \ \alpha(O) = 0.002119 \ 30; \ \alpha(P) = 6.87 \times 10^{-5} \ 10 \\ ce(L)/(\gamma + ce) &= 0.2351 \ 26; \ ce(M)/(\gamma + ce) = 0.0530 \ 7 \\ ce(N)/(\gamma + ce) &= 0.01204 \ 17; \ ce(O)/(\gamma + ce) = 0.001480 \ 22; \\ ce(P)/(\gamma + ce) &= 4.80 \times 10^{-5} \ 7 \\ E\gamma &= 49.02 \ 2 \ (1975 VyZY). \\ L1:L2:L3 &= 4.6:2.6:3.1 \ (1975 VyZY). \end{aligned}$	
57.60 ^{ci} 2	477.43	9/2-	419.540 (9/2) ⁻ [M1,E2]		16 <i>14</i>	≈23	$\alpha(L)=13 \ 10; \ \alpha(M)=3.1 \ 26$ $\alpha(N)=0.7 \ 6; \ \alpha(O)=0.08 \ 6; \ \alpha(P)=5.E-4 \ 4$ $E\gamma=57.60 \ 2 \ (1975VyZY).$ $I_{(\gamma+ce)}$: from Ice(L)≈18 and assumed mult. L1:L2:L3=9.0:≤4:≈7 (1975VyZY). 1975VyZY suggest mult=(E1) is inconsistent with this placement; note also that E γ fits poorly, with level-energy difference=57.89. Evaluators show tentative placement.	7
^x 57.78 ^d 2	d			M1+E2	0.32 +14-8	3 5.2 22	28 ^a	ce(L)/(γ+ce)=0.65 <i>18</i> ; ce(M)/(γ+ce)=0.15 8	⁵⁷ Yb ₉₇ -8

 ∞

 $^{167}_{70}{
m Yb}_{97}$ -8

				¹⁶⁷ Lu	ε decay	y (51.46 mi	n) 1976Me (6,1976Gr06,	,1981Kr08	(continued)
							$\gamma(^{167}\text{Yb})$ (co	ontinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments
59.40 ^c 2		239.163	(5/2)-	179.750 (:	3/2-)	(M1)		2.525 35	3.8 ^a	$\begin{array}{l} (ce(N)/(\gamma+ce)=0.035 \ 19; \ ce(O)/(\gamma+ce)=0.0045 \ 23; \\ ce(P)/(\gamma+ce)=1.3\times10^{-4} \ 5 \\ \alpha(L)=4.0 \ 17; \ \alpha(M)=1.0 \ 4 \\ \alpha(N)=0.22 \ 9; \ \alpha(O)=0.028 \ 10; \ \alpha(P)=0.00078 \ 6 \\ L1:L2:L3=9.3:8.2:3.9 \ (1975VyZY). \\ ce(L)/(\gamma+ce)=0.558 \ 5; \ ce(M)/(\gamma+ce)=0.1249 \ 20 \\ ce(N)/(\gamma+ce)=0.0293 \ 5; \ ce(O)/(\gamma+ce)=0.00419 \ 7; \\ ce(P)/(\gamma+ce)=0.000222 \ 4 \\ \alpha(L)=1.966 \ 28; \ \alpha(M)=0.440 \ 6 \\ \alpha(N)=0.1034 \ 15; \ \alpha(O)=0.01475 \ 21; \ \alpha(P)=0.000783 \\ \end{array}$
(60.1 2)		185.94	13/2+	125.918 1	1/2+	[M1]		2.44 4		11 Placement from 1976Me06. Eγ=59.40 2 (1975VyZY). L1:L2=2.0:≤0.4 (1975VyZY). α (L)=1.899 32; α (M)=0.425 7 α (N)=0.0999 17; α (O)=0.01426 24; α (P)=0.000757 13 E _γ : from the Adopted Gammas. This γ reported in all the three in-beam γ-ray reaction studies. I _γ : from (¹⁷ O,4nγ),(¹⁸ O,5nγ) (1982Ro08), expected I _γ =8.7 12 if M1, but no such transition has been
x60.98 ^d 2	d					(E2)		22.81 32	0.3 ^{<i>a</i>}	reported in ε decay. ce(L)/(γ +ce)=0.732 7; ce(M)/(γ +ce)=0.1806 32 ce(N)/(γ +ce)=0.0411 8; ce(O)/(γ +ce)=0.00465 9; ce(P)/(γ +ce)=5.35×10 ⁻⁶ 10 α (L)=17.42 25; α (M)=4.30 6 α (N)=0.979 14; α (O)=0.1107 16; α (P)=0.0001274 18 L M 24 24 = α 02:0 12:0 12:0 (1075)/ α (X)
67.37 ^c 2	11.9 <i>14</i>	125.918	11/2+	58.539 9	/2+	M1+E2	0.30 +8-10	10.95 28		L1:L2:L3= \leq 0.02:0.12:0.12 (1975VyZY). %I γ =0.52 8 α (L)exp=2.6 α (K)=8.18 33; α (L)=2.1 4; α (M)=0.50 10 α (N)=0.116 24; α (O)=0.0150 26; α (P)=0.000506 21 E γ =67.37 2, I γ =11.9 14 (1975VyZY). I γ =6 1 (1976Me06). L1:L2:L3=17:5.9:8.5 (1975VyZY). L1:L2:L3=17:5.9:8.5 (1975VyZY).
69.83 ^c 2	≤0.8	258.525	3/2-	188.704 1	/2-	M1+E2	1.9 +6-3	12.7 4		(1971Ab04). %Iy<0.035 α (L)exp≥19 α (K)=3.0 5; α (L)=7.4 6; α (M)=1.82 16 α (N)=0.41 4; α (O)=0.047 4; α (P)=0.000181 31

 $^{167}_{70}{
m Yb}_{97}$ -9

	16^{167} Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)												
							$\gamma(^{167}$ Yb) (continue	bd)				
E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α ^g	Comments				
78.33 ^c 2	13 4	317.488	(7/2)-	239.163	(5/2)-	M1+E2	0.15	6.86 <i>10</i>	E γ =69.83 2, I γ ≤0.8 (1975V γ ZY). I γ <2, scaled to <4.4 (1976Me06). L1:L2:L3=0.77:7.7:6.5 (1975V γ ZY). L1:L2:L3:M2=<0.057:0.21:<0.12:0.057 (1971Ab04). %I γ =0.57 18 α (K)exp=7 3 α (K)=5.60 8; α (L)=0.973 14; α (M)=0.2206 31 α (N)=0.0516 7; α (O)=0.00718 10; α (P)=0.000344 5 Exp=78 23 2, L α =52 5 25 for 78 33 α (P)=0.000344 5				
78.67 ^c 2	35 4	78.679	7/2-	0.0	5/2-	E2(+M1)	≥4.6	8.25 12	E γ =/8.33 2, I γ =52.5 25 for /8.33 γ +/8.6/ γ (19/5VyZY). I γ =6 2, scaled to 13 4 (1976Me06). I $_{\gamma}$: from 1976Me06. K:L1:L2:L3=88 25:26:4.3:2.1 (1975VyZY). K:L1:L2:L3:M1:M2=5.25:0.63:0.12:<0.06:0.12:<0.02 (1971Ab04). %I γ =1.52 22 α (K)exp=1.9 6 α (K)=1.64 9; α (L)=5.05 12; α (M)=1.247 30 α (N)=0.284 7; α (O)=0.0324 8; α (P)=8.0×10 ⁻⁵ 6 Ex γ =7.8 67 2, 1 α =52 5 25 for 78 33 α + 78 67 α (1975VyZY)				
89.49 [°] 2	3 1	278.210	5/2-	188.704	1/2-	E2		4.94 7	Ey=18.07 2, fy=52.5 25 for 76.53 γ + 76.07 γ (1975 $\sqrt{21}$). Iy=16 2, scaled to 35 4 (1976Me06). I _y : from 1976Me06. K:L1:L2:L3=65 18:8.8:129:129 (1975 $\sqrt{2Y}$). %Iy=0.13 5 α (K)exp=1.4 6 α (K)=1.271 18; α (L)=2.80 4; α (M)=0.692 10 α (N)=0.1578 22; α (O)=0.01805 25; α (P)=5.57×10 ⁻⁵ 8 Ey=89.49 2, Iy=3 1 (1975 $\sqrt{2Y}$).				
92.05 ^d 7	5.0 ^d 15	125.918	11/2+	33.916	7/2+	[E2]		4.43 6	Iγ=1.0 3 (1976Me06). K:L1:L2:L3=4.1 10:≈0.26:3.1:2.6 (1975VyZY). K:L1:L2:L3:M2:M3:N=0.25:≈0.02:0.17:0.17:≈0.03:≈0.03 (1971Ab04). %Iγ=0.22 7				
									$\alpha(K)=1.206\ 17;\ \alpha(L)=2.46\ 4;\ \alpha(M)=0.606\ 9$ $\alpha(N)=0.1383\ 20;\ \alpha(O)=0.01583\ 23;\ \alpha(P)=5.23\times10^{-5}\ 7$				
95.27 2	6.2 12	308.401	(7/2) ⁻	213.167	(5/2) ⁻	M1+E2	0.16	3.88 5	%lγ=0.27 6 α (K)exp=6.1 20 α (K)=3.19 4; α (L)=0.537 8; α (M)=0.1214 17 α (N)=0.0284 4; α (O)=0.00398 6; α (P)=0.0001948 27 Eγ=95.27 2, Iγ=6.2 12 (1975VyZY). Iγ=3.0 6 (1976Me06). K:L1:L2:L3=38 10:3.4:0.52:0.13 (1975VyZY). K:L1:L2=1.25:0.13:<0.02 (1971Ab04).				

					¹⁶⁷ Lu ε decay	(51.46 min)) 1976Me0	6,1976Gr00	6,1981Kr0	8 (continued)
							$\gamma(^{167}\text{Yb})$ (con	ntinued)		
	${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments
	100.22 ^c 2	8.4 12	178.863	9/2-	78.679 7/2-	M1+E2	4.9 +21-9	3.19 4		
	x100.70 ^d 3	2.8 ^d 9				(M1)		3.31 5		(19/1A004). %Iy=0.12 4 α (K)exp=3.6 16 α (K)=2.77 4; α (L)=0.423 6; α (M)=0.0948 13 α (N)=0.02226 31; α (O)=0.00318 4; α (P)=0.0001692 24 Lee(K)=10.3 (1975VyZY)
11	102.08 ^c 2	11.0 22	419.540	(9/2)-	317.488 (7/2)-	M1+E2	0.17 +5-6	3.18 4		K:L1=10 3:1.0 (1975VyZY). %I γ =0.48 11 α (K)exp=2.5 8 α (K)=2.61 5; α (L)=0.438 21; α (M)=0.099 5 α (N)=0.0232 12; α (O)=0.00325 13; α (P)=0.0001593 31 E γ =102.08 2, I γ =16.5 30 for 102.08 γ +102.56 γ (1975VyZY). I γ =5.0 10 (1976Me06). I $_{\gamma}$: from 1976Me06. K:L1:L2=28 7:5.2:0.77 (1975VyZY).
	102.56 ^c 2	6.6 15	410.979	7/2-	308.401 (7/2)-	M1+E2	0.22 5	3.13 4		K:L1:L2:M1=1.37:0.17:< $0.02:0.05$ (1971Ab04). %I γ =0.29 7 α (K)exp=3.6 <i>13</i> α (K)=2.55 <i>5</i> ; α (L)=0.452 <i>25</i> ; α (M)=0.103 <i>6</i> α (N)= 0.0240 <i>14</i> ; α (O)= 0.00332 <i>15</i> ; α (P)= 0.0001550 <i>34</i> E γ =102.56 <i>2</i> , I γ =16.5 <i>30</i> for 102.56 γ +102.08 γ (1975VyZY). I γ =2.0 7, scaled to 6.6 <i>15</i> (1976Me06). I $_{\gamma}$: from 1976Me06. K:L1:L2=24 <i>7</i> :4.1:0.77 (1975VyZY). K:L1:L2:L3:M1=1.25:0.14:0.02:0.011:0.34 (1971Ab04).
	111.10 ^d 5	<2 ^d	419.540	(9/2)-	308.401 (7/2)-	[M1,E2]		2.32 18	<7	$%I\gamma < 0.087$ $\alpha(K) exp > 0.7$

	¹⁶⁷ Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)													
	γ ⁽¹⁶⁷ Yb) (continued)													
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_j^{\pi}$	f Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments					
									$\begin{array}{l} (ce(K)/(\gamma+ce)=0.43 \ 12; \ ce(L)/(\gamma+ce)=0.20 \ 9; \\ ce(M)/(\gamma+ce)=0.049 \ 26 \\ ce(N)/(\gamma+ce)=0.011 \ 6; \ ce(O)/(\gamma+ce)=0.0014 \ 6; \\ ce(P)/(\gamma+ce)=2.4\times10^{-5} \ 14 \\ \alpha(K)=1.4 \ 6; \ \alpha(L)=0.7 \ 4; \ \alpha(M)=0.16 \ 9 \\ \alpha(N)=0.037 \ 21; \ \alpha(O)=0.0045 \ 21; \ \alpha(P)=8.E-5 \ 5 \\ \end{array}$					
120.31 ^c 3	24.7 14	178.863	9/2-	58.539 9/2	+ E1		0.2101 29		I _(γ+ce) : based on Ice(K)=1.8 4 (19/5VyZY). Ice(K)=5.0 11 if E2, 2.2 5 if M1 (Rosel α (K)). Mult.: α (K)exp rules out E1. %Iγ=1.07 11 α (K)exp=0.13 3; α (K)exp=0.23 7					
									$\begin{aligned} &\alpha(\mathbf{K}) = 0.1743 \ 24; \ \alpha(\mathbf{L}) = 0.0279 \ 4; \ \alpha(\mathbf{M}) = 0.00624 \ 9 \\ &\alpha(\mathbf{N}) = 0.001439 \ 20; \ \alpha(\mathbf{O}) = 0.0001913 \ 27; \\ &\alpha(\mathbf{P}) = 7.89 \times 10^{-6} \ 11 \\ \mathbf{E}\gamma = 120.31 \ 3, \ I\gamma = 24.7 \ 14 \ (1975 \text{VyZY}). \\ &I\gamma = 6.0 \ 10, \ \text{scaled to} \ 13.2 \ 22 \ (1976 \text{Me06}). \\ &\mathbf{K}: \text{L1}: \text{L2}: \text{L3} = 3.1 \ 7: 0.5: \le 0.13: \le 0.10 \ (1975 \text{VyZY}). \\ &\text{First} \ \alpha(\mathbf{K}) \text{exp from Iy in} \ 1975 \text{VyZY}, \ \text{second in} \\ &1976 \text{Me06}. \end{aligned}$					
122.63 ^{<i>d</i>} 4	<2.6 ^d	301.48	11/2-	178.863 9/2	- (M1,E2)		1.69 20	≈7.0 ^{<i>a</i>}	$\alpha(K)=1.1 5; \alpha(L)=0.45 21; \alpha(M)=0.11 5$ $\alpha(N)=0.025 12; \alpha(O)=0.0030 12; \alpha(P)=6.1\times10^{-5} 35$ %I γ <0.113 $I_{(\gamma+ce)}: I\gamma$ <2.6, Ice(K)=1.0 3 (1975VyZY), so $\alpha(K)$ exp>0.26, favoring M1,E2 multipolarity.					
123.19 ^c 3	13.1 <i>13</i>	440.676	7/2-	317.488 (7/2	2) ⁻ M1+E2	0.7 ^{&} 5	1.73 12		%I γ =0.57 8 α (K)exp=1.1 3 α (K)=1.25 27; α (L)=0.37 12; α (M)=0.088 31 α (N)=0.020 7; α (O)=0.0026 7; α (P)=7.2×10 ⁻⁵ 20 E γ =123.19 3, I γ =13.1 13 (1975VyZY). I γ =7.0 10 (1976Me06). K:L1:L2=15 4:2.6:≤0.26 (1975VyZY). K:L1:L2=15 4:2.6:≤0.26 (1975VyZY).					
127.40 7	10.0 <i>11</i>	185.94	13/2+	58.539 9/2	+ (E2)		1.296 <i>18</i>		α(K)=0.570 8; α(L)=0.555 8; α(M)=0.1362 19 α(K)=0.570 8; α(L)=0.555 8; α(M)=0.1362 19 α(N)=0.0311 4; α(O)=0.00362 5; α(P)=2.431×10-5 34 %Iγ=0.43 6 $ E_γ: weighted average of the two values. $ Eγ=127.42 7, Iγ=10.0 11 (1975VyZY). Iγ=4.0 15 (1976Me06, unplaced). Mult.: from the Adopted Gammas.					
132.28 ^d 4		440.676	7/2-	308.401 (7/2	2) ⁻ [M1,E2]		1.32 20	≈3.0	$ce(K)/(\gamma+ce)=0.38 \ 10; \ ce(L)/(\gamma+ce)=0.14 \ 5; \ ce(M)/(\gamma+ce)=0.034 \ 15$					

From ENSDF

 $^{167}_{70} \mathrm{Yb}_{97}$ -12

				167 Lu ε	decay ((51.46 min)	1976Me06,1976Gr06,1981Kr08 (continued)				
						<u>2</u>	γ(¹⁶⁷ Yb) (c	ontinued)			
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments		
									$\begin{array}{l} \mbox{ce(N)}/(\gamma + \mbox{ce)} = 0.0078 \ 35; \ \mbox{ce(O)}/(\gamma + \mbox{ce)} = 1.0 \times 10^{-3} \ 4; \\ \mbox{ce(P)}/(\gamma + \mbox{ce)} = 2.1 \times 10^{-5} \ 12 \\ \mbox{$\alpha(K)$} = 0.9 \ 4; \ \mbox{$\alpha(L)$} = 0.33 \ 14; \ \mbox{$\alpha(M)$} = 0.08 \ 4 \\ \mbox{$\alpha(N)$} = 0.018 \ 8; \ \mbox{$\alpha(O)$} = 0.0023 \ 8; \ \mbox{$\alpha(P)$} = 5.0 \times 10^{-5} \ 28 \\ \mbox{I}_{(\gamma + \mbox{ce)}}: \ \mbox{based on Ice(K)} = 1.0 \ 3 \ (1975 \mbox{VyZY}) \ \mbox{assuming mult} = M1, E2. \end{array}$		
133.84 3	10.5 15	553.38	9/2-	419.540 ((9/2)-	M1(+E2)	<0.09	1.468 21	%I γ =0.46 8 α (K)exp=0.86 23 α (K)=1.226 17; α (L)=0.1883 28; α (M)=0.0422 7 α (N)=0.00991 15; α (O)=0.001413 21; α (P)=7.47×10 ⁻⁵ 11 E γ =133.84 3, I γ =10.5 15 (1975VyZY). I γ =5.0 5 (1976Me06). K:L2:L3=9 2:≈0.08: <0.08 (1975VyZY).		
138.7 2	4.4 15	317.488	(7/2)-	178.863 9	9/2-	[M1,E2]		1.14 <i>19</i>	% I γ =0.19 7 α (K)=0.78 33; α (L)=0.27 11; α (M)=0.065 28 α (N)=0.015 6; α (O)=0.0019 6; α (P)=4.4×10 ⁻⁵ 24 Placement from 1976Me06. E γ =138.7 2, I γ ≈5 (1975VyZY). I γ =2.0 7, scaled to 4.4 15 (1976Me06). L: from 1976Me06.		
^x 139.68 3	≈2.3					(M1)		1.302 18	$\alpha'(\text{K})\exp\approx0.9$ $\alpha(\text{K})=1.089\ 15;\ \alpha(\text{L})=0.1658\ 23;\ \alpha(\text{M})=0.0371\ 5$ $\alpha(\text{N})=0.00872\ 12;\ \alpha(\text{O})=0.001246\ 17;\ \alpha(\text{P})=6.64\times10^{-5}\ 9$ $\%$ I $\gamma\approx0.0999$ E $\gamma=139.68\ 3,\ I\gamma\approx2.3,\ Ice(\text{K})=2.0\ 4\ (1975\text{VyZY}).$ I $\gamma<1\ (1976\text{Me06}).$		
144.97 ^c 3	43 2	178.863	9/2-	33.916 7	7/2+	E1		0.1285 18	% $Iy=1.87 \ I9$ $\alpha(K)\exp=0.084 \ I9$ $\alpha(K)=0.1070 \ I5; \ \alpha(L)=0.01674 \ 23; \ \alpha(M)=0.00374 \ 5$ $\alpha(N)=0.000865 \ I2; \ \alpha(O)=0.0001162 \ I6; \ \alpha(P)=4.98\times10^{-6} \ 7$ $Ey=144.97 \ 3, \ Iy=43 \ 2 \ (1975VyZY).$ $Iy=24 \ 2 \ (1976Me06).$ K:L1:L2=3.6 8:0.26:<0.13 (1975VyZY).		
151.96 2	5.8 17	571.489	(11/2)-	419.540 ((9/2)-	M1(+E2)	<1.6 ^{&}	0.90 12	%I γ =0.25 8 α (K)exp=0.67 24 α (K)=0.68 18; α (L)=0.18 4; α (M)=0.041 12 α (N)=0.0095 27; α (O)=0.00123 25; α (P)=3.9×10 ⁻⁵ 13 E γ =151.96 2, I γ =5.8 17 (1975VyZY). I γ =2.4 2, scaled to 5.3 4 (1976Me06). K:L1=3.9 8:0.54 (1975VyZY). K:L1:L3=0.14:0.02:0.006 (1971Ab04).		

				¹⁶⁷ Lu ε decay (51.46 min)			n) 1976Me06,1976Gr06,1981Kr08 (continued)				
						<u>2</u>	v(¹⁶⁷ Yb) (co	⁷ Yb) (continued)			
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{g}	Comments			
^x 158.15 ^d 2	≈0.8 ^{<i>d</i>}					(M1)	0.917 <i>13</i>	% Iy≈0.035 α (K)exp≈0.6 α (K)=0.767 <i>11</i> ; α (L)=0.1166 <i>16</i> ; α (M)=0.0261 <i>4</i> α (N)=0.00613 <i>9</i> ; α (O)=0.000877 <i>12</i> ; α (P)=4.67×10 ⁻⁵ 7 Ice(K)=0.5 <i>1</i> (1975VyZY).			
160.49 ^{<i>hc</i>} 2	7.3 ^h 16	239.163	(5/2) ⁻	78.679	7/2-	(M1,E2)	0.72 16	%I γ =0.32 8 α (K)exp=0.49 16 α (K)=0.52 21; α (L)=0.16 4; α (M)=0.037 12 α (N)=0.0086 27; α (O)=0.00108 24; α (P)=2.9×10 ⁻⁵ 16 E γ =160.49 2, I γ =7.3 16, Ice(K)=3.6 8 (1975VyZY). I γ =2.7 2, scaled to 5.9 4 (1976Me06). Mult.: E2(+M1) for doubly placed γ .			
160.49 ^{<i>h</i>} 2	7.3 ^h 16	571.489	(11/2) ⁻	410.979	7/2-	[E2]	0.569 8	$\alpha(K)=0.306\ 4;\ \alpha(L)=0.2010\ 28;\ \alpha(M)=0.0490\ 7$ $\alpha(N)=0.01122\ 16;\ \alpha(O)=0.001327\ 19;\ \alpha(P)=1.362\times10^{-5}\ 19$ %Iy=0.32 8 Mult: $\Delta I=2$ from level scheme			
162.42 ^{<i>c</i>} 4	1.0 3	440.676	7/2-	278.210	5/2-	M1	0.851 12	%1γ=0.043 14 α (K)exp=1.3 5 α (K)=0.712 10; α (L)=0.1082 15; α (M)=0.02421 34 α (N)=0.00569 8; α (O)=0.000813 11; α (P)=4.34×10 ⁻⁵ 6 Eγ=162.42 4, 1γ=1.0 3 (1975VyZY). Iγ<1 (1976Me06). K:L2:L3=1.3 3:0.08:<0.08 (1975VyZY).			
^x 169.25 ^e 25	4.4 ^e 11							%Iy=0.19 5 Iy=2.0.5 (1976Me06)			
178.87 ^{<i>c</i>} 4	64 7	178.863	9/2-	0.0	5/2-	E2	0.391 5	$\%$ I γ =2.8 4 α (K)exp=0.18 4 α (K)=0.2263 32; α (L)=0.1265 18; α (M)=0.0307 4 α (N)=0.00705 10; α (O)=0.000841 12; α (P)=1.031×10 ⁻⁵ 14 I $_{\gamma}$: from 1976Me06. E γ =178.87 4, I γ =59.0 36 for 178.87 γ +179.69 γ (1975VyZY). I γ =29 3, scaled to 64 7 (1976Me06). K:L1:L2:L3=11.3 20:1.0:1.65:1.78 (1975VyZY). K:L1:L2:L3=0.43: \approx 0.05:0.08:0.06 (1971Ab04).			
179.69 ^{hc} 4	<6.6 ^h	179.750	(3/2 ⁻)	0.0	5/2-	[M1,E2]	0.51 <i>13</i>	% I γ <0.29 α (K)exp>0.27 α (K)=0.38 <i>16</i> ; α (L)=0.103 <i>21</i> ; α (M)=0.024 <i>6</i> α (N)=0.0056 <i>13</i> ; α (O)=0.00072 <i>11</i> ; α (P)=2.1×10 ⁻⁵ <i>11</i> E γ =179.69 <i>4</i> , I γ =59.0 <i>36</i> for 178.87 γ +179.69 γ , Ice(K)=2.3 <i>5</i> (1975VyZY). I γ <3, scaled to <6.6 (1976Me06, placed only from 179.8 level). α (K)exp for doubly-placed γ .			

From ENSDF

 $^{167}_{70}\mathrm{Yb}_{97}$ -14

 $^{167}_{70}\mathrm{Yb}_{97}$ -14

н

				¹⁶⁷ Lu	ε decay	v (51.46 mi	n) 1976M	e06,1976Gr06,1981Kr08 (continued)
							$\gamma(^{167}\text{Yb})$ ((continued)
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α ^g	Comments
179.69 ^h 4	<6.6 ^h	258.525	3/2-	78.679	7/2-	[E2]	0.385 5	%Iγ<0.29 α (K)=0.2234 31; α (L)=0.1241 17; α (M)=0.0301 4 α (N)=0.00691 10; α (O)=0.000825 12; α (P)=1.018×10 ⁻⁵ 14 E _γ : placement from 258.6 level only in 1976Gr06. Somewhat poor fit in this location with level-energy difference=179.85.
180.34 ^{<i>d</i>} 4	10 ^d 3	419.540	(9/2)-	239.163	(5/2)-	E2	0.381 5	α (K)=0.2211 <i>31</i> ; α (L)=0.1223 <i>17</i> ; α (M)=0.0297 <i>4</i> α (N)=0.00681 <i>10</i> ; α (O)=0.000813 <i>11</i> ; α (P)=1.009×10 ⁻⁵ <i>14</i> %I γ =0.43 <i>14</i> α (K)exp=0.23 <i>9</i> K:L2:L3=2.3 <i>5</i> :0.3:0.3 (1975VyZY).
182.07 ^{<i>c</i>} 4	44.0 22	440.676	7/2-	258.525	3/2-	E2	0.369 5	%I γ =1.91 20 α (K)exp=0.18 4 α (K)=0.2152 30; α (L)=0.1174 16; α (M)=0.0285 4 α (N)=0.00654 9; α (O)=0.000781 11; α (P)=9.84×10 ⁻⁶ 14 E γ =182.07 4, I γ =41.0 28 (1975VyZY); evaluators assume that uncertainty of 28 in 1975VyZY is a misprint. I γ =20 1, scaled to 44.0 22 (1976Me06). I γ : from 1976Me06. K:L1:L2:L3=8.8 20:0.77:1.42:1.3 (1975VyZY). K:L1:L2:L3=0.34:0.05:0.075:0.05 (1971Ab04).
183.61 [°] 5	≈4	213.167	(5/2)-	29.656	5/2+	E1	0.0692 10	%Iγ≈0.17 α (K)exp≈0.063 α (K)=0.0578 <i>8</i> ; α (L)=0.00885 <i>12</i> ; α (M)=0.001974 <i>28</i> α (N)=0.000458 <i>6</i> ; α (O)=6.22×10 ⁻⁵ <i>9</i> ; α (P)=2.78×10 ⁻⁶ <i>4</i> Eγ=183.61 <i>5</i> , Iγ≈4, Ice(K)≈0.25 (1975VyZY). Iγ≈3, scaled to ≈6.6 (1976Me06). K:L1=0.08:0.02 (1971Ab04).
188.66 ^{<i>c</i>} 5	48.0 24	188.704	1/2-	0.0	5/2-	E2	0.327 5	%I γ =2.09 21 α (K)exp=0.21 4 α (K)=0.1947 27; α (L)=0.1012 14; α (M)=0.02453 34 α (N)=0.00563 8; α (O)=0.000674 9; α (P)=8.98×10 ⁻⁶ 13 E γ =188.66 5, I γ =48.0 24 (1975VyZY). I γ =22 1 (1976Me06). K:L1:L2:L3=10 2:0.72:1.23:1.6 (1975VyZY). K:L1:L2:L3=0.4:≤0.04:0.07:0.06 (1971Ab04).
^x 194.60 ^C 4	2.2 7					(M1)	0.514 7	%I γ =0.10 3 α (K)exp=0.40 18 α (K)=0.430 6; α (L)=0.0651 9; α (M)=0.01458 20 α (N)=0.00342 5; α (O)=0.000490 7; α (P)=2.61×10 ⁻⁵ 4

From ENSDF

				¹⁶⁷ Luε α	decay (5	1.46 min)	1976Me(06,1976Gr06,1981Kr08 (continued)
							$\gamma(^{167}\text{Yb})$ (co	ontinued)
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^g	Comments
197.80 ^{hd} 5	≈5 ^{hd}	410.979	7/2-	213.167	(5/2)-	(E2)	0.279 4	Ey=194.60 4, Iy≈4, Ice(K)=1.0 3 (1975VyZY). Iy=1.0 3 (1976Me06). Iy: from 1976Me06. %Iy≈0.217 α (K)exp≈0.20 α (K)=0.1702 24; α (L)=0.0832 12; α (M)=0.02012 28 α (N)=0.00462 6: α (C)=0.000556 8: α (P)=7.94×10 ⁻⁶ 11
197.80 ^h 5	$\approx 5^h$	628.62	7/2+	430.87	7/2+	(E2)	0.279 4	$\begin{aligned} &\alpha(X) = 0.00402 \ 6; \ \alpha(Y) = 0.000050 \ 6; \ \alpha(Y) = 7.94 \times 10^{-1} I \\ &\text{Ice}(K) = 1.0 \ 3 \ (1975 \text{ VyZY}). \\ &\alpha(K) \text{exp for doubly-placed } \gamma. \\ &\alpha(K) = 0.1702 \ 24; \ \alpha(L) = 0.0832 \ 12; \ \alpha(M) = 0.02012 \ 28 \\ &\alpha(N) = 0.00462 \ 6; \ \alpha(O) = 0.000556 \ 8; \ \alpha(P) = 7.94 \times 10^{-6} \ 11 \end{aligned}$
199.12 ^c 5	23 3	477.43	9/2-	278.210	5/2-	E2	0.273 4	% $I\gamma \approx 0.217$ % $I\gamma = 1.00$ 16 $\alpha(K) \exp = 0.13$ 4 $\alpha(K) = 0.1670$ 23; $\alpha(L) = 0.0809$ 11; $\alpha(M) = 0.01957$ 27
								α (N)=0.00449 6; α (O)=0.000541 8; α (P)=7.80×10 ° 77 E γ =199.12 5, I γ =23.0 34 (1975VyZY). I γ =12 2 (1976Me06). K:L1:L2:L3=3.0 8:0.31:0.52:0.44 (1975VyZY). K:L1:L2:L3=0.14:0.02:0.03:0.02 (1971Ab04).
201.56° 5	2.27	440.676	1/2	239.163	(5/2)	(E2)	0.262 4	%1γ=0.10 3 α (K)exp=0.20 10; α (K)exp=0.10 6 α (K)=0.1614 23; α (L)=0.0769 11; α (M)=0.01860 26 α (N)=0.00427 6; α (O)=0.000515 7; α (P)=7.56×10 ⁻⁶ 11 Eγ=201.56 5, Iγ=5 2, Ice(K)=0.5 2 (1975VyZY).
race of a	a ad 15							$I\gamma$ =1.0 3, scaled to 2.2 7 (1976Me06). I_{γ} : from 1976Me06. First α (K)exp from I γ in 1976Me06, second in 1975VyZY.
x202.9 ^{<i>a</i>} 5	3.04 15					E1,E2	0.16 11	$\%_{1\gamma=0.13}$ 7 $\alpha(K)\exp \le 0.16$ $Lee(K) \le 0.5 (1975VyZY)$
205.40 10	11.5 <i>15</i>	239.163	(5/2)-	33.916	7/2+	[E1]	0.0517 7	$\alpha(K) \ge 0.53 (10) + 0.00656 9; \alpha(M) = 0.001464 21$ $\alpha(K) = 0.000340 5; \alpha(O) = 4.64 \times 10^{-5} 7; \alpha(P) = 2.108 \times 10^{-6} 30$ $\% I\gamma = 0.50 8$ E_{γ} : weighted average of the two values.
^x 206.4 ^d 1 209.58 10	20 3	239.163	(5/2)-	29.656	5/2+	[E1]	0.0491 7	$E\gamma = 205.45 \ 10, \ 1\gamma = 11.5 \ 15 \ (1975 \text{VyZY}).$ $I\gamma = 3.5 \ 7, \text{ scaled to } 7.7 \ 15 \ (1976 \text{Me06}).$ $Ice(K) = 0.1 \ 3 \ (1975 \text{VyZY}) \text{ seems a misprint.}$ $\% I\gamma = 0.87 \ 15$ $\alpha(K) = 0.0411 \ 6; \ \alpha(L) = 0.00622 \ 9; \ \alpha(M) = 0.001388 \ 20$
								$\alpha(N) = 0.000322 5; \alpha(O) = 4.40 \times 10^{-5} 6; \alpha(P) = 2.007 \times 10^{-6} 28$

From ENSDF

 $^{167}_{70} \mathrm{Yb}_{97}$ -16

¹⁶⁷ Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)													
$\gamma(^{167}\text{Yb})$ (continued)													
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	a ^g	Comments				
213.19 ^c 4	86 5	213.167	(5/2)-	0.0 5,	/2-	M1		0.399 6	E _y : weighted average of the two values. E _y =209.56 10, I _y =20 3 (1975VyZY). I _y =8.4 7 (1976Me06). %I _y =3.7 4 α (K)exp=0.36 7 α (K)=0.334 5; α (L)=0.0505 7; α (M)=0.01130 16 α (N)=0.00265 4; α (O)=0.000380 5; α (P)=2.030×10 ⁻⁵ 28 E _y =213.19 4, I _y =86 5 (1975VyZY). I _y =39 2 (1976Me06).				
222.79 ^c 4	27.1 15	301.48	11/2-	78.679 7,	/2-	E2		0.1882 26	K:L1:L2:L3=31 6:4.13:0.41: \leq 0.1 (1975VyZY). K:L1:L2:L3=1.23:0.16: \approx 0.02: $<$ 0.01 (1971Ab04). δ : \leq 0.18 in 1975VyZY. $\%$ I γ =1.18 <i>12</i> α (K)exp=0.103 <i>19</i> ; A ₂ = -0.72 <i>27</i> α (K)=0.1214 <i>17</i> ; α (L)=0.0512 <i>7</i> ; α (M)=0.01234 <i>17</i> α (N)=0.00283 <i>4</i> ; α (O)=0.000345 <i>5</i> ; α (P)=5.82×10 ⁻⁶ 8 E γ =222.79 <i>4</i> , I γ =27.1 <i>15</i> (1975VyZY). I γ =13.0 <i>10</i> (1976Me06). K:L1:L2:L3=2.8 <i>5</i> :0.68:1.1:0.69 (1975VyZY).				
229.78 ^c 4	26.5 15	308.401	(7/2)-	78.679 7,	/2-	M1+E2 ^b	-0.39 +20-24	0.304 24	K:L1:L2:L3=0.13:0.02:0.03:0.02 (1971Ab04). $\delta(O/Q) =+0.30 +59-31$ (1981Kr08). %Iy=1.15 <i>12</i> $\alpha(K) \exp = 0.25 5$; $A_2 =-0.09 19$ $\alpha(K) = 0.251 25$; $\alpha(L) = 0.0416 9$; $\alpha(M) = 0.00941 29$ $\alpha(N) = 0.00220 6$; $\alpha(O) = 0.000308 4$; $\alpha(P) = 1.50 \times 10^{-5} 17$ Ey=229.78 4, Iy=26.5 15 (1975VyZY).				
232.12 ^c 4	4.6 4	410.979	7/2-	178.863 9,	/2-	M1(+E2) ^b	-1.4 16	0.22 9	$\begin{aligned} &\text{i}\gamma=11.6\ 10\ (1976\text{Me06}).\\ &\text{K:L1:L2=6.5\ 13:0.91:<0.15\ (1975\text{VyZY}).\\ &\text{K:L1:L2=0.31:0.05:<0.009\ (1971Ab04).}\\ &\%\text{I}\gamma=0.200\ 25\\ &\alpha(\text{K})\text{exp}=0.17\ 4;\ \text{A}_2=-0.66\ 50\\ &\alpha(\text{K})=0.16\ 10;\ \alpha(\text{L})=0.0423\ 23;\ \alpha(\text{M})=0.0099\ 10\\ &\alpha(\text{N})=0.00230\ 19;\ \alpha(\text{O})=0.000296\ 6;\ \alpha(\text{P})=9.\text{E}-6\ 7\\ &\text{E}\gamma=232.12\ 4,\ \text{I}\gamma=5.3\ 13\ (1975\text{VyZY}).\\ &\text{I}\gamma=2.1\ 2,\ \text{scaled to}\ 4.6\ 4\ (1976\text{Me06}).\\ &\text{I}_{\gamma}:\ \text{from}\ 1976\text{Me06}.\\ &\text{K:L1:L2=0.76\ 15:0.16:<0.16\ (1975\text{VyZY}).}\end{aligned}$				
235.9 ^c 4	22.7 30	553.38	9/2-	317.488 (7	7/2) ⁻	M1+E2 ^b	-2.7 +11-25	0.174 23	δ: -3.0 ≤ δ ≤ +0.2 from γ(θ) (1981 Kr08). %Iγ=0.99 16 α(K)=0.121 24; α(L)=0.0405 8; α(M)=0.00965 25				

				^{167}L	u ɛ dec	eay (51.46 m	06,1976Gr06,1981Kr08 (continued)			
							$\gamma(^{167}\text{Yb})$ (cor	ntinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments	
239.0 [°] 1	22 11	317.488	(7/2)-	78.679	7/2-	M1		0.292 4	$\begin{aligned} \alpha(N) = 0.00222 \ 5; \ \alpha(O) = 0.000277 \ 5; \ \alpha(P) = 6.3 \times 10^{-6} \ 17 \\ E\gamma = 235.9 \ 4, \ I\gamma = 22.7 \ 30 \ (1975VyZY). \\ I\gamma = 9.2 \ 10 \ (1976Me06). \\ K:L1:L2:L3 = 2.0 \ 4:0.43:0.46:0.4 \ (1975VyZY). \\ K:L1:L2:L3 = 0.086:0.017:0.018:0.015 \ (1971Ab04). \\ \% I\gamma = 1.0 \ 5 \\ \alpha(K) \exp = 0.25 \ 13 \\ \alpha(K) = 0.2442 \ 34; \ \alpha(L) = 0.0368 \ 5; \ \alpha(M) = 0.00824 \ 12 \\ \alpha(N) = 0.001935 \ 27; \ \alpha(O) = 0.000277 \ 4; \ \alpha(P) = 1.481 \times 10^{-5} \ 21 \\ E\gamma = 239.0 \ 1, \ I\gamma = 237 \ 10 \ \text{for } 239.0\gamma + 239.22\gamma \ (1975VyZY). \\ I\gamma = 10 \ 5, \ \text{scaled to } 22 \ 11 \ (1976Me06). \\ I_{\gamma}: \ \text{from } 1976Me06. \\ K:L1:L2:L3 = 5.4 \ 10:0.77:0.21:<0.08 \ (1975VyZY). \end{aligned}$	
239.22 ^c 4	198 <i>11</i>	239.163	(5/2) ⁻	0.0	5/2-	M1+E2 ^b	+2.9 +15-9	0.165 <i>13</i>	K:L1:L2=0.23:0.034:<0.011 (1971Ab04). %Iγ=8.6 6 α (K)exp=0.29 5; A ₂ =-0.19 14 α (K)=0.115 14; α (L)=0.0384 6; α (M)=0.00916 16 α (N)=0.002110 35; α (O)=0.000263 4; α (P)=5.9×10 ⁻⁶ 9 E γ =239.22 4, I γ =237 10 for 239.0 γ +239.22 γ (1975VyZY). I γ =90 5, scaled to 198 11 (1976Me06). I $_{\gamma}$: from 1976Me06. K:L1:L2:L3=57 10:8.44:0.8:<0.1 (1975VyZY). K:L1:L2:L3=1.86:0.28:0.034:<0.01 (1971Ab04). M1 from ce data; M1+E2 with δ =+2.9 +15-9 from $\gamma(\theta)$, where measurement affected by the presence of 239.0 γ , but	
240.8 [°] 2	52	419.540	(9/2)-	178.863	9/2-	M1		0.286 4	$V_{1}(239.2\gamma)/V_{1}(239.0\gamma)=9.0.$ % $I_{\gamma}=0.22$ 9 $\alpha(K)\exp=0.26$ 12 $\alpha(K)=0.2393$ 34; $\alpha(L)=0.0361$ 5; $\alpha(M)=0.00807$ 11 $\alpha(N)=0.001895$ 27; $\alpha(O)=0.000271$ 4; $\alpha(P)=1.451\times10^{-5}$ 21 $E_{\gamma}=240.8$ 2, $I_{\gamma}=5$ 2, $Ice(K)=1.3$ 3 (1975 $V_{y}ZY$). $I_{\gamma}<3$ (1976 $Me06$)	
^x 242.8 ^d 2 243.13 <i>15</i>	14 ^{<i>d</i>} 2 6 2	301.48	11/2-	58.539	9/2+	E1+M2	≈+0.06	≈0.0382	%Iγ=0.61 10 %Iγ=0.26 9 A ₂ =-0.15 20; α(K)exp=0.022 10 α(K)≈0.0318; α(L)≈0.00497; α(M)≈0.001116 α(N)≈0.000260; α(O)≈3.58×10 ⁻⁵ ; α(P)≈1.685×10 ⁻⁶ E _γ : weighted average of the two values. Eγ=243.5 5, Iγ=6 2, Ice(K)=0.13 4 (1975VyZY). Iγ=9.0 15, scaled to 20 3 probably for 242.8γ+243.5γ doublet	

From ENSDF

				¹⁶⁷ Lu ε	¹⁶⁷ Lu ε decay (51.46 min)			.976Gr06,198	31Kr08 (continued)
						$\gamma(1)$	¹⁶⁷ Yb) (conti	nued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
248.64 7	23 3	278.210	5/2-	29.656	5/2+	E1(+M2)	<0.10	0.038 6	(1976Me06). E _{γ} : from 1975VyZY. Other: 243.4 <i>1</i> (1971Ab04) probably for 242.8 γ +243.5 γ doublet. α (K)exp implies $\delta \le 0.06$; $\gamma(\theta)$ gives $\delta = +0.20$ <i>14</i> (1981Kr08). %I $\gamma = 1.00$ <i>16</i> A $_2 = -0.70$ <i>31</i> ; α (K)exp=0.026 <i>9</i> α (K)=0.031 <i>5</i> ; α (L)=0.0049 <i>10</i> ; α (M)=0.00111 <i>22</i> α (N)=0.00026 <i>5</i> ; α (O)=3.6×10 ⁻⁵ <i>7</i> ; α (P)=1.7×10 ⁻⁶ <i>4</i> E $\gamma = 248.64$ <i>7</i> , I $\gamma = 23$ <i>3</i> , Ice(K)=0.6 <i>2</i> (1975VyZY). I $\gamma = 8.0$ <i>15</i> (1976Me06). δ : <0.10 from α (K)exp; +0.45 + <i>11</i> -48 from $\gamma(\theta)$ (1981Kr08).
254.0 ^d 2	7.5 ^d 20	571.489	(11/2)-	317.488	(7/2)-	[E2]		0.1236 <i>18</i>	%I γ =0.33 9 α (K)exp=0.16 3 α (K)=0.0838 12; α (L)=0.0306 4; α (M)=0.00731 10 α (N)=0.001683 24; α (O)=0.0002077 30; α (P)=4.14×10 ⁻⁶ 6 K:L1=1.2 2:0.1 (1975VyZY). M1(+E2) from α (K)exp. but placement disallows M1
258.54 ^c 4	36 2	258.525	3/2-	0.0	5/2-	M1(+E2) ^b	-1.2 14	0.17 7	$ \begin{split} & \Re(+L2) \ \text{from } \alpha(\mathbf{K}) \text{exp}, \ \text{out placement disallows W1}, \\ & \% I_{Y} = 1.56 \ 17 \\ & A_{2} = -0.31 \ 23 \\ & \alpha(\mathbf{K}) \text{exp} = 0.23 \ 4 \\ & \alpha(\mathbf{K}) = 0.001566 \ 23; \ \alpha(\mathbf{O}) = 0.000206 \ 16; \ \alpha(\mathbf{P}) = 7.\text{E} - 6 \ 4 \\ & \text{E}_{Y} = 258.54 \ 4, \ I_{Y} = 36 \ 2 \ (1975 \text{VyZY}), \\ & I_{Y} = 15.0 \ 10 \ (1976 \text{Me06}), \\ & \text{K:L1:L2:L3} = 8.3 \ 15:1.1:0.13:0.15 \ (1975 \text{VyZY}), \\ & \text{K:L1:L2} = 0.32:0.043: \approx 0.005 \ (1971 \text{Ab04}), \\ & \delta: \ -2.6 \leq \delta \leq +0.2 \ (1981 \text{Kr08}). \end{split} $
261.85 ^c 2	28.0 <i>15</i>	440.676	7/2-	178.863	9/2-	M1(+E2) ^b	-0.06 10	0.227 4	%Iγ=1.22 <i>13</i> α(K)exp=0.19 <i>4</i> ; A ₂ =+0.06 <i>15</i> α(K)=0.190 <i>4</i> ; α(L)=0.0287 <i>4</i> ; α(M)=0.00641 <i>9</i> α(N)=0.001505 <i>21</i> ; α(O)=0.0002153 <i>31</i> ; α(P)=1.151×10 ⁻⁵ <i>23</i> Eγ=261.85 <i>2</i> , Iγ=28.0 <i>15</i> (1975VyZY). Iγ=14.0 <i>10</i> , scaled to 30.8 <i>22</i> (1976Me06), which may be for 261.85γ+263.5γ doublet in 1975VyZY. K:L1:L2=5.4 <i>10</i> :0.91:<0.1 (1975VyZY). K:L1:L2=0.21:0.034:≈0.005 (1971Ab04). %br=0.30.0
270.00 <i>10</i>	2.20 22	571.489	(11/2)-	301.48	11/2-	[M1,E2]		0.16 5	$\alpha(K) = 0.125; \ \alpha(L) = 0.0253 \ 11; \ \alpha(M) = 0.00583 \ 10$ $\alpha(N) = 0.001356 \ 34; \ \alpha(O) = 0.000182 \ 17; \ \alpha(P) = 7.1 \times 10^{-6} \ 35$

				16	⁷ Lu ε ά	lecay (51.46	6 min) 1976	Me06,1976Gr06,1981Kr08 (continued)
							<u>γ(¹⁶⁷Yb</u>) (continued)
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{g}	Comments
274.41 ^c 2	6 1	308.401	(7/2)-	33.916	7/2+	(E1)	0.02482 35	%Iγ=0.096 13 Eγ=270.0 2, Iγ~2 (1975VyZY). Iγ=1.0 1, scaled to 2.20 22 (1976Me06). I _γ : from 1976Me06. %Iγ=0.26 5 α (K)exp=0.043 15 α (K)=0.02086 29; α (L)=0.00309 4; α (M)=0.000689 10 α (N)=0.0001602 22; α (O)=2.213×10 ⁻⁵ 31; α (P)=1.048×10 ⁻⁶ 15
								E _γ =274.41 2, I _γ =6 <i>I</i> , Ice(K)=0.26 8 (1975VyZY). I _γ =2.2 2, scaled to 4.8 4 (1976Me06, unplaced). E _γ : unweighted average of the two values. Somewhat poor fit in the decay scheme as level-energy difference=274.49.
278.2 [°] 1	22 7	278.210	5/2-	0.0	5/2-	(M1,E2)	0.14 5	%Iγ=1.0 3 α (K)exp=0.30 11 α (K)=0.11 5; α (L)=0.0229 14; α (M)=0.00529 16 α (N)=0.00123 5; α (O)=0.000165 18; α (P)=6.5×10 ⁻⁶ 33 Ey=278.2 1, Iy=107 10 for 278.2γ+278.9γ (1975VyZY). Iy=10 3, scaled to 22 7 (1976Me06). I _γ : from 1976Me06; deduced from γγ-coin data for 278.22γ, 278.5γ and 278.92γ (unresolved) triplet. K:L1:L2:L3=6.6 13:1.2:0.5:≈0.08 (1975VyZY). K:L1:L2=0.27:0.05:<0.009 (1971Ab04). δ (E2/M1)=1.1 +5-3 (1975VyZY) from subshell data; but α (K)exp exceeds α (K) for M1, assuming that Ice(K for 278.2γ) in 1975VyZY includes no
278.5 ^e	24 ^e 7	719.61	(7/2)-	440.676	7/2-	(E2)	0.0927 <i>13</i>	$\alpha(K)=0.0648 \ 9; \ \alpha(L)=0.02150 \ 30; \ \alpha(M)=0.00512 \ 7$ $\alpha(N)=0.001180 \ 17; \ \alpha(O)=0.0001471 \ 21; \ \alpha(P)=3.26\times10^{-6} \ 5$ $\%_{I\gamma}=1.0 \ 3$ $I_{\gamma}: \text{ from } \gamma\gamma coin (1976Me06) for components of 278 \gamma triplet.Mult: see comment for 278 9\gamma$
278.9 ^c 1	46 9	308.401	(7/2)-	29.656	5/2+	[E1]	0.02384 <i>33</i>	%Iy=2.0 4 α (K)exp=0.054 15 α (K)=0.02004 28; α (L)=0.00297 4; α (M)=0.000661 9 α (N)=0.0001538 22; α (O)=2.124×10 ⁻⁵ 30; α (P)=1.008×10 ⁻⁶ 14 Ey=278.9 1, Iy=107 10 for 278.2γ+278.9γ (1975VyZY). Iy=21 4, scaled to 46 9 (1976Me06). I _γ : from 1976Me06, deduced from γγ-coin from 278.22γ, 278.5γ, 178.92γ (unresolved) triplet. K:L1=2.5 5:0.18 (1975VyZY). K:L1=0.057:0.007 (1971Ab04).

 $^{167}_{70}\mathrm{Yb}_{97}$ -20

				¹⁶⁷ Lu	¹⁶⁷ Lu ε decay (51.46 min)			,1976Gr06,198	81Kr08 (continued)
						<u> </u>	(¹⁶⁷ Yb) (con	tinued)	
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
									Ice(K) in 1975VyZY may include contribution from the 278.5 γ established by 1976Me06 using $\gamma\gamma$ -coin. If the 278.9 γ is E1 (as required by the level scheme), Ice(K)=1.6 6 and α (K)exp=0.07 3 for the 278.5 γ component, consistent with E2 multipolarity.
^x 282.3 3	2.9 8					E2(+M1)	>1.3&	0.107 18	%I γ =0.13 4 α (K)exp=0.07 3 α (K)=0.080 17; α (L)=0.0210 6; α (M)=0.00493 10 α (N)=0.001140 26; α (O)=0.000147 7; α (P)=4.3×10 ⁻⁶ 12 E γ =282.3 3, I γ =2.9 8, Ice(K)=0.20 5 (1975VyZY). I γ =1.2 2 (1976Me06).
298.6 ^c 1	9.0 22	477.43	9/2-	178.863	9/2-	M1(+E2) ^b	+0.4 5	0.15 3	%Iγ=0.39 10 α(K)exp=0.070 22; A ₂ =-0.87 47 α(K)=0.123 25; α(L)=0.0196 11; α(M)=0.00440 18 α(N)=0.00103 5; α(O)=0.000146 12; α(P)=7.3×10 ⁻⁶ 17 Eγ=298.6 1, Iγ=9.0 22 (1975VyZY). Iγ=3.0 6, scaled to 6.6 13 (1976Me06). K:L1=0.63 12:0.1 (1975VyZY). δ: -0.1≤δ≤+0.9 (1981Kr08); α(K)exp inconsistent with pure M1 or pure E2.
308.47 ^c 8	8.7 9	308.401	(7/2)-	0.0	5/2-	M1		0.1460 20	%Iγ=0.38 5 α (K)exp=0.15 4; A ₂ =-0.46 71 α (K)=0.1225 17; α (L)=0.01835 26; α (M)=0.00410 6 α (N)=0.000963 13; α (O)=0.0001379 19; α (P)=7.40×10 ⁻⁶ 10 Eγ=308.47 8, Iγ=8.7 9 (1975VyZY). Eγ=308.47 9, Iγ=3.4 3 (1976Me06). K:L1:L2=1.3 3:0.21:<0.05 (1975VyZY). δ : +0.04≤ δ ≤+4.53 or ≤-5.7 from $\gamma(\theta)$ (1981Kr08).
317.55 ^c 10	46.8 <i>30</i>	317.488	(7/2)-	0.0	5/2-	M1(+E2) ^b	-0.05 13	0.1349 28	%I γ =2.03 22 α (K)exp=0.092 18; A ₂ =+0.43 23 α (K)=0.1132 25; α (L)=0.01695 26; α (M)=0.00379 6 α (N)=0.000890 13; α (O)=0.0001274 21; α (P)=6.83×10 ⁻⁶ 16 E _y : from 1975VyZY. 1976Me06 quote the same value as in 1971Ab04. E γ =317.55 10, I γ =46.8 30 (1975VyZY). E γ =317.65 10, I γ =17.0 12 (1976Me06). K:L1:L2=4.3 8:1.08:<0.08 (1975VyZY). K:L1:L2=0.19:0.033:<0.011 (1971Ab04).
330.32 20	2.2 6	569.39	(7/2)+	239.163	(5/2)-	[E1]		0.01576 22	% $I_{\gamma}=0.10 \ 3$ $\alpha(K)=0.01327 \ 19; \ \alpha(L)=0.001944 \ 27; \ \alpha(M)=0.000432 \ 6$ $\alpha(N)=0.0001007 \ 14; \ \alpha(O)=1.399\times10^{-5} \ 20; \ \alpha(P)=6.78\times10^{-7} \ 10$

 $^{167}_{70}\mathrm{Yb}_{97}$ -21

				¹⁶⁷ Lu ε d	Gr06,1981Kr08 (continued)			
						$\gamma(^{167}Y)$	(continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{g}	Comments
332.36 10	4.5 12	410.979	7/2-	78.679 7/2-	M1(+E2)	<1.5 ^{&}	0.097 23	E γ =330.2 2, I γ =4.0 12 (1975VyZY). E γ =330.58 30, I γ =0.8 2, scaled to 2.2 6 (1976Me06). I $_{\gamma}$: from 1976Me06. %I γ =0.20 6 α (K)exp=0.09 3
								$\begin{aligned} \alpha(K) = 0.079 \ 21; \ \alpha(L) = 0.0137 \ 13; \ \alpha(M) = 0.00311 \ 24 \\ \alpha(N) = 0.00073 \ 6; \ \alpha(O) = 0.000101 \ 12; \ \alpha(P) = 4.7 \times 10^{-6} \ 14 \\ E\gamma = 332.3 \ 1, \ I\gamma = 4.5 \ 12, \ Ice(K) = 0.4 \ 1 \ (1975 VyZY). \\ E\gamma = 332.48 \ 15, \ I\gamma = 1.3 \ 2, \ scaled \ to \ 3.6 \ 6 \ (1976 Me06). \\ Placement \ of \ 332.36\gamma \ from \ 411 \ or \ 571 \ levels \ in \ 1976 Me06, \ whereas \\ 1976 Gr06 \ suggested \ placement \ only \ from \ 411 \ level. \end{aligned}$
^x 339.0 2	3.0 10							$\%$ I γ =0.13 5 α (K)exp=0.027 11 E γ =339.0 2, I γ =3 1, Ice(K)=0.08 2 (1975VyZY). I γ =1.3 3 (1976Me06).
340.90 15	10.5 15	419.540	(9/2)-	78.679 7/2-	M1(+E2)	<0.7 ^{&}	0.102 10	$\%$ I γ =0.46 8 α (K)exp=0.105 24 α (K)=0.085 9; α (L)=0.0134 6; α (M)=0.00302 12 α (N)=0.000707 30; α (O)=0.000100 6; α (P)=5.0×10 ⁻⁶ 6 E _{γ} : from 1975VyZY. 1976Me06 quote the same value as in 1971Ab04. E γ =340.90 15, I γ =10.5 15 (1975VyZY). Uncertainty in 1975VyZY is assumed to be 0.15 keV as in 1971Ab04, rather than 1.5 keV. E γ =340.91 15, I γ =4.2 4 (1976Me06). K:L1:L2=1.1 2:0.1:<0.05 (1975VyZY).
x344.8 ^d 4	3.4 ^d 8				E1		0.01422	%Iγ=0.15 4 α (K)exp≤0.015 4 α (K)=0.01198 17; α (L)=0.001749 25; α (M)=0.000389 6 α (N)=9.07×10 ⁻⁵ 13; α (O)=1.261×10 ⁻⁵ 18; α (P)=6.14×10 ⁻⁷ 9 Lea(K) < 0.05 (1075)/x7X)
^x 350.5 2	4.8 <i>4</i>				(E1)		0.01368 <i>19</i>	$\begin{aligned} \alpha(K) &\leq 0.0152 \ 16; \ \alpha(L) &= 0.001681 \ 24; \ \alpha(M) &= 0.000374 \ 5 \\ \alpha(N) &= 8.71 \times 10^{-5} \ 12; \ \alpha(O) &= 1.212 \times 10^{-5} \ 17; \ \alpha(P) &= 5.92 \times 10^{-7} \ 8 \\ \% I\gamma &= 0.21 \ 3 \\ E\gamma &= 350.5 \ 2, \ I\gamma &= 9.8 \ 25 \ (for \ 350.5\gamma + 352.3\gamma), \ Ice(K) &= 0.06 \ 2 \\ (1975 VyZY). \end{aligned}$
352.3 2	4.8 4	430.87	7/2+	78.679 7/2-	(E1)		0.01351 <i>19</i>	$\%_{I\gamma=0.21}$ 3 $A_{2}=-0.28$ 65 $\alpha(K)=0.01138$ 16; $\alpha(L)=0.001660$ 23; $\alpha(M)=0.000369$ 5 $\alpha(N)=8.60\times10^{-5}$ 12; $\alpha(O)=1.198\times10^{-5}$ 17; $\alpha(P)=5.85\times10^{-7}$ 8

				167 Lu ε dec	cay (51.4	46 min) 19	976Me06,1976G	r06,1981Kr08	(continued)
						$\gamma(^{167}$	Yb) (continued)		
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
356.23 15	7.9 15	569.39	(7/2)+	213.167	(5/2)-	EI		0.01316 18	Placement from 1976Me06. Eγ=352.3 2, Iγ=9.8 25 for 352.3γ+350.5γ, Ice(K)=0.06 2 (1975VyZY). Eγ=352.03 10, Iγ=3.4 3, scaled to 9.5 8 (1976Me06), probably for 350.5+352.3 doublet as in 1975VyZY. Iγ,Mult.: Iγ=9.5 8 (1976Me06), presumably for 350.5γ+352.3γ doublet since, otherwise, α (K)exp=0.007 2 for this doublet in 1975VyZY, too low to be consistent with E1. Ice(K)=0.06 2 for each component (1975VyZY) favors E1 for each, therefore, evaluators assign Iγ=4.8 4 for each γ. δ (Q/D)=-0.26 +70-90 from γ (θ) (1981Kr08); anisotropy excludes J(431)=5/2 based on magnitude of δ required if Δ J=2 (1981Kr08). α (K)exp=0.007 2 for doubly-placed γ. %Iγ=0.34 7 α (K)exp=0.010 3; α (K)exp=0.015 4 α (K)=8.37×10 ⁻⁵ 12; α (O)=1.166×10 ⁻⁵ 16; α (P)=5.70×10 ⁻⁷ 8 Eγ=356.36 17, Iγ=7.9 15, Ice(K)=0.08 2 (1975VyZY). Eγ=356.12 15, Iγ=2.1 3, scaled to 5.9 8 (1976Me06). Mult.: first α (K)exp from Iγ in 1975VyZY, second in 1976Me06.
361.82 25	11.2 15	440.676	7/2-	78.679	7/2-	M1(+E2) ^b	+1.6 +21-6	0.057 12	
368.80 ^{<i>h</i>} 10	5.6 ^h 8	677.18	(5/2,7/2) ⁻	308.401	(7/2)-	[M1,E2]		0.066 25	% $I_{Y}=0.24$ 4 $\alpha(K)\exp=0.042$ 16 $\alpha(K)=0.053$ 23; $\alpha(L)=0.0096$ 18; $\alpha(M)=0.00219$ 35 $\alpha(N)=0.00051$ 9; $\alpha(O)=7.0\times10^{-5}$ 15; $\alpha(P)=3.1\times10^{-6}$ 15 $E_{Y}=368.85$ 10, $I_{Y}=6.2$ 20 (1975VyZY). $E_{Y}=368.61$ 20, $I_{Y}=2.0$ 3, scaled to 5.6 8 (1976Me06). I_{Y} : from 1976Me06. Mult.: E2(+M1) for doubly-placed γ .
368.80 ^h 10	5.6 ^h 8	788.36	(9/2)-	419.540	(9/2)-	[M1,E2]		0.066 25	$\alpha(K)=0.053\ 23;\ \alpha(L)=0.0096\ 18;\ \alpha(M)=0.00219\ 35$

From ENSDF

 $^{167}_{70} \mathrm{Yb}_{97}$ -23

				167 Lu ε deca	y (51.46 mir	n) 1976	Me06,1976Gr06	,1981Kr08 (continued)
						$\gamma(^{167}\text{Yb})$	(continued)	
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{g}	Comments
372.5 ^c 1	8.4 8	430.87	7/2+	58.539 9/2+	M1		0.0884 12	$\alpha(N)=0.00051 \ 9; \ \alpha(O)=7.0\times10^{-5} \ 15; \ \alpha(P)=3.1\times10^{-6} \ 15$ %I γ =0.24 4 Mult.: E2(+M1) for doubly-placed γ . %I γ =0.37 5 $\alpha(K)$ exp=0.09 3 $\alpha(K)=0.0742 \ 10; \ \alpha(L)=0.01105 \ 15; \ \alpha(M)=0.002468 \ 35$ $\alpha(N)=0.000580 \ 8; \ \alpha(O)=8.31\times10^{-5} \ 12; \ \alpha(P)=4.47\times10^{-6} \ 6$ E $_{\gamma}$: from 1975VyZY. 1976Me06 quote the same value as in
374.5 ^c 2	4.2 14	553.38	9/2-	178.863 9/2-	M1,E2		0.063 24	1971Ab04. $E_{\gamma}=372.5 \ I, \ I_{\gamma}=8.8 \ 20, \ Ice(K)=0.8 \ 2 \ (1975VyZY).$ $E_{\gamma}=372.38 \ I5, \ I_{\gamma}=3.0 \ 3, \ scaled to \ 8.4 \ 8 \ (1976Me06, \ unplaced).$ $I_{\gamma}: \ from \ 1976Me06.$ K:L1:L2=0.049:0.009:<0.002 (1971Ab04). % $I_{\gamma}=0.18 \ 6$ $\alpha(K)exp=0.062 \ 25; \ \alpha(K)exp=0.033 \ 14$ $\alpha(K)=0.051 \ 22; \ \alpha(L)=0.0092 \ 17; \ \alpha(M)=0.00209 \ 35$ $\alpha(N)=0.00049 \ 8; \ \alpha(O)=6.7\times10^{-5} \ 15; \ \alpha(P)=3.0\times10^{-6} \ 14$ $E_{\gamma}=374.5 \ 2, \ I_{\gamma}=8 \ 3, \ Ice(K)=0.26 \ 6 \ (1975VyZY).$ $E_{\gamma}=374 \ 90 \ 20 \ I_{\gamma}=1 \ 5 \ scaled to \ 4.2 \ 14 \ (1976Me06)$
377.03 9	24.9 20	410.979	7/2-	33.916 7/2+	E1+M2	≈+0.08	≈0.01339	I_{γ} : from 1976Me06; 8 <i>3</i> in 1975VyZY. First α(K)exp from I_{γ} in 1976Me06, second in 1975VyZY. % I_{γ} =1.08 <i>I</i> 3 α(K)exp=0.0092 2 <i>I</i> ; A ₂ =−0.92 42 α(K)≈0.01122; α(L)≈0.001693; α(M)≈0.000379 α(N)≈8 84×10 ⁻⁵ : α(Ω)≈1.237×10 ⁻⁵ : α(P)≈6.12×10 ⁻⁷
381.43 <i>15</i>	16.8 <i>17</i>	410.979	7/2-	29.656 5/2+	E1		0.01120 <i>16</i>	E _Y =377.00 9, I _Y =24.9 20, Ice(K)=0.23 5 (1975VyZY). E _Y =377.08 11, I _Y =7.0 10 (1976Me06). $\delta: \le 0.08$ from α (K)exp; +0.08 $\le \delta \le +0.90$ from $\gamma(\theta)$ (1981Kr08). %I _Y =0.73 10 α (K)exp=0.011 3 α (K)=0.00945 13; α (L)=0.001370 19; α (M)=0.000305 4 α (N)=7.10×10 ⁻⁵ 10; α (O)=9.91×10 ⁻⁶ 14; α (P)=4.88×10 ⁻⁷ 7 E _Y =381.50 15, I _Y =19.1 25 for 381.50 _Y +382.00 _Y , Ice(K)=0.18 4
x382.00 15	≈ 2.3	410 540	(0/2)-	22 016 7/0+	(E1)		0.01002.15	(19/5VyZY). $E\gamma=381.35 \ 15$, $I\gamma=6.0 \ 6$, scaled to 16.8 17 (1976Me06). I_{γ} : from 1976Me06. % $I\gamma\approx0.10$ $E\gamma=382.00 \ 15$, $I\gamma=19.1 \ 25$ for $381.50\gamma+382.00\gamma$, Ice(K)=0.08 2 (1975VyZY). 1976Me06 report only 381.35γ with $I\gamma=6.0 \ 6$, scaled to 16.8 17, implying $I\gamma\approx2.3$ for 382.0γ .
303.33 12	10.9 20	417.040	(9/2)	<i>33.910 1/2</i>	(E1)		0.01092 13	$/01\gamma - 0.02$ 11

				¹⁶⁷ Lu ε decay (51.46 min)			1976Me06,1976G	r06,1981Kr08	(continued)
						$\gamma(10)$	⁵⁷ Yb) (continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
									α(K)exp=0.0127 25 α(K)=0.00921 13; α(L)=0.001335 19; α(M)=0.000297 4 α(N)=6.92×10 ⁻⁵ 10; α(O)=9.66×10 ⁻⁶ 14; α(P)=4.77×10 ⁻⁷ 7 Placement from 1976Me06. Eγ=385.68 15, Iγ=18.9 20, Ice(K)=0.24 4 (1975VyZY). Eγ=385.46 12, Iγ=6.0 8 (1976Me06). Mult.: α(K)exp gives E1 for doubly-placed γ.
385.55 ^h 12	18.9 ^{<i>h</i>} 20	571.489	(11/2)-	185.94	13/2+	(E1)		0.01092 15	$\begin{aligned} &\alpha(\text{K}) = 0.00921 \ 13; \ \alpha(\text{L}) = 0.001335 \ 19; \ \alpha(\text{M}) = 0.000297 \ 4 \\ &\alpha(\text{N}) = 6.92 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 9.66 \times 10^{-6} \ 14; \\ &\alpha(\text{P}) = 4.77 \times 10^{-7} \ 7 \\ &\% \text{I}\gamma = 0.82 \ 11 \\ &\text{Mult.: E1 for doubly-placed } \gamma. \\ &\text{Placement from } 1976 \text{Gr06 only.} \end{aligned}$
392.61 10	19.7 20	571.489	(11/2)-	178.863	9/2-	M1+E2 ^b	+0.31 +17-13	0.073 4	%I γ =0.86 <i>12</i> α (K)exp=0.069 <i>12</i> ; A ₂ =-0.26 <i>22</i> α (K)=0.061 <i>4</i> ; α (L)=0.00932 <i>35</i> ; α (M)=0.00209 <i>7</i> α (N)=0.000490 <i>17</i> ; α (O)=6.98×10 ⁻⁵ <i>29</i> ; α (P)=3.66×10 ⁻⁶ <i>26</i> E γ =392.75 <i>15</i> , I γ =19.7 <i>20</i> (1975VyZY). E γ =392.55 <i>10</i> , I γ =6.0 <i>6</i> (1976Me06). K:L1:L2=1.35 <i>20</i> :0.34:<0.05 (1975VyZY). K:L1=0.031:0.0057 (1971Ab04).
396.94 10	21.6 21	430.87	7/2+	33.916	7/2+	M1+E2 ^b	-0.41 +20-31	0.069 8	%I γ =0.94 <i>I</i> 2 α (K)exp=0.042 <i>I</i> 2; A ₂ =-0.09 2 <i>I</i> α (K)=0.057 8; α (L)=0.0089 6; α (M)=0.00199 <i>I</i> 3 α (N)=0.000467 32; α (O)=6.6×10 ⁻⁵ 5; α (P)=3.4×10 ⁻⁶ 5 E γ =396.83 <i>I</i> 5, I γ =21.6 2 <i>I</i> (1975VyZY). E γ =396.99 <i>I</i> 0, I γ =8.0 6 (1976Me06). K:L1:L2=0.9 2:0.077:<0.05 (1975VyZY).
398.83 ^h 15	11.2 ^h 12	477.43	9/2-	78.679	7/2-	[M1,E2]		0.053 21	%Iγ=0.49 7 α (K)exp=0.046 10 α (K)=0.043 19; α (L)=0.0076 16; α (M)=0.00173 33 α (N)=0.00040 8; α (O)=5.6×10 ⁻⁵ 14; α (P)=2.5×10 ⁻⁶ 12 E γ =398.80 15, I γ =11.2 12 (1975VyZY). E γ =398.94 30, I γ =3.0 5 (1976Me06, placed only from 677 level). K:L1:L2=0.51 10:0.08:<0.06 (1975VyZY). K:L1=0.023:0.0034 (1971Ab04). Mult.: (M1+E2) for doubly-placed γ .
398.83 ^h 13	11.2 ^h 12	677.18	(5/2,7/2)-	278.210	5/2-	[M1,E2]		0.053 21	α (K)=0.043 <i>19</i> ; α (L)=0.0076 <i>16</i> ; α (M)=0.00173 <i>33</i>

¹⁶⁷₇₀Yb₉₇-25

 $^{167}_{70} \mathrm{Yb}_{97}$ -25

From ENSDF

	¹⁶⁷ Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)												
							γ ⁽¹⁶⁷ Yb) (co	ntinued)					
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments				
									α (N)=0.00040 8; α (O)=5.6×10 ⁻⁵ 14; α (P)=2.5×10 ⁻⁶ 12 %I γ =0.49 7 Mult.: M1+E2 for doubly-placed γ .				
401.15 10	82.0 41	430.87	7/2+	29.656	5/2+	M1(+E2) ^b	-0.02 9	0.0727 11	%Iγ=3.6 4 A ₂ =+0.36 18 α (K)=0.0610 10; α (L)=0.00907 13; α (M)=0.002026 29 α (N)=0.000476 7; α (O)=6.82×10 ⁻⁵ 10; α (P)=3.67×10 ⁻⁶ 6 E _γ : unweighted average of the two values. E _γ =401.25 6, I _γ =82.0 41 (1975VyZY). E _γ =401.05 7, I _γ =28.0 15 (1976Me06). K:L1:L2=5.16:0.75:<0.10 (1975VyZY). K:L1:L2=0.193:0.033:<0.008 (1971Ab04). δ : -0.02 9 from $\gamma(\theta)$ (1981Kr08).				
406.72 10	15.7 <i>19</i>	440.676	7/2-	33.916	7/2+	E1(+M2)	≤0.11	0.0110 <i>14</i>	%Iγ=0.68 10 A ₂ =-0.46 28; α(K)exp=0.0083 22 α(K)=0.0093 11; α(L)=0.00138 21; α(M)=0.00031 5 α(N)=7.2×10 ⁻⁵ 11; α(O)=1.01×10 ⁻⁵ 16; α(P)=5.0×10 ⁻⁷ 8 Eγ=406.73 11, Iγ=15.7 19, Ice(K)=0.13 3 (1975VyZY). Eγ=406.71 15, Iγ=5.2 8 (1976Me06). δ: -0.3≤δ≤+2.1 from γ(θ) (1981Kr08); ≤0.11 from α(K)exp.				
410.96 <i>10</i>	19.9 24	410.979	7/2-	0.0	5/2-	M1+E2 ^b	-3.1 +14-49	0.034 6	%I γ =0.86 <i>13</i> A ₂ =+0.51 <i>35</i> ; α (K)exp=0.025 <i>6</i> α (K)=0.026 <i>6</i> ; α (L)=0.0057 <i>5</i> ; α (M)=0.00133 <i>10</i> α (N)=0.000309 <i>25</i> ; α (O)=4.1×10 ⁻⁵ <i>4</i> ; α (P)=1.4×10 ⁻⁶ <i>4</i> E γ =411.06 <i>10</i> , I γ =19.9 <i>24</i> , Ice(K)=0.05 <i>1</i> (1975VyZY). E γ =410.86 <i>10</i> , I γ =6.3 <i>5</i> (1976Me06).				
^x 415.4 ^d 3	3.7 ^d 8					E1		0.00919 <i>13</i>	%Iγ=0.16 4 α (K)exp≤0.014 3 α (K)=0.00776 11; α (L)=0.001119 16; α (M)=0.0002487 35 α (N)=5.80×10 ⁻⁵ 8; α (O)=8.11×10 ⁻⁶ 11; α (P)=4.03×10 ⁻⁷ 6 Ice(K)<0.05 (1975VyZY).				
^x 417.76 <i>11</i>	15.0 <i>15</i>					M1		0.0653 9	% $I\gamma=0.65~9$ $\alpha(K)\exp=0.041~9$ $\alpha(K)=0.0549~8;~\alpha(L)=0.00815~11;~\alpha(M)=0.001819~26$ $\alpha(N)=0.000427~6;~\alpha(O)=6.12\times10^{-5}~9;~\alpha(P)=3.30\times10^{-6}~5$ $E\gamma=417.79~13,~I\gamma=15.0~15,~Ice(K)=0.62~12~(1975VyZY).$				
x420.0 ^d 2	5.3 ^d 8								$E\gamma=417.74$ 11, $I\gamma=4.65$, scaled to 12.9 14 (1976Me06). % $I\gamma=0.234$ $\alpha(K)exp=0.0134$ Ice(K)=0.072 (1975VyZY).				

				¹⁶⁷ Lu ε de	cay (51.	46 min) 197	6Me06,1976	Gr06,1981Kr0	08 (continued)
						γ (¹⁶⁷ Y	b) (continued	<u>l)</u>	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^g	Comments
427.46 18	5.7 11	553.38	9/2-	125.918	11/2+	(E1(+M2)) ^b	+0.15 23	0.013 21	%Iγ=0.25 5 A ₂ =+0.69 64; α(K)exp=0.028 9 α(K)=0.011 17; α(L)=0.0017 31; α(M)=4.E-4 7 α(N)=9.E-5 17; α(O)=1.3×10 ⁻⁵ 23; α(P)=6.E-7 12 Eγ=427.7 2, Iγ=5.7 11, Ice(K)=0.16 4 (1975VyZY). Eγ=427.32 15, Iγ=1.6 2 (1976Me06). δ: -0.08≤δ(Q/D)≤+0.38 from γ(θ) (1981Kr08). Other: δ=0.38 +9-10 from α(K)exp. Δπ=yes from level scheme
435.3 2	2.6 10					М1		0.0587 8	%Iy=0.11 5 $\alpha(K) \exp=0.050 22$ $\alpha(K) = 0.0493 7; \alpha(L) = 0.00731 10; \alpha(M) = 0.001632 23$ $\alpha(N) = 0.000383 5; \alpha(O) = 5.49 \times 10^{-5} 8;$ $\alpha(P) = 2.96 \times 10^{-6} 4$ Ey=435.3 1, Iy=2.6 10, Ice(K)=0.13 3 (1975VyZY). Ey=436.20 50, Iy=0.7 2 (1976Me06).
437.75 22	3.0 9	677.18	(5/2,7/2) ⁻	239.163	(5/2)-	М1		0.0578 8	$^{\circ}$ (Iy=0.13 4 $^{\circ}$ (Iy=0.13 4 $^{\circ}$ (K)exp=0.043 16 $^{\circ}$ (K)=0.0486 7; $^{\circ}$ (L)=0.00720 10; $^{\circ}$ (M)=0.001608 23 $^{\circ}$ (N)=0.000378 5; $^{\circ}$ (O)=5.41×10 ⁻⁵ 8; $^{\circ}$ (P)=2.92×10 ⁻⁶ 4 Ey=437.2 5, Iy=3.0 9, Ice(K)=0.13 3 (1975VyZY). Ey=437.84 20, Iy=0.7 2 (1976Me06).
439.9 ^d 5	2.0 ^{<i>d</i>} 8					M1,E2		0.041 <i>16</i>	% $I\gamma=0.09 4$ $\alpha(K)\exp=0.040 19$ $\alpha(K)=0.034 14; \alpha(L)=0.0057 14; \alpha(M)=0.00130 28$ $\alpha(N)=0.00030 7; \alpha(O)=4.2\times10^{-5} 11; \alpha(P)=2.0\times10^{-6} 9$ Ice(K)=0.08 2 (1975VyZY).
443.0 ^{he} 9	4.2 ^{he} 17	477.43	9/2-	33.916	7/2+	[E1]		0.00794 12	%Iγ=0.18 8 $\alpha(K)=0.00671 \ 10; \ \alpha(L)=0.000963 \ 14; \ \alpha(M)=0.0002140 \ 32$ $\alpha(N)=4.99\times10^{-5} \ 7; \ \alpha(O)=7.00\times10^{-6} \ 10; \ \alpha(P)=3.50\times10^{-7} \ 5$ Iγ=1.5 6 (1976Me06) scaled to 4.2 17. E _γ : 1976Me06 proposed alternative placement of 443.0γ from 569.4 level, which would be consistent only with mult(443.0γ)=E2 and $J^{\pi}(569.4 \ \text{level})=7/2^+$.
443.0 ^h 9	4.2 ^h 17	569.39	(7/2)+	125.918	11/2+	[E2]		0.0244 4	%I γ =0.18 8 α (K)=0.01889 28; α (L)=0.00428 7; α (M)=0.000997 15

From ENSDF

			1	167 Lu ε dec	cay (51.4	6 min) 19	976Me06,1	976Gr06,1981K	Cr08 (continued)					
	$\gamma(^{167}\text{Yb})$ (continued)													
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments					
445.56 12	33 2	571.489	(11/2) ⁻	125.918	11/2+	E1(+M2)	≤0.11	0.0089 11	$\begin{aligned} \alpha(N) &= 0.000231 \ 4; \ \alpha(O) &= 3.03 \times 10^{-5} \ 5; \ \alpha(P) &= 1.024 \times 10^{-6} \ 15 \\ \% I\gamma &= 1.43 \ 16 \\ A_2 &= -0.69 \ 26; \ \alpha(K) exp &= 0.0073 \ 10 \\ \alpha(K) &= 0.0075 \ 9; \ \alpha(L) &= 0.00110 \ 15; \ \alpha(M) &= 0.000246 \ 35 \\ \alpha(N) &= 5.8 \times 10^{-5} \ 8; \ \alpha(O) &= 8.1 \times 10^{-6} \ 12; \ \alpha(P) &= 4.1 \times 10^{-7} \ 6 \\ E\gamma &= 445.65 \ 8, \ I\gamma &= 33 \ 2, \ Ice(K) &= 0.24 \ 3 \ (1975 VyZY). \\ E\gamma &= 445.41 \ 10, \ I\gamma &= 10.5 \ 17 \ (1976 Me06). \\ \delta; &= -0.01 \le \delta < + 0.70 \ from \ \gamma(\theta) \ (1981 Kr(8); < 0.11 \ from) \end{aligned}$					
464.32 20	4.8 8	677.18	(5/2,7/2)-	213.167	(5/2)-	E2		0.02159 30	α (K)exp. %Iy=0.21 4 α (K)exp=0.021 7 α (K)=0.01681 24; α (L)=0.00370 5; α (M)=0.000858 12 α (N)=0.0001991 28; α (O)=2.62×10 ⁻⁵ 4; α (P)=9.15×10 ⁻⁷ 13 Ey=464.4 2, Iy=4.8 8, Ice(K)=0.10 3 (1975VyZY).					
×467.13 <i>30</i>	2.2 7					(E2)		0.02125 <i>30</i>	$E_{\gamma}=464.23 \ 20, \ I_{\gamma}=1.9 \ 3 \ (1976Me06).$ $\alpha(K)exp=0.023 \ 9 \ \%I_{\gamma}=0.10 \ 3 \ \alpha(K)exp=0.025 \ 10 \ \alpha(K)=0.01656 \ 23; \ \alpha(L)=0.00363 \ 5; \ \alpha(M)=0.000842 \ 12 \ \alpha(N)=0.0001953 \ 28; \ \alpha(O)=2.57\times10^{-5} \ 4; \ \alpha(P)=9.02\times10^{-7} \ 13 \ Fr=466 \ 0.5 \ L \ (1075)Vr(7X)$					
470.70 20	11.0 <i>10</i>	788.36	(9/2)-	317.488	(7/2)-	M1+E2	≈+0.3	≈0.0456	Ey=460.5 3, Iy=2.2 7, Re(R)=0.05 1 (1975 VyZ1). Ey=467.21 30, Iy=1.0 4 (1976Me06). %Iy=0.48 6 A_2=-0.59 40; α (K)exp=0.049 10 α (K) \approx 0.00302; α (C) \approx 4.31×10 ⁻⁵ ; α (P) \approx 2.286×10 ⁻⁶ Ey=470.8 2, Iy=11 1, Ice(K)=0.54 10 (1975VyZY). Ey=470.55 25, Iy=3.2 5 (1976Me06). δ : +0.3 \leq 6 \leq +10.8 from $\gamma(\theta)$ (1981Kr08); \leq 0.31 from					
^x 474.08 20	3.0 8								α (K)exp. %I γ =0.13 4 E γ =474.3 5, I γ =3.0 8 (1975VyZY). E γ =474.05 20 I γ =1.3 3 (1976Me06)					
477.32 ^e 35	2.0 ^e 6	477.43	9/2-	0.0	5/2-	[E2]		0.02009 28	$%Iy=0.09\ 3$ $\alpha(K)=0.01570\ 22;\ \alpha(L)=0.00339\ 5;\ \alpha(M)=0.000787\ 11$ $\alpha(N)=0.0001826\ 26;\ \alpha(O)=2.412\times10^{-5}\ 34;\ \alpha(P)=8.58\times10^{-7}$ 12 $Iy=0.7\ 2\ (1976Me06)$ scaled to 2.0.6.					
479.88 ^h 30	3.0 ^h 10	719.61	(7/2) ⁻	239.163	(5/2) ⁻	M1,E2		0.033 13	% $I\gamma$ =0.13 5 α (K)exp \approx 0.023 α (K)=0.027 11; α (L)=0.0045 12; α (M)=0.00102 24					

				¹⁶⁷ Lu ε (decay (51	1.46 min)	1976Me0	6,1976Gr06,19	981Kr08 (continued)
						$\gamma(1)$	¹⁶⁷ Yb) (co	ntinued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
									α(N)=0.00024 6; α(O)=3.3×10-5 9; α(P)=1.6×10-6 7 Eγ=479.4 7, Iγ=3 1, Ice(K)≈0.068 (1975VyZY). Eγ=479.97 30, Iγ=0.7 2 (1976Me06). Placement of 479.88γ from 719 or 788 level in 1976Me06, whereas in 1976Gr06, only placed from 788 level.
479.88 ^h 30 x485.16 ^e 20	$3.0^{h} 10$ $4.2^{e} 8$	788.36	(9/2)-	308.401	(7/2)-	M1,E2		0.033 13	α (K)=0.027 <i>11</i> ; α (L)=0.0045 <i>12</i> ; α (M)=0.00102 <i>24</i> α (N)=0.00024 <i>6</i> ; α (O)=3.3×10 ⁻⁵ <i>9</i> ; α (P)=1.6×10 ⁻⁶ <i>7</i> %I γ =0.13 <i>5</i> %I γ =0.18 <i>4</i>
^x 487.57 20	7.2 15					E1,E2		0.013 7	Iγ=1.5 3 (1976Me06). %Iγ=0.31 7
									α (K)exp=0.010 3 E γ =487.6 2, I γ =7.2 15, Ice(K)=0.07 2 (1975VyZY). E γ =487.53 20, I γ =2.0 3, scaled to 5.6 8 (1976Me06).
494.60 18	7.2 15	553.38	9/2-	58.539	9/2+	[E1]		0.00621 9	%Iγ=0.31 7 α (K)exp=0.010 3 α (K)=0.00525 7; α (L)=0.000749 11; α (M)=0.0001662 23 α (N)=3.88×10 ⁻⁵ 5; α (O)=5.45×10 ⁻⁶ 8; α (P)=2.76×10 ⁻⁷ 4 Eγ=494.8 2, Iγ=7.2 15, Ice(K)=0.07 2 (1975VyZY). Eγ=494.44 18, Iγ=1.7 3, scaled to 4.8 14 (1976Me06, unplaced). Mult: E1 or E2 from α (K)exp: $\Delta \pi$ =ves from level scheme.
^x 504.9 ^d 4	6.5 ^d 15					E1,E2		0.012 6	% $I\gamma$ =0.28 7 α (K)exp<0.011 3 Ice(K)<0.07 (1975VyZY).
x507.2 2	12 2					E2(+M1)	>0.9 ^{&}	0.023 6	%I γ =0.52 10 α (K)exp=0.019 5 α (K)=0.019 5; α (L)=0.0034 6; α (M)=0.00077 12 α (N)=0.000181 29; α (O)=2.5×10 ⁻⁵ 5; α (P)=1.09×10 ⁻⁶ 34 E γ =507.2 2, I γ =12 2, Ice(K)=0.23 5 (1975VyZY).
^x 510.3 ^d 7	43 ^d 10					(E2)		0.01694 24	%Iγ=1.9 5 α (K)exp=0.016 4 α (K)=0.01336 19; α (L)=0.00277 4; α (M)=0.000641 9 α (N)=0.0001488 22; α (O)=1.979×10 ⁻⁵ 29; α (P)=7.34×10 ⁻⁷ 11 Ice(K)=0.7 1 (1975VyZY). Evaluators note: this line may be
513.1 <i>1</i>	50 10	571.489	(11/2)-	58.539	9/2+	(E1)		0.00573 8	mixed with the annihilation radiation. %I γ =2.2 5 α (K)exp=0.0076 25 α (K)=0.00484 7; α (L)=0.000690 10; α (M)=0.0001530 21 α (N)=3.57×10 ⁻⁵ 5; α (O)=5.03×10 ⁻⁶ 7; α (P)=2.55×10 ⁻⁷ 4

 $^{167}_{70}$ Yb₉₇-29

				¹⁶⁷ Lu ε decay	(51.46 min)	197	6Me06,1976G	6r06,1981K	r08 (continued)
						γ ⁽¹⁶⁷ Y	b) (continued)		
E_{γ}^{\dagger}	Ι _γ ‡ f	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments
^x 515.3 ^d 2	7 ^d 2				E1	_	0.00567 8		E _γ =513.1 <i>1</i> , I _γ =50 <i>10</i> , Ice(K)=0.38 <i>10</i> (1975VyZY). E _γ =513.30 <i>80</i> , I _γ =12.0 <i>40</i> (1976Me06). %I _γ =0.30 <i>9</i> α (K)exp≈0.003 α (K)=0.00480 7; α (L)=0.000683 <i>10</i> ; α (M)=0.0001516 <i>21</i> α (N)=3.54×10 ⁻⁵ 5; α (O)=4.98×10 ⁻⁶ 7; α (R)=2.528×10 ⁻⁷ 25
^x 528.17 ^e 30	2.8 ^e 6								$Ice(K)\approx 0.02 (1975VyZY).$ %I $\gamma=0.12 3$
^x 534.60 20	6.9 <i>14</i>				M1		0.0345 5		I γ =1.0 2 (1976Me06). %I γ =0.30 7 α (K)exp=0.029 9 α (K)=0.0290 4; α (L)=0.00427 6; α (M)=0.000952 13 α (N)=0.0002236 31; α (O)=3.21×10 ⁻⁵ 5; α (P)=1.733×10 ⁻⁶ 24 E γ =534.85 15, I γ =6.9 14, Ice(K)=0.20 5 (1975VyZY). E γ =534 44 12, I γ =2.5 4 (1976Me06).
539.66 ^h 20	5.8 ^h 15	569.39	(7/2)+	29.656 5/2+	[M1,E2]		0.024 9		$\begin{aligned} & (1)^{-2.5+.4+12}, 1)^{-2.5+4} (1)^{-0.11000}, \\ & (3)^{-2.5+.4+12}, 1)^{-2.5+4} (1)^{-0.11000}, \\ & (3)^{-2.5+.4+12}, 1)^{-2.5+4}, 1)^{-2.5+4}, 1)^{-2.5+7}, 1)^{-2.5+7}, 1)^{-2.5+7}, 1)^{-4}, 1)^{-2.5+7}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-4}, 1)^{-2}, 1)^{-4}, 1)^{-2}, 1)^{-4},$
539.66 ^h 20	5.8 ^h 15	719.61	(7/2)-	179.750 (3/2 ⁻)	[E2]		0.01473 21		%I γ =0.25 7 α (K)=0.01169 16; α (L)=0.002351 33; α (M)=0.000542 8 α (N)=0.0001259 18; α (O)=1.683×10 ⁻⁵ 24; α (P)=6.45×10 ⁻⁷ 9 Mult.: M1(+E2) for doubly-placed γ . Placement from 1981Kr08 only. 1976Me06 and 1977Gr21 placed 539.66 γ from 569 level only.
x545.4 ^d 5	4.5 ^d 10				E2		0.01435 20		$\%$ I γ =0.20 5 α (K)exp=0.011 3

				¹⁶⁷ Lu	ε decay	(51.46 min)	1976Me06,1	976Gr06,19	81Kr08 (continued)
						<u> </u>	(¹⁶⁷ Yb) (contin	nued)	
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
549.00 <i>30</i>	5.6 15	788.36	(9/2)-	239.163	(5/2)-	E2(+M3)	+0.1 +4-3	0.02 4	$\begin{aligned} \alpha(\text{K}) = 0.01140 \ 16; \ \alpha(\text{L}) = 0.002280 \ 32; \ \alpha(\text{M}) = 0.000525 \ 7 \\ \alpha(\text{N}) = 0.0001221 \ 17; \ \alpha(\text{O}) = 1.634 \times 10^{-5} \ 23; \ \alpha(\text{P}) = 6.30 \times 10^{-7} \ 9 \\ \text{Ice}(\text{K}) = 0.05 \ 1 \ (1975 \text{VyZY}). \\ \% \text{I}\gamma = 0.24 \ 7 \\ \text{A}_2 = -0.53 \ 32; \ \alpha(\text{K}) \text{exp} = 0.020 \ 6 \\ \alpha(\text{K}) = 0.013 \ 35; \ \alpha(\text{L}) = 0.003 \ 7; \ \alpha(\text{M}) = 6.\text{E} - 4 \ 18 \\ \alpha(\text{N}) = 1.\text{E} - 4 \ 4; \ \alpha(\text{O}) = 2.\text{E} - 5 \ 6; \ \alpha(\text{P}) = 8.\text{E} - 7 \ 28 \\ \text{E}\gamma = 549.00 \ 5, \ \text{I}\gamma = 5.6 \ 15, \ \text{Ice}(\text{K}) = 0.11 \ 2 \ (1975 \text{VyZY}). \\ \text{E}\gamma = 549.00 \ 30, \ \text{I}\gamma = 1.0 \ 3, \ \text{scaled to} \ 2.8 \ 8 \ (1976 \text{Me06}). \end{aligned}$
^x 561.2 ^d 7	3.4 ^d 15								%Іү=0.15 7
^x 567.0 ^d 7	4.1 ^{<i>d</i>} 20					M1		0.0296 4	%Iγ=0.18 9 α (K)exp=0.037 19 α (K)=0.0249 4; α (L)=0.00366 5; α (M)=0.000817 12 α (N)=0.0001919 28; α (O)=2.75×10 ⁻⁵ 4; α (P)=1.489×10 ⁻⁶ 21 Ice(K)=0.15 3 (1975VyZY).
570.0 2 *570.7 3	14 6	628.62	7/2+	58.539	9/2+	M1(+E2) ^b	-0.3 10	0.028 9	%Iγ=0.6 3 A ₂ =-0.69 20; α(K)exp≥0.015 4 α(K)=0.023 8; α(L)=0.0035 9; α(M)=0.00078 19 α(N)=0.00018 4; α(O)=2.6×10 ⁻⁵ 7; α(P)=1.4×10 ⁻⁶ 5 E _γ : from 1975VyZY; Eγ=569.86 13 in 1976Me06 is possibly for a doublet. I _γ : I _γ =16.9 30 for 570.0γ+570.7γ in 1975VyZY; 5.0 4 scaled to 14.0 11 in 1976Me06. From Ice(K)(570.0γ), α(K)exp(570.0γ) (ruling out E1), and I _γ (570.0)≥10 2 assuming α(K)exp≤α(K) (M1 theory), evaluators adopt I _γ =14 6 for this component of the doublet, leaving I _γ =3 7 for the 570.7γ. Alternatively, from Ice(K)(570.7γ), I _γ (570.7)≤13 3 and ≥2, respectively, assuming α(K)exp≥α(K)(E1) and ≤α(K)(M1). δ: -1.2≤δ(Q/D)≤+0.7 from γ(θ). Eγ=570.7 3, I _γ =16.9 30 for 570.0γ+570.7γ, Ice(K)=0.05 1 (1975VyZY). Possible values of I _γ =3 7, ≤13 3 or ≥2 are discussed in comment for 570.0γ from 628 level. In 1976Me06, only the 569.86 13 γ placed from 628 level is reported, suggesting that only a small component may
^x 574.3 3	92					M1		0.0287 4	belong to 570.7 γ . %I γ =0.39 9 α (K)exp=0.019 6 α (K)=0.02414 34; α (L)=0.00355 5; α (M)=0.000791 11 α (N)=0.0001857 26; α (O)=2.66×10 ⁻⁵ 4; α (P)=1.441×10 ⁻⁶ 20 E γ =574.8 3, I γ =9 2, Ice(K)=0.17 4 (1975VyZY). E γ =574.10 17, I γ =1.8 3, scaled to 5.0 8 (1976Me06).

			1	⁶⁷ Lu ε deca	ay (51.46 min)	1976Me	06,1976Gr06,198	1Kr08 (contin	ued)
					, -	γ(¹⁶⁷ Yb) (co	ontinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [#]	$\delta^{@}$	α^{g}	Comments
x580.0 ^d 5	3 ^{<i>d</i>} 1					(E2)		0.01235 17	%Iγ=0.13 5 α (K)exp≈0.013 4 α (K)=0.00988 14; α (L)=0.001913 27; α (M)=0.0001022 15; α (O)=1.375×10 ⁻⁵ 20; α (P)=5.48×10 ⁻⁷ 8 Ice(K)≈0.04 (1975VyZY).
^x 583.0 ^d 5 ^x 588.18 30	3 ^d 1 2.8 10					M1		0.0270 4	%I γ =0.13 5 %I γ =0.12 5 α (K)exp=0.029 12 α (K)=0.02272 32; α (L)=0.00333 5; α (M)=0.000743 10 α (N)=0.0001746 25; α (O)=2.505×10 ⁻⁵ 35; α (P)=1.355×10 ⁻⁶ 19 E γ =588.4 5, I γ =2.8 10, Ice(K)=0.08 2 (1975VyZY). E γ =588 10 30 I γ =1 3 4 (1976Me06)
591.32 10	22 1	1022.27	(5/2,9/2)+	430.87	7/2+	M1+E2 ^b	+3.0 +21-12	0.0133 20	E _γ =.38.10 30, 1γ=1.3 4 (1970Me00). %Iγ=0.96 10 A ₂ =-0.55 19; α(K)exp=0.0114 23 α(K)=0.0107 18; α(L)=0.00196 20; α(M)=0.000104 10; α(O)=1.42×10 ⁻⁵ 16; α(P)=6.1×10 ⁻⁷ 11 E _γ =591.4 1, I _γ =22 1, Ice(K)=0.25 5 (1975VyZY). E _γ =591.19 13, I _γ =8.6 10 (1976Me06). δ: other: 2.5 +∞-10 from α(K)exp.
594.51 ^{<i>h</i>} 20	8.5 ^h 15	628.62	7/2+	33.916	7/2+	[M1,E2]		0.019 7	%Iγ=0.37 7 A ₂ =+0.8 6; α(K)exp=0.020 6 α(K)=0.016 6; α(L)=0.0025 7; α(M)=5.7×10 ⁻⁴ 16 α(N)=1.3×10 ⁻⁴ 4; α(O)=1.9×10 ⁻⁵ 6; α(P)=9.E-7 4 Eγ=594.6 2, Iγ=8.5 15, Ice(K)=0.17 4 (1975VyZY). Eγ=594.30 30, Iγ=3.2 5 (1976Me06). Mult: M1(+E2) for doubly-placed γ.
594.51 ^h 17	8.5 ^h 15	1951.10	(9/2)	1356.32	(9/2+,11/2+)				%Iγ=0.37 7 δ: -12.6≤δ(Q/D)≤+0.1 if 9/2 to 7/2; or -∞≤δ≤-0.8 if 9/2 to 9/2 (1981Kr08).

					¹⁶⁷ Lu ε	decay (51.46 n	nin) 1976	Me06,19760	Gr06,1981Kr	08 (continued)
							$\gamma(^{167}{ m Yb})$) (continued)	
	${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
	597.4 ^d 6	4 ^d 3	1952.66	(7/2)+	1356.32	(9/2+,11/2+)	[M1,E2]		0.019 7	%Iγ=0.37 7 δ: -12.6≤δ(Q/D)≤+0.1 if 9/2 to 7/2; or $-\infty \le \delta \le -0.8$ if 9/2 to 9/2 (1981Kr08). This placement affirmed by γγ-coin (1975VyZY). %Iγ=0.17 13
										$\alpha(K)=0.016\ 6;\ \alpha(L)=0.0025\ 7;\ \alpha(M)=5.6\times10^{-4}\ 16$ $\alpha(N)=1.3\times10^{-4}\ 4;\ \alpha(O)=1.8\times10^{-5}\ 6;\ \alpha(P)=9.E-7\ 4$
	599.35 <i>35</i>	16.2 17	628.62	7/2+	29.656	5/2+	M1+E2 ^b	+0.14 12	0.0255 7	%Iγ=0.70 10 A ₂ =+0.07 22; α(K)exp=0.022 4 α(K)=0.0214 6; α(L)=0.00315 8; α(M)=0.000702 17 α(N)=0.000165 4; α(O)=2.36×10 ⁻⁵ 6; α(P)=1.28×10 ⁻⁶ 4 E _γ : unweighted average of the two values.
33	^x 602.16.17	19.5 20					M1		0.0254 4	E γ =599.7 2, I γ =16.0 27, Ice(K)=0.36 6 (1975VyZY). E γ =599.00 20, I γ =5.8 6, scaled to 16.2 17 (1976Me06). I $_{\gamma}$: from 1976Me06. %I γ =0.85 12
										$\alpha(K) \exp = 0.023 5$ $\alpha(K) = 0.02140 30; \ \alpha(L) = 0.00314 4; \ \alpha(M) = 0.000700 \ 10$ $\alpha(N) = 0.0001643 \ 23; \ \alpha(O) = 2.357 \times 10^{-5} \ 33;$ $\alpha(P) = 1.276 \times 10^{-6} \ 18$ $E_{Y} = 602.5 2, \ I_{Y} = 19.5 \ 20, \ Ice(K) = 0.45 \ 8 \ (1975VyZY).$
	x604.7 ^{<i>d</i>} 3	8.8 ^d 18					E1,E2		0.008 4	$E\gamma = 602.0770, 1\gamma = 7.07(1976Me06).$ % $I\gamma = 0.389$ $\alpha(K)\exp \le 0.0173$ $Exc(V) \le 0.15(1075Vr/7V)$
	609.41 <i>16</i>	10.5 15	788.36	(9/2)-	178.863	9/2-	E2(+M1)	≥1.2	0.0138 28	ICe(K)≤0.15 (1975VyZY). %Iγ=0.46 8 A ₂ =+0.17 24; α(K)exp=0.0114 25 α(K)=0.0113 25; α(L)=0.00195 28; α(M)=0.00044 6 α(N)=0.000103 15; α(O)=1.42×10 ⁻⁵ 22; α(P)=6.4×10 ⁻⁷ 15 Eγ=609.5 2, Iγ=10.5 15, Ice(K)=0.12 2 (1975VyZY). Eγ=609.35 16, Iγ=3.0 5 (1976Me06). δ: -∞<δ≤-0.4 or +2.1≤δ≤+∞ from γ(θ) (1981Kr08); ≥1.2 from α(K)exp.
	$x^{x}618.7^{d} 2$ $x^{c}626.4^{d} 5$	3.0 ^d 5 3.1 ^d 10					E1		0.00375 5	% $I\gamma = 0.130\ 25$ % $I\gamma = 0.14\ 5$ % $G(K) \exp < 0.0065\ 21$

				¹⁶⁷ Lu ε decay (51.46 min)		n) 1976Me (06,1976Gr06	5,1981Kr08 (continued)
						$\gamma(^{167}\text{Yb})$ (co	ontinued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	a ^g	Comments
,			_					α (K)=0.00317 4; α (L)=0.000446 6; α (M)=9.89×10 ⁻⁵ 14 α (N)=2.311×10 ⁻⁵ 33; α (O)=3.27×10 ⁻⁶ 5; α (P)=1.687×10 ⁻⁷ 24 Ice(K)<0.02 (1975VyZY).
^x 630.8 ^d 6	4.4 ^{<i>a</i>} 20					M1,E2	0.016 6	% $I_{\gamma}=0.19 \ 9$ $\alpha(K)\exp=0.016 \ 8$ $\alpha(K)=0.014 \ 5; \ \alpha(L)=0.0022 \ 6; \ \alpha(M)=4.8\times10^{-4} \ 14$ $\alpha(N)=1.13\times10^{-4} \ 33; \ \alpha(\Omega)=1.6\times10^{-5} \ 5; \ \alpha(P)=7.9\times10^{-7} \ 34$
^x 633.32 20	15.6 30					M1,E2	0.016 6	$\begin{aligned} & (\alpha(1) = 1.15 \times 10^{-5} 5.5, \alpha(0) = 1.0 \times 10^{-5} 5.5, \alpha(1) = 1.5 \times 10^{-5} 5.4 \\ & (k) = 0.07 1 (1975 \text{ VyZY}). \\ & \% \text{ [Y=0.68 } 14 \\ & \alpha(\text{K}) = 0.012 3 \\ & \alpha(\text{K}) = 0.013 5; \alpha(\text{L}) = 0.0021 6; \alpha(\text{M}) = 4.8 \times 10^{-4} 14 \\ & \alpha(\text{N}) = 1.12 \times 10^{-4} 32; \alpha(\text{O}) = 1.6 \times 10^{-5} 5; \alpha(\text{P}) = 7.9 \times 10^{-7} 34 \\ & \text{Ey=633.32}, \text{ Iy} = 15.6 30, \text{ Ice}(\text{K}) = 0.18 3 (1975 \text{ VyZY}). \\ & \text{Ex=633.34}, 20 \text{ Iy} = 35.5 \text{ scaled to } 9.8 44 (1975 \text{ Me06}) \end{aligned}$
$x_{635.0}^{d}$ 4	8.3 ^d 32							%Iy=0.36 14
640 ^{hd} 1	2.0 ^{hd} 10	719.61	(7/2)-	78.679	7/2-	(M1(+E2))	0.016 6	%Iγ=0.09 5 α (K)exp=0.020 11 α (K)=0.013 5; α (L)=0.0021 6; α (M)=4.7×10 ⁻⁴ 13 α (N)=1.09×10 ⁻⁴ 31; α (O)=1.5×10 ⁻⁵ 5; α (P)=7.7×10 ⁻⁷ 33 I(ceK)=0.04 1 (1975VyZY). Mult.: M1(+E2) for doubly-placed γ.
640 ^{<i>h</i>} 1	2.0 ^h 10	1995.32	(9/2 ⁻)	1356.32	(9/2+,11/2+)	[E1+M2]	0.0042 6	%Iγ=0.09 5 α (K)=0.0035 5; α (L)=0.00051 8; α (M)=0.000113 18 α (N)=2.6×10 ⁻⁵ 4; α (O)=3.7×10 ⁻⁶ 6; α (P)=1.93×10 ⁻⁷ 32 Mult.: M1(+E2) for the doublet; but level scheme require $\Delta \pi$ =yes.
642.11 ^{<i>h</i>} 15	7.0 ^{<i>h</i>} 8	1947.48	(9/2)+	1305.53	(7/2 ⁻)	(E1(+M2))	0.0041 6	%Iγ=0.30 5 A ₂ =-0.55 34; α(K)exp=0.019 4 α(K)=0.0035 5; α(L)=0.00050 8; α(M)=0.000112 18 α(N)=2.6×10 ⁻⁵ 4; α(O)=3.7×10 ⁻⁶ 6; α(P)=1.92×10 ⁻⁷ 32 Eγ=642.2 2, Iγ=7.5 20, Ice(K)=0.13 2 (1975VyZY). Eγ=642.06 15, Iγ=2.5 3, scaled to 7.0 8 (1976Me06). I _γ : from 1976Me06. δ: +0.3≤δ(Q/D)≤+9.4 from γ(θ) (1981Kr08); M1(+E2) from α(K)exp for doubly-placed line, but level scheme requires Δπ=yes.
642.11 ^{<i>h</i>} 15	7.0 [/] 8	1998.42	$(9/2)^+$	1356.32	$(9/2^+, 11/2^+)$	(M1(+E2))	0.016 6	α (K)=0.013 5; α (L)=0.0021 6; α (M)=4.6×10 ⁻⁴ 13

From ENSDF

 $^{167}_{70}$ Yb₉₇-34

I

			-	107 Lu ε de	cay (51.4	6 min) 1	976Me06,1976	Gr06,1981Kr08 (continued)		
						$\gamma(^{16})$	7Yb) (continued	<u>d)</u>		
E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	J_i^{π}	E_f	J_f^{π}	Mult.#	α^{g}	Comments		
								α (N)=1.08×10 ⁻⁴ 31; α (O)=1.5×10 ⁻⁵ 5; α (P)=7.6×10 ⁻⁷ 32 %I γ =0.30 5 δ : -0.3 $\leq \delta \leq +9.8$ if J(1356)=7/2; -0.3 $\leq \delta \leq +1.6$ if J(1356)=9/2 (1981Kr08); α (K)exp gives M1(+E2); multiply-placed γ .		
^x 646.18 21	2.5 8					M1	0.02126 <i>30</i>	$\%_{1}\gamma=0.11 4$ $\alpha(K)\exp=0.036 14$ $\alpha(K)=0.01790 25; \alpha(L)=0.00262 4; \alpha(M)=0.000584 8$ $\alpha(N)=0.0001370 19; \alpha(O)=1.967\times10^{-5} 28; \alpha(P)=1.066\times10^{-6} 15$ $E_{Y}=646.6 4, I_{Y}=2.5 8, Ice(K)=0.09 2 (1975VyZY).$ $E_{Y}=646.08 20 I_{Y}=1.6 2 scaled to 4.5 6 (1976VyZY).$		
^x 652.1 5	4.8 6					M1	0.02077 29	Ey=040.08 20, fy=1.0 2, scaled to 4.3 6 (1970Me00). $\alpha(K)\exp=0.025 5$ $\%I\gamma=0.21 3$ $\alpha(K)=0.01749 25; \alpha(L)=0.00256 4; \alpha(M)=0.000570 8$ $\alpha(N)=0.0001339 19; \alpha(O)=1.921\times10^{-5} 27; \alpha(P)=1.041\times10^{-6} 15$ E_{γ} : unweighted average of the two values. It is possible that one of the values is a misprint. $E_{\gamma}=652.6 2, I_{\gamma}=4.8 6$, Ice(K)=0.12 2 (1975VyZY). $E_{\gamma}=651.64 25, I_{\gamma}=1.2 2$, scaled to 3.4 6 (1976Me06).		
^x 660.5 ^d 2	10.5 ^d 10					E1	0.00336 5	$\%$ I γ =0.46 6 α (K)exp=0.0038 10 α (K)=0.00285 4; α (L)=0.000399 6; α (M)=8.84×10 ⁻⁵ 12 α (N)=2.066×10 ⁻⁵ 29; α (O)=2.92×10 ⁻⁶ 4; α (P)=1.516×10 ⁻⁷ 21 Lec(K)=0.04 1 (1975VyZY)		
^x 663.75 20	4.8 5					E1,E2		%Iy=0.21 3 α (K)exp=0.0042 21 Ey=663.8 2, Iy=4.8 5, Ice(K)=0.02 1 (1975VyZY). Ey=663.64 30, Iy=1.4 2 (1976Me06).		
^x 671.12 <i>35</i>	2.8 13					E1	0.00325 5	% $I_{Y}=0.12\ 6$ $\alpha(K)\exp<0.0036$ $\alpha(K)=0.00276\ 4;\ \alpha(L)=0.000386\ 5;\ \alpha(M)=8.55\times10^{-5}\ 12$ $\alpha(N)=1.998\times10^{-5}\ 28;\ \alpha(O)=2.83\times10^{-6}\ 4;\ \alpha(P)=1.468\times10^{-7}\ 21$ $E_{Y}=671.4\ 6,\ I_{Y}=2.8\ 13,\ Ice(K)<0.01\ (1975VyZY).$ $E_{Y}=671.02\ 35,\ I_{Y}=1.3\ 2\ (1976Me06).$		
673.89 25	6.7 14	1979.49	(7/2 ⁻)	1305.53	(7/2 ⁻)	[E2]	0.00868 12	% $I_{Y}=0.297$ $\alpha(K)\exp=0.0063$ $\alpha(K)=0.0070410; \alpha(L)=0.00127018; \alpha(M)=0.0002904$ $\alpha(N)=6.75\times10^{-5}9; \alpha(O)=9.20\times10^{-6}13; \alpha(P)=3.93\times10^{-7}6$ $E_{Y}=673.94, I_{Y}=6.714, Ice(K)=0.042(1975VyZY).$ $E_{Y}=673.8825, I_{Y}=2.03(1976Me06).$ $\alpha(K)\exp$ consistent with E2(+M1) or E1.		
677.23 ^h 15	13 ^{<i>h</i>} 2	677.18	(5/2,7/2)-	0.0	5/2-	[M1,E2]	0.014 5	%Iy=0.57 10		

				167 Lu ε dec	cay (51.4	6 min) 1	976Me06,197	6Gr06,1981Kr08 (continued)
						$\gamma(^{167})$	Yb) (continu	ed)
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger f}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{g}	Comments
								α(K)exp=0.0031 16; α(K)exp=0.0048 24 α(K)=0.011 4; α(L)=0.0018 5; α(M)=4.0×10-4 12 α(N)=9.4×10-5 27; α(O)=1.3×10-5 4; α(P)=6.7×10-7 28 Εγ=677.4 2, Ιγ=13 2, Ice(K)=0.04 2 (1975VyZY). Εγ=677.14 15, Ιγ=3.0 4, scaled to 8.4 11 (1976Me06). First α(K)exp from Iγ in 1975VyZY, second in 1976Me06, respectively. This γ placed by 1976Me06, 1977Gr21 (and 1981Kr08) from 677 and/or 1305 level(s); level scheme requires mult=M1,E2 for placement from 677 level and E1 from 1305 level.
677.23 ^h 15	13 ^h 2	1305.53	(7/2 ⁻)	628.62	7/2+	[E1]	0.00319 4	α (K)=0.00270 4; α (L)=0.000379 5; α (M)=8.39×10 ⁻⁵ 12 α (N)=1.960×10 ⁻⁵ 27; α (O)=2.77×10 ⁻⁶ 4; α (P)=1.442×10 ⁻⁷ 20 %1×=0 57 10
^x 679.92 <i>19</i>	5.0 15					(M1,E2)	0.014 5	%Iγ=0.22 7 α(K)exp≈0.008 α(K)=0.011 4; $α$ (L)=0.0018 5; $α$ (M)=4.0×10 ⁻⁴ 11 α(N)=9.3×10 ⁻⁵ 27; $α$ (O)=1.3×10 ⁻⁵ 4; $α$ (P)=6.6×10 ⁻⁷ 28 Eγ=680.0 3, Iγ=5.0 15, Ice(K)≈0.04 (1975VyZY). Eγ=679.86 25, Iγ=1.5 2, scaled to 4.2 6 (1976Me06).
685.3 ^d 5	4.7 ^d 25	719.61	(7/2)-	33.916	7/2+	[E1]	0.00311 4	%Iγ=0.20 11 α (K)exp≤0.014 α (K)=0.00264 4; α (L)=0.000369 5; α (M)=8.18×10 ⁻⁵ 12 α (N)=1.913×10 ⁻⁵ 27; α (O)=2.71×10 ⁻⁶ 4; α (P)=1.409×10 ⁻⁷ 20 I(ceK)≤0.03 (1975VyZY). Mult : E1 or E2 from α (K)exp: $\Delta \pi$ =ves from level scheme.
689.7 <i>3</i>	7.7 21	719.61	(7/2)-	29.656	5/2+	[E1]	0.00307 4	%Iγ=0.33 10 α (K)exp≤0.0054; α (K)exp≤0.016 α (K)=0.00261 4; α (L)=0.000365 5; α (M)=8.07×10 ⁻⁵ 11 α (N)=1.887×10 ⁻⁵ 26; α (O)=2.67×10 ⁻⁶ 4; α (P)=1.391×10 ⁻⁷ 20 Eγ=689.8 2, Iγ=7.7 21, Ice(K)≤0.03 (1975VyZY). Eγ=688.85 50, Iγ=0.8 1, scaled to 2.2 3 (1976Me06).
^x 695.93 22	8.3 17							First $\alpha(K)\exp$ from 17 in 1975/vyZY, second in 1976/we06. %I γ =0.36 8 $\alpha(K)\exp \le 0.0048$; $\alpha(K)\exp \le 0.0111$ E γ =695.8 2, I γ =8.3 17, Ice(K) ≤ 0.04 (1975/vyZY). E γ =696.32 35, I γ =1.3 2, scaled to 3.6 6 (1976Me06). First $\alpha(K)\exp$ from Ly in 1975/vyZY, second in 1976Me06
^x 702.6 ^d 7	2.7 ^d 16							% $I\gamma$ =0.12 7 α (K)exp=0.015 <i>11</i> Ice(K)=0.04 2 (1975VyZY).
705.3 ^d 5	2.8 ^d 14	1022.27	(5/2,9/2)+	317.488	(7/2)-	[E1]	0.00294 4	%I γ =0.12 6 α (K)=0.002492 35; α (L)=0.000348 5; α (M)=7.71×10 ⁻⁵ 11 α (N)=1.802×10 ⁻⁵ 25; α (O)=2.55×10 ⁻⁶ 4; α (P)=1.331×10 ⁻⁷ 19

 $^{167}_{70}\mathrm{Yb}_{97} ext{-}36$

				¹⁶⁷ I	∠u ε de	cay (51.46 m	nin) 1976Me0	6,1976Gr06,19	981Kr08 (continued)					
	$\gamma(^{167}\text{Yb})$ (continued)													
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments					
709.79 15	13.0 12	788.36	(9/2)-	78.679	7/2-	E2(+M1)	≥1.8	0.0088 11	%Iγ=0.57 7 A ₂ =-0.24 49; α(K)exp=0.0058 16 α(K)=0.0072 9; α(L)=0.00122 11; α(M)=0.000277 25 α(N)=6.5×10 ⁻⁵ 6; α(O)=8.9×10 ⁻⁶ 9; α(P)=4.1×10 ⁻⁷ 6 Eγ=709.9 2, Iγ=13.0 12, Ice(K)=0.075 20 (1975VyZY). Eγ=709.73 15, Iγ=3.6 5, scaled to 10.1 14 (1976Me06). δ: δ(Q/D)=+0.30 +50-27 or ≥1.8 (magnitude of δ) from γ(θ) (1981Kr08): smaller δ not consistent with α(K)exp					
^x 715.89 <i>12</i>	16.0 12					M1		0.01642 23	$\%$ I γ =0.70 8 α (K)exp=0.011 3 α (K)=0.01383 19; α (L)=0.002016 28; α (M)=0.000449 6 α (N)=0.0001055 15; α (O)=1.514×10 ⁻⁵ 21; α (P)=8.22×10 ⁻⁷ 12 E γ =715.9 2, I γ =16.0 12, Ice(K)=0.18 4 (1975VyZY). E γ =715.88 12, I γ =4.6 7, scaled to 12.9 20 (1976Me06).					
719.81 25	6.8 6	719.61	(7/2)-	0.0	5/2-	E2(+M1)	>1.0 ^{&}	0.0097 22	%I γ =0.30 4 α (K)exp=0.007 3 α (K)=0.0080 19; α (L)=0.00130 23; α (M)=0.00029 5 α (N)=6.9×10 ⁻⁵ 12; α (O)=9.6×10 ⁻⁶ 18; α (P)=4.6×10 ⁻⁷ 12 E γ =719.9 3, I γ =6.8 6, Ice(K)=0.05 2 (1975VyZY). E γ =719.74 25, I γ =1.8 3 (1976Me06, unplaced). %I γ =0.11 4					
x730.32 15	8.8 7					M1		0.01562 22	α (K)exp<0.012 Ice(K)<0.03 (1975VyZY). $\%$ I γ =0.38 5 α (K)exp=0.015 3 α (K)=0.01316 18; α (L)=0.001916 27; α (M)=0.000427 6 α (N)=0.0001002 14; α (O)=1.440×10 ⁻⁵ 20; α (P)=7.82×10 ⁻⁷ 11 E γ =730.4 2, I γ =8.8 7, Ice(K)=0.13 2 (1975VyZY).					
×734.57 14	8.4 6					M1		0.01539 22	E γ =730.27 15, I γ =3.0 5 (1976Me06). %I γ =0.37 4 α (K)exp=0.0119 25 α (K)=0.01297 18; α (L)=0.001888 26; α (M)=0.000421 6 α (N)=9.88×10 ⁻⁵ 14; α (O)=1.419×10 ⁻⁵ 20; α (P)=7.70×10 ⁻⁷ 11 E γ =734.6 2, I γ =8.4 6, Ice(K)=0.10 2 (1975VyZY). E γ =734.5 4, 20 ky=2.9 4 (1976Me06)					
^x 740.1 ^d 2	10.0 ^d 6					M1+E2	0.8 ^{&} +7-5	0.0120 25	$E_Y = 734.34\ 20,\ 1Y = 2.9\ 4\ (1970) 100000000000000000000000000000000000$					

			16	⁵⁷ Lu ε dec	ay (51.46	min) 197	6Me06,1976Gr()6,1981Kr08 (co	ntinued)
						γ (¹⁶⁷ Y	b) (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	$\delta^{@}$	α^{g}	Comments
x745.2 ^d 5	2.2 ^d 8								% $I\gamma=0.10 4$ $\alpha(K)\exp<0.009$ Ice(K)<0.02 (1975VyZY).
^x 753.0 ^d 7	3.1 ^d 5					M1+E2	1.0 ^{&} +17-6	0.0106 29	%1γ=0.135 25 α (K)exp=0.0087 24 α (K)=0.0089 25; α (L)=0.00136 31; α (M)=0.00031 7 α (N)=7.2×10 ⁻⁵ 16; α (O)=1.01×10 ⁻⁵ 24; α (P)=5.2×10 ⁻⁷ 16 Ice(K)=0.027 6 (1975VyZY).
^x 763.6 4	20.0 <i>14</i> 2.6 ^{<i>d</i>} 6					M1,E2		0.010 4	
*779.74 <i>14</i>	5.4 5					E2(+M1)	1.5 ^{&} +32-6	0.0084 <i>19</i>	$\%_1 \gamma = 0.24 \ 3$ $\alpha(K) \exp = 0.0070 \ 16$ $\alpha(K) = 0.0070 \ 16; \ \alpha(L) = 0.00111 \ 20;$ $\alpha(M) = 0.00025 \ 4$ $\alpha(N) = 5.8 \times 10^{-5} \ 10; \ \alpha(O) = 8.2 \times 10^{-6} \ 15;$ $\alpha(P) = 4.0 \times 10^{-7} \ 10$ $E\gamma = 779.8 \ 2, \ I\gamma = 5.4 \ 5, \ Ice(K) = 0.038 \ 8$ (1975VyZY). $E\gamma = 779.68 \ 20, \ I\gamma = 3.0 \ 6 \ (1976Me06).$
784.82 10	20.0 10	1356.32	(9/2+,11/2+)	571.489	(11/2)-	(E1)		2.38×10 ⁻³ 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.002017\ 28;\ \alpha(\mathbf{L}) = 0.000280\ 4;\\ &\alpha(\mathbf{M}) = 6.20 \times 10^{-5}\ 9\\ &\alpha(\mathbf{N}) = 1.449 \times 10^{-5}\ 20;\ \alpha(\mathbf{O}) = 2.057 \times 10^{-6}\ 29;\\ &\alpha(\mathbf{P}) = 1.081 \times 10^{-7}\ 15\\ &\%\mathbf{I}\gamma = 0.87\ 9\\ &\mathbf{E}\gamma = 784.8\ 2,\ \mathbf{I}\gamma = 20\ 1,\ \mathbf{Ice}(\mathbf{K}) = 0.047\ 10\\ &(1975\mathbf{VyZY}). \end{aligned}$

From ENSDF

				16	⁵⁷ Lu ε	decay (51.46	6 min) 1976M	e06,1976Gr06,	1981Kr08 (continued)
						γ ⁽¹⁶⁷ Yb) (6	continued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
788.44 20	5.4 6	788.36	(9/2)-	0.0	5/2-	E2		0.00612 9	E _γ =784.82 10, I _γ =7.0 10 (1976Me06, unplaced). α (K)exp=0.0024 5 implies mult=E1 and, hence, π =+ for 1356 level. However, π =- is favored by nuclear orientation for doubly-placed 595γ from 1951 level assuming it has π = %I _γ =0.24 3 A ₂ =-0.17 54; α (K)exp=0.0056 20 α (K)=0.00502 7; α (L)=0.000851 12; α (M)=0.0001929 27 α (N)=4.50×10 ⁻⁵ 6; α (O)=6.21×10 ⁻⁶ 9; α (P)=2.82×10 ⁻⁷ 4 E _γ =788.5 2, I _γ =5.4 6, Ice(K)=0.03 1 (1975VyZY). E _γ =788.38 20, I _γ =2.0 5 (1976Me06).
^x 792.5 ^d 4 ^x 803.82 20	2.0 ^d 5 5.4 7					M1		0.01229	$\delta(O/Q) = -0.25 + 53 - 75 \text{ from } \gamma(\theta) (1981 \text{ Kr08}).$ $\% I\gamma = 0.087 23$ $\% I\gamma = 0.24 4$ $\alpha(\text{K}) \exp = 0.0087 22$ $\alpha(\text{K}) = 0.01036 15; \ \alpha(\text{L}) = 0.001504 21; \ \alpha(\text{M}) = 0.000335 5$ $\alpha(\text{N}) = 7.86 \times 10^{-5} 11; \ \alpha(\text{O}) = 1.130 \times 10^{-5} 16; \ \alpha(\text{P}) = 6.14 \times 10^{-7} 9$ $E\gamma = 803.8 2, \ I\gamma = 5.4 7, \ \text{Lec}(\text{K}) = 0.047 10 (1975 \text{ VyZY}).$
^x 808.66 20	10.3 12					M1+E2	1.3 ^{&} +12-5	0.0081 <i>15</i>	E γ =803.89 40, I γ =1.5 2 (19/6Me06). %I γ =0.45 7 α (K)exp=0.0068 13 α (K)=0.0068 13; α (L)=0.00105 16; α (M)=0.00024 4 α (N)=5.5×10 ⁻⁵ 8; α (O)=7.8×10 ⁻⁶ 13; α (P)=3.9×10 ⁻⁷ 8 E γ =808.7 2, I γ =10.3 12, Ice(K)=0.07 1 (1975VyZY).
^x 814.9 4	4.4 12								$E\gamma=808.62\ 20, I\gamma=3.1\ 5\ (1976Me06).$ % $I\gamma=0.19\ 6$ $E\gamma=814.3\ 5, I\gamma=4.4\ 12\ (1975VyZY).$ $E\gamma=815\ 15\ 30, I\gamma=1\ 7\ 3\ (1976Me06).$
^x 817.3 ^d 5	<4.4 ^d								%Iγ<0.191
^x 826.5 ^d 2 ^x 830.64 16	2.4 ^{<i>d</i>} 4 8.5 7					M1		0.01132 16	%I γ =0.104 20 %I γ =0.37 5 α (K)exp=0.0094 25 α (K)=0.00955 13; α (L)=0.001384 19; α (M)=0.000308 4 α (N)=7.24×10 ⁻⁵ 10; α (O)=1.040×10 ⁻⁵ 15; α (P)=5.66×10 ⁻⁷ 8 E γ =830.5 2, I γ =8.5 7, Ice(K)=0.08 2 (1975VyZY).
^x 833.61 <i>15</i>	8.9 7					M1(+E2)	<0.8 ^{&}	0.0101 <i>11</i>	E γ =830.73 <i>16</i> , I γ =3.0 <i>5</i> (1976Me06). %I γ =0.39 <i>5</i> α (K)exp=0.0079 <i>13</i> ; α (K)exp=0.014 <i>3</i> α (K)=0.0085 <i>10</i> ; α (L)=0.00125 <i>12</i> ; α (M)=0.000279 <i>27</i> α (N)=6.5×10 ⁻⁵ <i>6</i> ; α (O)=9.4×10 ⁻⁶ <i>10</i> ; α (P)=5.0×10 ⁻⁷ <i>6</i> E γ =833.5 <i>2</i> , I γ =8.9 <i>7</i> , Ice(K)=0.07 <i>1</i> (1975VyZY). E γ =833.76 <i>24</i> , I γ =2.0 <i>3</i> , scaled to 5.6 <i>8</i> (1976Me06).

							$\gamma(^{167}\text{Yb})$	(continued)
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{g}	Comments
^x 847.05 21	4.6 9							First $\alpha(K)$ exp from I γ in 1975VyZY, second in 1976Me06. Proposed placement by 1976Me06 only from 1022 to 188 level is inconsistent with $(5/2,9/2)^+$ for 1022 level and $1/2^-$ for 188 level, and dominant mult=M1 for 83.6 γ , thus evaluators reject this placement. $\%$ I γ =0.20 4 $\alpha(K)$ exp \leq 0.0057 E γ =846.7 3 J γ =4.6.9 Jce(K) \leq 0.026 (1975VyZY)
855.8 4	5.4 11	1267.24	5/2+	410.979	7/2-	[E1]	2.01×10 ⁻³ 3	Ey=847.18 18, Iy=1.5 5 (1976Me06). %Iy=0.24 5 $\alpha(K)$ =0.001706 24; $\alpha(L)$ =0.0002358 33; $\alpha(M)$ =5.22×10 ⁻⁵ 7 $\alpha(N)$ =1.220×10 ⁻⁵ 17; $\alpha(O)$ =1.734×10 ⁻⁶ 24; $\alpha(P)$ =9.16×10 ⁻⁸ 13 Ey=855.9 4, Iy=5.4 11, Ice(K)≈0.034 (1975VyZY). Ey=855.70 40, Iy=2.0 7 (1976Me06).
^x 858.5 5	3.7 7					M1	0.01043 15	Mult.: M1,E2 from α (K)exp is inconsistent with $\Delta \pi$ =yes. %I γ =0.16 3 α (K)exp \approx 0.0092 α (K)=0.00880 12; α (L)=0.001274 18; α (M)=0.000284 4 α (N)=6.66 \times 10 ⁻⁵ 9; α (O)=9.57 \times 10 ⁻⁶ 13; α (P)=5.21 \times 10 ⁻⁷ 7 E γ =858.5 5, I γ =3.7 7, Ice(K) \approx 0.034 (1975VyZY).
^x 867.91 20	7.9 9					M1	0.01016 <i>14</i>	Ey=858.40 60, Iy=1.0 2 (1976Me06). %Iy=0.34 5 α (K)exp=0.0081 16; α (K)exp=0.017 3 α (K)=0.00856 12; α (L)=0.001240 17; α (M)=0.000276 4 α (N)=6.48×10 ⁻⁵ 9; α (O)=9.31×10 ⁻⁶ 13; α (P)=5.07×10 ⁻⁷ 7 Ey=868.0 2, Iy=7.9 9, Ice(K)=0.064 10 (1975VyZY). Ey=867.78 24, Iy=1.5 2, scaled to 4.2 6 (1976Me06).
^x 873.87 <i>19</i>	8.1 8							First $\alpha(K)\exp$ from I γ in 1975VyZY, second in 1976Me06. %I γ =0.35 5 $\alpha(K)\exp \le 0.0028; \alpha(K)\exp \le 0.0051$ E γ =873.8 2, I γ =8.1 8, Ice(K) ≤ 0.023 (1975VyZY). E γ =873.94 19, I γ =1.8 3, scaled to 5.6 14 (1976Me06). First $\alpha(K)\exp$ from I γ in 1975VyZY, second in 1976Me06
^x 883.50 20	8.6 7					M1	0.00972 14	$%I_{\gamma}=0.375$ α(K)exp=0.0080 13; α(K)exp=0.0144 α(K)=0.00820 11; α(L)=0.001186 17; α(M)=0.0002644 $α(N)=6.20\times10^{-5}9; α(O)=8.91\times10^{-6} 12; α(P)=4.85\times10^{-7} 7$ $E_{\gamma}=883.52, I_{\gamma}=8.67, Ice(K)=0.069 10 (1975VyZY).$ $E_{\gamma}=883.50 90, I_{\gamma}=2.05, scaled to 5.6 14 (1976Me06).$ First $α(K)exp$ from I_{γ} in 1975VyZY, second in 1976Me06.
^x 887.6 ^d 2	7.7 <mark>d</mark> 7					E2	0.00475 7	%Iy=0.33 4

 $^{167}_{70}{
m Yb}_{97}$ -40

			167	Lu ε decay	(51.46 min)	1976Me0	6,1976Gr	06,1981Kr08 (continued)
						γ(¹⁶⁷ Yb) (cc	ntinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
					ř				α (K)exp≈0.0039 α (K)=0.00392 5; α (L)=0.000640 9; α (M)=0.0001444 20 α (N)=3.37×10 ⁻⁵ 5; α (O)=4.69×10 ⁻⁶ 7; α (P)=2.206×10 ⁻⁷ 31 Ice(K)≈0.030 (1975VyZY).
^x 893.0 ^d 2	6.2 ^{<i>d</i>} 5					M1(+E2)	<1.5 ^{&}	0.0078 17	% $I\gamma=0.27 \ 3$ $\alpha(K)\exp=0.0068 \ 17$ $\alpha(K)=0.0066 \ 14; \ \alpha(L)=0.00097 \ 18; \ \alpha(M)=0.00022$ 4
ł	1								α (N)=5.1×10 ⁻⁵ 9; α (O)=7.3×10 ⁻⁶ 14; α (P)=3.8×10 ⁻⁷ 9 Ice(K)=0.042 10 (1975VyZY).
^x 898.8 ^d 2	5.0 ^{<i>a</i>} 5					M1		0.00931 <i>13</i>	%Iγ=0.22 3 α(K)exp=0.0084 22 α(K)=0.00786 11; $α$ (L)=0.001136 16; α(M)=0.0002529 35 (N)=0.0002529 35
									$\begin{array}{l} \alpha(\text{N}) = 5.94 \times 10^{-5} 8; \ \alpha(\text{O}) = 8.53 \times 10^{-5} 12; \\ \alpha(\text{P}) = 4.65 \times 10^{-7} 7 \\ \text{Ice}(\text{K}) = 0.042 \ 10 \ (1975 \text{VyZY}). \end{array}$
^x 903.2 ^d 3 ^x 908.66 30	3.8 ^d 4 4.8 5								%Iγ=0.165 23 %Iγ=0.21 3 α(K)γ=0.0042
									$E_{\gamma}=908.8 \ 3, \ I_{\gamma}=4.8 \ 5, \ Ice(K)<0.02 \ (1975VyZY).$ $E_{\gamma}=908.42 \ 40, \ I_{\gamma}=1.6 \ 2 \ (1976Me06).$
^x 919.97 ^e 15	7.3 ^e 11								$\%$ I γ =0.32 6 I γ =2.6 4 (1976Me06).
925.29 30	2.3 6	1947.48	(9/2)+	1022.27	(5/2,9/2)+				$\%$ I γ =0.10 3 E γ =925.4 3, I γ =1.8 6 (1975VyZY). E γ =925.15 35, I γ =1.0 2, scaled to 2.8 6 (1976Me06).
ope of e	and u	1256 22	(0/2+ 11/2+)	410 540	(0/2)-				I_{γ} : weighted average of the two values.
$x_{951.7}^{d}$ 3	2.3^{d} 11 2.5^{d} 7	1356.32	(9/2 ' ,11/2 ')	419.540	(9/2)				$\%_{1}\gamma=0.10.5$ % $I_{1}\gamma=0.11.3$
x961.4 ^d 2 963.75 19	6.3 ^d 6 11.5 10	1022.27	(5/2,9/2)+	58.539	9/2+	(E2)		0.00400 6	% $I\gamma=0.27 4$ % $I\gamma=0.50 6$ $\alpha(K)\exp\approx0.0020$ $\alpha(K)=0.00332 5; \alpha(L)=0.000529 7;$ $\alpha(M)=0.0001190 17$

			167	Lu $arepsilon$ decay	(51.46 min)	1976Me06	,1976Gr06,	,1981Kr08 (cont	tinued)
						$\gamma(^{167}\text{Yb})$ (con	tinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α^{g}	Comments
^x 967.29 ^e 35 ^x 973.0 ^d 7 975.9 ^d 3 ^x 980.0 ^d 4	$3.1^{e} 6$ $0.65^{d} 35$ $1.4^{d} 3$ $1.1^{d} 4$	1998.42	(9/2)+	1022.27	(5/2,9/2)+				$ α(N)=2.78×10^{-5} 4; α(O)=3.88×10^{-6} 5; α(P)=1.868×10^{-7} 26 Eγ=964.0 2, Iγ=11.5 10, Ice(K)≈0.023 (1975VyZY). Eγ=963.61 15, Iγ=3.6 5 (1976Me06). Mult.: E1 or E2 from α(K)exp; Δπ=no from level scheme. %Iγ=0.14 3 Iγ=1.1 2 (1976Me06). %Iγ=0.028 16 %Iγ=0.061 14 %Iγ=0.048 18$
x985.8 ^d 3	$3.5^{d} 5$								%Iy=0.15 3
988.40 <i>10</i>	27.4 17	1022.27	(5/2,9/2)+	33.916	7/2+	(M1+E2) ^b	+6.4 61	0.0039 32	%Iγ=1.19 13 A ₂ =-0.57 41 α(K)=0.0032 27; α(L)=5.E-4 4; α(M)=1.1×10 ⁻⁴ 8 α(N)=2.7×10 ⁻⁵ 18; α(O)=3.7×10 ⁻⁶ 27; α(P)=1.8×10 ⁻⁷ 17 Eγ=988.4 2, 1γ=27.4 17 (1975VyZY). Eγ=988.40 10, 1γ=9.2 5 (1976Me06). δ: +0.3≤δ(Q/D)≤+12.5 from γ(θ) (1981Kr08), Δπ=no from level scheme.
991.00 ^e 60	2.8 ^e 8	2013.04	$(7/2^{-})$	1022.27	$(5/2, 9/2)^+$				%Ιγ=0.12 4
x999.6 ^d 5 x1009.7 ^d 3	$1.8^{d} 5$ $5.2^{d} 6$								1γ =1.0 3 (19/6Me06), scaled to 2.8 8. %Iγ=0.078 23 %Iγ=0.23 3 α(K)exp≈0.0019 Ice(K)≈0.01 (1975VyZY).
x1015.4 ^{cc} 4 x1016.66 20	2.9° 5 6.7 7					El		1.45×10 ⁻³ 2	$%1\gamma=0.126$ 25 $%1\gamma=0.29$ 4 α(K)exp≈0.0015 α(K)=0.001236 17; $α(L)=0.0001693$ 24; $α(M)=3.74×10^{-5}$ 5 $α(N)=8.75×10^{-6}$ 12; $α(O)=1.248×10^{-6}$ 17; $α(P)=6.66×10^{-8}$ 9 $E\gamma=1016.8$ 2, $I\gamma=6.7$ 7, $Ice(K)≈0.01$ (1975VyZY). $E\gamma=1016.51$ 20, $I\gamma=2.4$ 4 (1976Me06).
$x_{1023.1}^{d}$ 3	3.3 ^d 6								%Iy=0.14 <i>3</i>

From ENSDF

			¹⁶⁷ L	u ε decay	(51.46 r	nin) 19	76Me06,1976	Gr06,1981Kr08 (continued)
						$\gamma(^{167})$	Yb) (continued	<u>()</u>
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	J_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^g	Comments
x1034.0 ^d 3 x1040.9 ^d 3	3.7 ^d 4 4.9 ^d 8					E1	1.39×10 ⁻³	% Iy=0.161 23 % Iy=0.21 4 α (K)exp<0.0020 α (K)=0.001183 17; α (L)=0.0001620 23; α (M)=3.58×10 ⁻⁵ 5 α (N)=8.37×10 ⁻⁶ 12; α (O)=1.194×10 ⁻⁶ 17; α (P)=6.38×10 ⁻⁸ 9 Lea(K)<0.01 (1975)/y/7X)
^x 1043.4 ^d 6 ^x 1049.7 4	2.3 ^d 7 1.0 5							%Iy=0.10 3 %Iy=0.043 22 Ey=1049.5 5, Iy=1.0 5 (1975VyZY). Ey=1049.80 40, Iy=1.0 2, scaled to 2.8 6 (1976Me06).
1054.3 ^{<i>d</i>} 5 x1058.9 ^{<i>d</i>} 2 x1068.1 4	1.0 ^d 5 3.4 ^d 5 6.5 12	1356.32	(9/2 ⁺ ,11/2 ⁺)	301.48	11/2-	M1	0.00609 9	% $I_{\gamma}=0.043 22$ % $I_{\gamma}=0.15 3$ % $I_{\gamma}=0.28 6$ α (K)exp=0.0077 21 α (K)=0.00515 7; α (L)=0.000740 10; α (M)=0.0001646 23
^x 1070.3 7	6.1 12					M1	0.00606 <i>9</i>	$\alpha(N)=3.86\times10^{-5} 5; \ \alpha(O)=5.56\times10^{-6} 8; \ \alpha(P)=3.04\times10^{-7} 4$ Ey=1068.5 4, Iy=6.5 12, Ice(K)=0.05 1 (1975VyZY). Ey=1067.70 40, Iy=1.5 3, scaled to 4.2 6 (1976Me06). %Iy=0.27 6 $\alpha(K)$ exp=0.0082 23 $\alpha(K)=0.00512 7; \ \alpha(L)=0.000736 10; \ \alpha(M)=0.0001637 23$ $\alpha(N)=3.84\times10^{-5} 5; \ \alpha(O)=5.53\times10^{-6} 8; \ \alpha(P)=3.02\times10^{-7} 4$
^x 1076 ^d 2 ^x 1083.0 ^d 3	≈3 ^d 8.5 ^d 12					(E2)	0.00316 4	E _y : unweighted average of the two values. E _y =1071.0 4, I _Y =6.1 12, Ice(K)=0.05 1 (1975VyZY). E _Y =1069.70 30, I _Y =2.0 3 (1976Me06). %I _Y ≈0.13 %I _Y =0.37 6 α (K)exp≈0.0035 α (K)=0.00263 4; α (L)=0.000407 6; α (M)=9.13×10 ⁻⁵ 13 α (N)=2.136×10 ⁻⁵ 30; α (O)=3.00×10 ⁻⁶ 4; α (P)=1.483×10 ⁻⁷
^x 1085.27 17	15.9 <i>16</i>							21 Ice(K) ≈ 0.03 (1975VyZY). %Iy=0.69 9 α (K)exp ≈ 0.0019 Ey=1085.5 3, Iy=15.9 16, Ice(K) ≈ 0.03 (1975VyZY).
1092.3 <i>5</i> <i>x</i> 1108.96 <i>20</i>	3.2 86.4 23	1305.53	(7/2 ⁻)	213.167	(5/2)-			$E\gamma = 1085.19 \ 17, \ I\gamma = 5.2 \ 7 \ (1976Me06).$ %Iy=0.14 4 Ey=1092.5 5, Iy=3.2 8 (1975VyZY). Ey=1092.10 50, Iy=1.2 2 (1976Me06). %Iy=0.28 \ 10

I					167 Lu ε	decay (5	1.46 min) 19	976Me06,197	76Gr06,1981Kr	08 (continued)
							$\gamma(^{167})$	Yb) (continu	ued)	
	E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
	x1112.1 ^d 13 x1120.4 ^d 6 x1123.1 ^d 4 1126.62 12	$3.0^{d} I2 \approx 1.8^{d}$ $3.1^{d} I0$ 16.2 I3	1305.53	(7/2 ⁻)	178.863	9/2-	(M1(+E2)) ^b	+0.06 24	0.00534 21	α(K)exp=0.0031 15 Εγ=1108.9 5, Γγ=6.4 23, Ice(K)=0.020 6 $(1975VyZY). Εγ=1108.97 20, Γγ=2.6 4 (1976Me06). %Γγ=0.13 5 %Γγ=0.13 5 %Γγ=0.14 5 %Γγ=0.70 9 A_2=+0.23 24; α(K)exp=0.0010 3 α(K)=0.00451 18; α(L)=0.000648 24; α(M)=0.000144 5 α(N)=3.38×10^{-5} 12; α(O)=4.86×10^{-6} 18; α(P)=2.66×10^{-7} 11; α(IPF)=8.40×10^{-7} 19 Εγ=1126.8 2, Γγ=16.2 13, Ice(K)=0.016 4 (1975VyZY).Εγ=1126.56 12, Γγ=5.6 5 (1976Me06).$ $ ΔJ=2 ruled out by γ(θ) which implies unrealistic $ $ 4.4% M3 admixture for ΔJ=2, E2+M3 $ $ (1981Kr08); E1 from α(K)exp inconsistent with$
	x1132.2 ^d 3 x1137.0 ^d 4	$\approx 3.8^{d}$ $\approx 4.3^{d}$								
	x1146.0 ^d 15 x1153.3 ^d 10 x1161.41 13	1.8 ^d 8 1.2 ^d 6 15.8 15					EI		1.15×10 ⁻³ 2	$ \begin{aligned} & & \approx 10^{-6} \text{ (I)} = 0.03 \ 4 \\ & & & \approx 10^{-6} \text{ (I)} = 0.03 \ 4 \\ & & & \approx 10^{-6} \text{ (I)} = 0.0013 \\ & & & & \approx 10^{-6} \text{ (I)} = 0.0001322 \ 19; \\ & & & & & & & & & & & & & & & & & & $
	1164.20 20	10.2 <i>10</i>	1952.66	(7/2)+	788.36	(9/2)-	E1(+M2)	≤0.4	0.0019 7	$\begin{aligned} &\alpha(P) = 5.25 \times 10^{-8} \ 7; \ \alpha(IPF) = 9.46 \times 10^{-6} \ 14 \\ & \text{E}\gamma = 1161.4 \ 2, \ I\gamma = 15.8 \ 15, \ \text{Ice}(\text{K}) \leq 0.02 \\ & (1975 \text{VyZY}). \\ & \text{E}\gamma = 1161.41 \ 17, \ I\gamma = 5.2 \ 5 \ (1976 \text{Me06}). \\ & \% \text{I}\gamma = 0.44 \ 6 \\ & \text{A}_2 = +1.02 \ 75; \ \alpha(\text{K}) \text{exp} \leq 0.0020 \\ & \alpha(\text{K}) = 0.0016 \ 6; \ \alpha(\text{L}) = 2.3 \times 10^{-4} \ 10; \\ & \alpha(\text{M}) = 5.1 \times 10^{-5} \ 22 \end{aligned}$

			¹⁶⁷ L	u ε decay ((51.46	min) 1976	Me06,1976Gr06,	1981Kr08 (co	ontinued)
						γ (¹⁶⁷ Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^g	Comments
^x 1167.9 ^d 5 ^x 1173.5 ^d 9	3.7 ^d 13 6.7 ^d 12								
1175.5 ^d 10	6.5 ^d 18	1356.32	$(9/2^+, 11/2^+)$ $5/2^+$	178.863	9/2 ⁻ 7/2 ⁻	$E_1(1M_2)b$	0.06 ± 21.24	0.0011.8	%Iy=0.28 8
1100.34 10	51.515	1207.24	572	10.072	172		0.00 121 24	0.0011 0	$A_{2}=+0.06\ 28;\ \alpha(K)\exp=0.0009\ 3$ $\alpha(K)=1.0\times10^{-3}\ 7;\ \alpha(L)=1.3\times10^{-4}\ 10;$ $\alpha(M)=2.9\times10^{-5}\ 24$ $\alpha(N)=7.E-6\ 6;\ \alpha(O)=1.0\times10^{-6}\ 8;\ \alpha(P)=5.E-8\ 4;$ $\alpha(IPF)=1.72\times10^{-5}\ 13$ $E\gamma=1188.6\ 1,\ I\gamma=37.3\ 19,\ Ice(K)=0.035\ 10$ (1975VyZY).
*1196.59 <i>20</i>	7.3 7					(E2)		0.00259 4	E γ =1188.48 <i>10</i> , 1 γ =12.9 <i>6</i> (1976Me06). %I γ =0.32 <i>4</i> α (K)exp=0.0026 <i>9</i> α (K)=0.002168 <i>30</i> ; α (L)=0.000328 <i>5</i> ; α (M)=7.34×10 ⁻⁵ <i>10</i> α (N)=1.718×10 ⁻⁵ <i>24</i> ; α (O)=2.422×10 ⁻⁶ <i>34</i> ; α (P)=1.221×10 ⁻⁷ <i>17</i> ; α (IPF)=4.61×10 ⁻⁶ <i>7</i> E γ =1196.6 <i>2</i> , 1 γ =7.3 <i>7</i> , Ice(K)=0.019 <i>6</i> (1975VyZY).
^x 1199.9 ^d 2 ^x 1208.2 ^d 5	8.1 ^d 8 3.9 ^d 11					M1,E2		0.0035 10	E γ =1196.5 / 28, 1 γ =3.6 4 (1976Me06). %I γ =0.35 5 %I γ =0.17 5 α (K)exp=0.0036 16 α (K)=0.0030 8; α (L)=4.3×10 ⁻⁴ 11; α (M)=9.7×10 ⁻⁵ 25 α (N)=2.3×10 ⁻⁵ 6; α (O)=3.2×10 ⁻⁶ 9; α (P)=1.7×10 ⁻⁷ 5; α (IPF)=6.5×10 ⁻⁶ 8 Ice(K)=0.014 5 (1975VyZY).

				¹⁶⁷ Lu ε	decay (51.4	6 min) 19	976Me06,1976Gr()6,1981Kr08 (co	ontinued)
						$\gamma(^{167}$	Yb) (continued)		
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^g	Comments
x1212.8 ^d 4	5.5 ^d 11								%Iγ=0.24 5 α (K)exp≤0.0018 Ice(K)≤0.01 (1975VyZY).
x1217.3 ⁴ 9 1227.31 20	3.2 ⁴ 11 37.5 20	1947.48	(9/2)+	719.61	(7/2)-	E1+M2 ^b	+0.39 +11-9	0.0023 6	%Iγ=0.14 5 %Iγ=1.63 17 A ₂ =-0.38 14; α(K)exp=0.00053 14 α(K)=0.0019 5; α(L)=2.8×10 ⁻⁴ 8; α(M)=6.2×10 ⁻⁵ 19 α(N)=1.5×10 ⁻⁵ 4; α(O)=2.1×10 ⁻⁶ 6; α(P)=1.13×10 ⁻⁷ 34; α(IPF)=2.82×10 ⁻⁵ 21 Eγ=1227.4 2, Iγ=37.5 20, Ice(K)=0.020 5 (1975VyZY). Eγ=1227.22 20, Iγ=13.0 13 (1976Me06). δ(Q/D) (1981Kr08) favors $\Delta \pi$ =no; but E1 from α(K)exp.
^x 1234.0 ^d 2 1255.50 20	10.5 ^d 12 8.2 9	1975.17	(9/2)+	719.61	(7/2)-	E1+M2 ^b	+0.20 +18-16	0.0014 8	%Iγ=0.46 7 α(K)=0.0011 6; α(L)=1.59×10 ⁻⁴ 99; α(M)=3.5×10 ⁻⁵ 22 α(N)=8.E-6 5; α(O)=1.2×10 ⁻⁶ 8; α(P)=6.E-8 4; α(IPF)=4.3×10 ⁻⁵ 4 %Iγ=0.36 5 Eγ=1255.8 3, Iγ=8.2 9, Ice(K)≤0.01 (1975VyZY). Eγ=1255.37 20, Iγ=3.3 5 (1976Me06). Placed by 1981Kr08 from 1974 level also, but Eγ does not fit that placement.
^x 1259.3 ^d 3 1267.26 8	5.7 ^d 7 100 3	1267.24	5/2+	0.0	5/2-	E1		1.03×10 ⁻³ 1	A2=-0.08 28 \$ EKC LE 0.00135. %I γ =0.25 4 %I γ =4.3 4 α (K)exp=0.00093 20 α (K)=0.000832 12; α (L)=0.0001129 16; α (M)=2.492×10 ⁻⁵ 35 α (N)=5.84×10 ⁻⁶ 8; α (O)=8.34×10 ⁻⁷ 12; α (P)=4.50×10 ⁻⁸ 6; α (IPF)=4.97×10 ⁻⁵ 7 Figure 1067 4.2 Leg(K) = 0.002 20
1275.38 20	18.8 <i>15</i>	1952.66	(7/2)+	677.18	(5/2,7/2)-	E1(+M2)	≤0.1	0.00106 4	E γ =1267.4 2, 1 γ =100 3, Ice(K)=0.093 20 (1975VyZY). E γ =1267.24 8, I γ =36.1 25 (1976Me06). %I γ =0.82 10 A ₂ =-0.47 16; α (K)exp=0.00064 22 α (K)=0.00086 4; α (L)=0.000117 6;

 $^{167}_{70}{
m Yb}_{97}$ -46

$\frac{y(^{167}\text{Yb}) \text{ continued}}{(1233)} \\ \frac{E_{\gamma}^{\dagger}}{I_{\gamma}} \frac{I_{\gamma}^{2}f}{I_{\gamma}} \frac{E_{j}(\text{level})}{I_{\gamma}} \frac{F_{\gamma}}{I_{\gamma}} \frac{F_{j}}{I_{\gamma}} \frac{F_{j}}}{I_{\gamma}} \frac{F_{j}}}{I$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							$\gamma(^{167}$	Yb) (continu	ued)
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\alpha^{m{g}}$	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									$ α(M)=2.59×10^{-5} 13 $ $ α(N)=6.05×10^{-6} 30; α(O)=8.7×10^{-7} 4; α(P)=4.67×10^{-8} 23; $ $ α(IPF)=5.31×10^{-5} 8 $ Eγ=1275.4 2, Iγ=18.8 15, Ice(K)=0.012 4 (1975VyZY). Eγ=1275.35 30, Iγ=6.0 9 (1976Me06). δ: -0.2≤δ≤+1.5 from γ(θ) (1981Kr08), while excluding 7/2 to 5/2 or 3/2; ≤0.1 from α(K)exp. An alternative $7/2^-$ to $5/2^+$ placement from the 1306 level is rejected by 1981Kr08 because, for that, $δ=0.47 + 4-2.$
$ x 1284.4^{d} 3 \qquad 8^{d} 1 \qquad $	^x 1280.3 ^d 3	10.9 ^d 10							%Iy=0.47 6
^x 1289.4 ^d 7 ^x 1296.0 ^d 5 ^x 1296.0 ^d 5 ^x 1301.06 20 ^x 1305.06 12 ^x 1305.46 12 ^x 1206.16 ^x 1305.53 ^x 1305.53 ^x 1305.53 ^x 1305.53 ^x 1314.5 ^d 6 ^x 1327.6 ^d 4 ^x 1327.6 ^d 4 ^x 1327.6 ^d 4 ^x 1305. ^d 12 ^x 1307. ^d 4 ^x 1307. ^d 4 	$x_{1284.4}d^{d}3$	8 ^d 1							%Iy=0.35 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{x}1289.4^{a}$ 7	3.8^{a} 16							%Iy=0.17 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x1296.0 ⁴ 5 x1301.06 20	2.0 ⁴ 9 8.0 8							%17=0.09 4 %17=0.35 5
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									$\alpha(\vec{K}) \exp \leq 0.0013$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									$E\gamma = 1301.1 \ 2, \ 1\gamma = 8.0 \ 8, \ 1ce(K) \le 0.01 \ (1975 VyZY).$ $E\gamma = 1300.90 \ 40. \ 1\gamma = 2.0 \ 6 \ (1976 Me06).$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1305.46 12	20.6 16	1305.53	$(7/2^{-})$	0.0	5/2-	(M1+E2)	0.0030 8	%Iγ=0.90 <i>11</i>
$x^{1}308.3^{d} 5 \qquad 3.4^{d} 7$ $x^{1}314.5^{d} 6 \qquad 2.3^{d} 9$ $x^{1}1319.76 28 \qquad 8.8 8$ $x^{1}308.3^{d} 5 \qquad 1.9^{d} 6 \qquad 1356.32 \qquad (9/2^{+},11/2^{+}) \qquad 33.916 \qquad 7/2^{+}$ $x^{1}327.6^{d} 4 \qquad 4.5^{d} 6$ $x^{1}(1) = 0.0025 7, \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 7; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 7; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 7; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.0050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 2.7 \times 10^{-7} 4; \alpha(1) = 0.050 5, \alpha(0) = 0.050 5, $									$A_2 = -0.36 \ I5; \ \alpha(K) \exp = 0.00058 \ 20$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									$a(N)=0.00257, a(L)=0.000505, a(N)=0.1\times10^{-7} 20$ $a(N)=1.9\times10^{-5} 5; a(O)=2.7\times10^{-6} 7; a(P)=1.4\times10^{-7} 4;$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									$\alpha(\text{IPF})=2.20\times10^{-5}\ 26$ Even 1205 4.2 Ly=20.6 16 Log(K)=0.012 4 (1075)/-72V)
$ \begin{split} & \delta(Q/D) = +0.38 + i2 - 9 \text{ or } +6.4 + 8i - 25 \text{ from } \gamma(\theta) \ (1981 \text{ Kr08}); \\ & \text{magnitude of } \delta \text{ favors } \Delta \pi = \text{no. E1 from } \alpha(\text{K})\text{exp inconsistent } \gamma \\ & \text{level scheme.} \\ & \% \text{I}\gamma = 0.15 \ 3 \\ & \% \text{I}\gamma = 0.10 \ 4 \\ & \% \text{I}\gamma = 0.38 \ 5 \\ & \alpha(\text{K})\text{exp} \leq 0.0011 \\ & \text{E}\gamma = 1319.9 \ 3, \ \text{I}\gamma = 8.8 \ 8, \ \text{Ice}(\text{K}) \leq 0.01 \ (1975 \text{ VyZY}). \\ & \text{E}\gamma = 1319.64 \ 28, \ \text{I}\gamma = 2.1 \ 3, \ \text{scaled to } 5.9 \ 8 \ (1976 \text{Me06}). \\ & \text{I}323.2^d \ 5 \\ & \text{I}327.6^d \ 4 \\ & 4.5^d \ 6 \\ \end{split}$									$E_{\gamma} = 1305.42$, $I_{\gamma} = 20.070$, $ICe(K) = 0.012.4$ ($1975VyZY$). $E_{\gamma} = 1305.48$ 12, $I_{\gamma} = 7.4$ 11 ($1976Me06$).
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$									δ (Q/D)=+0.38 +12-9 or +6.4 +81-25 from $\gamma(\theta)$ (1981Kr08); magnitude of δ favors $\Delta \pi$ =no. E1 from α (K)exp inconsistent with level scheme.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 1308.3 ^d 5	3.4 ^d 7							%Iy=0.15 3
*1319.76 28 8.8 8 *1319.76 28 8.8 8 *1319.76 28 8.8 8 *1323.2 ^d 5 1.9 ^d 6 1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6 *1356.32 (9/2 ⁺ ,11/2 ⁺) 33.916 7/2 ⁺ *1327.6 ^d 4 4.5 ^d 6	^x 1314.5 ^d 6	2.3 ^d 9							%Iy=0.10 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^1319.76 28	8.8 8							$\%1\gamma=0.385$ $\alpha(K)\exp<0.0011$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									$E\gamma = 1319.9 \ 3, \ I\gamma = 8.8 \ 8, \ Ice(K) \le 0.01 \ (1975VyZY).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1202 od 5	1.00	1256.22	(0/0+ 11/0+)	22.014	7/0+			$E\gamma = 1319.64 \ 28, \ I\gamma = 2.1 \ 3, \ scaled to \ 5.9 \ 8 \ (1976Me06).$
$I_{0}Y=0.203$ Ice(K)=0.193 (1975VyZY), could be a misprint as α (K)exp=0.0	1323.2° 3 x1327.6 ^d A	1.9^{4} 0 4.5d 6	1356.32	$(9/2^+,11/2^+)$	33.916	1/2*			$\%1\gamma = 0.08.5$
is too large to be consistent with M1 in 19/5VyZY.	1527.0 4	4.5 0							Ice(K)=0.19 3 (1975VyZY), could be a misprint as α (K)exp=0.042 9 is too large to be consistent with M1 in 1975VyZY.
$x_{1338.1}^{d} 6 5.5^{d} 15$ %I γ =0.24 7	^x 1338.1 ^d 6	5.5 ^d 15							%Iy=0.24 7

	¹⁶⁷ Lu ε decay (51.46 min) 1976Me06,1976Gr06,1981Kr08 (continued)													
						γ (¹⁶⁷ Yb) (continue	ed)						
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α ^g	$I_{(\gamma+ce)}f$	Comments				
$x_{1348.8}^{d}$ 10 x_{1357}^{d} 2 x_{1362}^{d} 2	2.5^{d} 13 4^{d} 2 3.3^{d} 16									%Iγ=0.11 6 %Iγ=0.17 9 %Iγ=0.14 7				
1375.99 12	19.1 <i>11</i>	1947.48	(9/2)+	571.489	(11/2)-	(E1+M2) ^b	-1.2 8	0.0050 <i>31</i>		% Iγ=0.83 9 A ₂ =-0.53 16; α(K)exp≈0.00052 α(K)=0.0041 26; α(L)=6.E-4 4; α(M)=1.4×10 ⁻⁴ 9 α(N)=3.3×10 ⁻⁵ 21; α(O)=4.7×10 ⁻⁶ 30; α(P)=2.5×10 ⁻⁷ 16; α(IPF)=5.E-5 4 Eγ=1376.1 2, Iγ=19.1 11, Ice(K)≈0.010 (1975VyZY). Eγ=1375.95 12, Iγ=7.0 10 (1976Me06). δ: -2.0≤δ≤-0.4 from γ(θ), rules out ΔJ=1, dipole transition (1981Kr08); magnitude of δ favors Δπ=no; E1 from α(K)exp				
1379.5 ^d 2	18.9 ^d 11	1951.10	(9/2)	571.489	(11/2)-					%I γ =0.82 9 α (K)exp=0.0013 Ice(K)=0.025 (1975VyZY). Mult : E1 or E2 from α (K)exp				
$1384.2^{d} 3$	4.1^{d} 7 4.0^{d} 7	2012.32	(7/2,9/2 ⁻)	628.62	7/2+					%Iγ=0.18 4 %Iγ=0.17 4				
1394.07 17	15.5 11	1947.48	(9/2)+	553.38	9/2-	E1(+M2) ^b	+0.5 6	0.0023 23		%I _γ =0.67 8 %I _γ =0.67 8 A ₂ =-0.55 19; α(K)exp≤0.0010 α(K)=0.0018 19; α(L)=2.7×10 ⁻⁴ 30; α(M)=6.E-5 7 α(N)=1.4×10 ⁻⁵ 16; α(O)=2.0×10 ⁻⁶ 22; α(P)=1.1×10 ⁻⁷ 12; α(IPF)=1.0×10 ⁻⁴ 4 E _γ =1394.1 2, I _γ =15.5 11, Ice(K)≤0.015 (1975VyZY). E _γ =1394.04 17, I _γ =5.0 8 (1976Me06). δ: -0.1≤δ≤+1.1 from γ(θ) (1981Kr08); E1 from α(K) vrp				
1397.60 10	30.0 16	1951.10	(9/2)	553.38	9/2-	Q(+D)				%Iγ=1.30 I4 A ₂ =+0.33 21; α(K)exp≤0.0050 Eγ=1397.7 2, Iγ=30.0 I6, Ice(K)≤0.015 (1975VyZY). Eγ=1397.57 10, Iγ=10.5 10 (1976Me06). δ: -9.8≤δ(Q/D)≤-0.8 or ≥4.6 (1981Kr08); magnitude of δ favors Δπ=no. However, E1 is favored from α(K)exp.				

From ENSDF

 $^{167}_{70}\mathrm{Yb}_{97}\text{-}48$

				¹⁶⁷ Lu ε	decay (51	.46 min)	1976Me06,1976C	Gr06,1981Kr08	(continued)
						<u> </u>	¹⁶⁷ Yb) (continued))	
E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.#	$\delta^{@}$	α^{g}	Comments
1403.66 <i>14</i>	20.2 12	1975.17	(9/2)+	571.489	(11/2)-	D(+Q) ^b	-0.04 +25-11		%I γ =0.88 <i>10</i> A ₂ =+0.22 <i>27</i> E γ =1403.6 <i>2</i> , I γ =20.2 <i>12</i> (1975VyZY). E γ =1403 69 <i>14</i> I γ =6 0.9 (1976Me06)
^x 1414.1 <i>3</i>	2.7 4								$\%$ I γ =0.117 20 E γ =1414.1 3, I γ =2.7 4 (1975VyZY). E γ =1414.09 60, I γ =0.9 2 (1976Me06).
^x 1420.6 ^d 4 1423.65 20	2.9 ^d 4 8.1 6	1995.32	(9/2 ⁻)	571.489	(11/2)-				% $I_{Y}=0.126\ 21$ % $I_{Y}=0.35\ 4$ $E_{Y}=1423.7\ 2,\ I_{Y}=8.1\ 6\ (1975VyZY).$ $E_{Y}=1423\ 50\ 36\ I_{Y}=2\ 5\ 4\ (1976Me06)$
1426.84 <i>12</i>	25.4 10	1998.42	(9/2)+	571.489	(11/2)-	E1+M2	-0.25 +12-15	0.00100 6	%Iy=1.10 <i>II</i> A ₂ =-0.19 <i>I6</i> ; α (K)exp=0.00059 <i>20</i> α (K)=0.00073 <i>5</i> ; α (L)=0.000100 <i>8</i> ; α (M)=2.20×10 ⁻⁵ <i>18</i>
x1439.0 ^d 13 1444.91 27	2.3 ^d 11 8.3 12	1998.42	(9/2)+	553.38	9/2-	D(+Q) b	+0.7 10		%I γ =0.10 5 %I γ =0.36 6 A ₂ =+0.50 68; α (K)exp<0.0021 E γ =1445.0 4, I γ =8.3 12, Ice(K)≤0.015 (1975VyZY).
*1451.7 <mark>d</mark> 8 1469.98 20	2.8 ^d 12 9.9 8	1947.48	(9/2)+	477.43	9/2-				Eγ=1444.8/ 2/, 1γ=2.4 4 (19/6Me06). δ: $-0.3 \le \delta \le +1.7$ (1981Kr08). %Iγ=0.12 5 %Iγ=0.43 5 α(K)exp≤0.0016; α(K)exp≤0.0037 Eγ=1470.0 2, Iγ=9.9 8, Ice(K)≤0.015 (1975VyZY). Eγ=1469.89 43, Iγ=1.7 3, scaled to 4.8 8 (1976Me06)
1474.3 ^d 7	4.5^{d} 8	1951.10	(9/2)	477.43	9/2-				 First α(K)exp from Iγ in 1975VyZY, second in 1976Me06. %Iγ=0.20 4 %Ly=0.27 6
1500.4 5	0.5 ⁴ 13 78 5	1947.48	$(9/2)^+$	440.676	7/2-	E1+M2 ^b	+0.18 7	0.00109 15	$\gamma_{01}\gamma=0.27$ 0 % $I_{\gamma}=3.4.4$

				167 Lu ε de	cay (51.4	6 min) 19 7	76Me06,197	6Gr06,1981Kı	r08 (continued)
						$\gamma(^{167}Y)$	(continue	ed)	
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
									A ₂ =-0.04 <i>12</i> ; α(K)exp=0.00051 <i>13</i> α(K)=0.00076 <i>13</i> ; α(L)=0.000105 <i>19</i> ; α(M)=2.3×10 ⁻⁵ <i>4</i> α(N)=5.4×10 ⁻⁶ <i>10</i> ; α(O)=7.8×10 ⁻⁷ <i>14</i> ; α(P)=4.2×10 ⁻⁸ <i>8</i> ; α(IPF)=0.000193 <i>5</i> Eγ=1506.9 <i>2</i> , Iγ=78.3 <i>45</i> , Ice(K)=0.04 <i>1</i> (1975VyZY). Eγ=1506.83 <i>8</i> , Iγ=27.0 <i>20</i> (1976Me06). Mult.,δ: δ(Q/D)=+0.18 7 or ≥12.8 (magnitude of δ) from α(θ) (1981Kr08): E1 from α(K)exp
1510.39 <i>15</i>	21.5 24	1951.10	(9/2)	440.676	7/2-	D+Q	≥+0.3		%Iγ=0.93 13 A_2 =-0.48 20; α(K)exp=0.00060 20 Eγ=1510.4 5, Iγ=21.5 24, Ice(K)=0.013 4 (1975VyZY). Eγ=1510.39 15, Iγ=7.4 11 (1976Me06). δ: +0.47 +22-14 or +3.6 +15-33 (1981Kr08); δ favors Δπ=no, However, E1 from α(K)exp.
^x 1515.8 5	5.3 8								%I γ =0.23 4 $\alpha(K)\exp \leq 0.0028$ $E\gamma$ =1515.8 7, I γ =8.5 27, Ice(K) ≤ 0.015 (1975V γ ZY). $E\gamma$ =1515.79 47, I γ =1.9 3, scaled to 5.3 8 (1976Me06); I γ adopted from 1976Me06. $\alpha(K)\exp$ using I γ from 1976Me06.
1521.52 <i>23</i>	9.5 14	1998.42	(9/2)+	477.43	9/2-	(E1+M2) ^b	+0.4 1	0.00163 32	%Iγ=0.41 7 A ₂ =-0.88 33; α(K)exp≤0.00123 α(K)=0.00122 28; α(L)=0.00018 4; α(M)=3.9×10 ⁻⁵ 9 α(N)=9.1×10 ⁻⁶ 22; α(O)=1.31×10 ⁻⁶ 32; α(P)=7.1×10 ⁻⁸ 17; α(IPF)=0.000185 11 Eγ=1521.7 3, Iγ=12.0 34, Ice(K)≤0.01 (1975VyZY). Eγ=1521.41 23, Iγ=3.4 5, scaled to 9.5 14 (1976Me06). I _γ : from 1976Me06. δ: +0.3≤δ≤+0.5 from γ(θ) (1981Kr08); magnitude of δ in favors Δπ=no but α(K)exp and level scheme favor Δπ=ves
1531.63 27	9.1 23	1951.10	(9/2)	419.540	(9/2)-				$\%$ I γ =0.40 <i>11</i> E γ =1531.7 <i>3</i> , I γ =9.1 <i>23</i> (1975VyZY). E γ =1531.58 <i>27</i> , I γ =3.5 <i>5</i> (1976Me06).
1534.66 ^h 21	13 ^h 1	1975.17	(9/2)+	440.676	7/2-				%I γ =0.57 7 A ₂ =-0.20 29 E γ =1534.8 3, I γ =13 1 (1975VyZY). E γ =1534.59 21, I γ =4.8 7 (1976Me06). δ (Q/D)=+0.25 +21-18 if 9/2 to 7/2 transition for a doubly-placed γ (1981Kr08).
1534.66 ^h 21	13 ^h 1	2012.32	(7/2,9/2 ⁻)	477.43	9/2-				%Iy=0.57 7

 $^{167}_{70}{
m Yb}_{97}$ -50

			-	¹⁶⁷ Lu ε deca	y (51.46	ó min)	1976Me06,1976Gr06,1981Kr08 (continued)				
						$\gamma(10)$	⁶⁷ Yb) (continued)				
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments				
							$\delta(Q/D) = -0.32 \ 40 \text{ or } +1.6 \ +24-9 \text{ for first } A_2 \text{ if } J(2012) = 9/2; \ -0.28 \ +25-35 \text{ or } -2.6 \ +14-52 \text{ if } J(2012) = 7/2 \text{ for second } A_2; \text{ doubly-placed } \gamma \ (1981 \text{Kr08}).$				
1541.94 ^h 15	19.0 ^h 15	1952.66	(7/2)+	410.979	7/2-		%Iγ=0.83 10 A ₂ =-0.13 32; α(K)exp=0.00053 16 Eγ=1541.9 2, Iγ=19.0 15, Ice(K)=0.010 3 (1975VyZY). Eγ=1541.96 15, Iγ=6.1 6 (1976Me06). δ (Q/D)=-0.34 +37-44 from γ(θ) (1981Kr08); E1 from α(K)exp for doubly-placed γ.				
1541.94 ^h 15	19.0 ^h 15	2330.38	9/2+	788.36	(9/2)-		$\%$ I γ =0.83 10 δ (Ω (D)=-0.42 + 36-44 from γ (θ) for doubly-placed line (1981Kr08)				
1548.43 15	18.0 19	1979.49	(7/2 ⁻)	430.87	7/2+	D(+Q)	$ \begin{aligned} & (Q/D) = 0.12 + 0.12 + 0.011 + 0.011 + 0.0101 + 0.$				
1554.70 ^h 35	5.2 ^h 12	1973.96	5/2,7/2	419.540	(9/2)-		%I γ =0.23 6 A ₂ =-0.53 49; A ₂ =-0.49 45 E γ =1555.3 6, I γ =5.2 12 (1975VyZY). E γ =1554.50 35, I γ =2.0 3 (1976Me06). δ : -4.2 $\leq \delta$ (Q/D) \leq +0.2 for first A ₂ if J(1974)=7/2 or -2.5 $\leq \delta$ (O/Q) \leq +0.1 for second A ₂ if J(1974)=5/2 (1981Kr08); doubly-placed line.				
1554.70 ^h 35	5.2 ^h 12	1975.17	(9/2)+	419.540	(9/2)-		%I γ =0.23 6 δ (Q/D)=+43 43 for doubly-placed line (1981Kr08).				
1554.70 ^h 35	5.2 ^h 12	1995.32	(9/2 ⁻)	440.676	7/2-		%Iy=0.23 6 $\delta + 0.2 \le \delta \le +85.2$ from $\gamma(\theta)$ for a doubly-placed line(1981Kr08)				
1558.10 <i>32</i>	5.2 12	1998.42	(9/2)+	440.676	7/2-		%Iy=0.23 6 Ey=1558.1 6, Iy=5.2 12 (1975VyZY). Ey=1558.1 0, 32 Iy=2.5.4 (1976Me06)				
1562.89 47	4.3 11	1973.96	5/2,7/2	410.979	7/2-		%[y=0.19 5 Ey=1563.2 6, Iy=4.3 11 (1975VyZY). Ey=1562.70 47, Iy=1.7 3 (1976Me06).				
1578.80 <i>15</i>	13.6 10	1998.42	(9/2)+	419.540	(9/2)-		$\%$ I γ =0.59 7 α (K)exp=0.00074 23; α (K)exp=0.0010 3 E γ =1578.7 2, I γ =13.6 10, Ice(K)=0.010 3 (1975VyZY). E γ =1578.86 15, I γ =3.9 6 (1976Me06). First α (K)exp from I γ in 1975VyZY, second in 1976Me06; implied mult=E1 or E2.				
1582.0 ^d 13	6.2 ^d 21	2012.32	(7/2,9/2-) 430.87	7/2+		%Iy=0.27 10				
1584.9 ^d 9	4.2^{d}_{d} 21	1995.32	(9/2 ⁻)	410.979	7/2-		%Iγ=0.18 <i>9</i>				
1588.2 ^{<i>a</i>} 20	1.6 ^{<i>a</i>} 8	1998.42	$(9/2)^+$	410.979	7/2-		%Iγ=0.07 <i>4</i>				
[*] 1594.7 ^{°°} 4	3.2 ^{<i>u</i>} 12						%lγ=0.14 5				

From ENSDF

				¹⁶⁷ Luε α	Lu ε decay (51.46 min)		1976Me0	6,1976Gr06,19	81Kr08 (continued)
						<u> </u>	(¹⁶⁷ Yb) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
^x 1601.0 ^d 15	1.8 ^d 4								%Iy=0.078 <i>19</i>
^x 1607.52 27	7.5 11								%Iy=0.33 6 Ey=1607.7 4. Iy=7.5 11 (1975VyZY).
X1(10.07.20	650								$E_{\gamma} = 1607.44 \ 27, \ I_{\gamma} = 2.9 \ 4 \ (1976 Me06).$
*1610.97 32	6.5 8								$\%_{1\gamma=0.28}$ 4 E $\gamma=1611.2$ 4, I $\gamma=6.5$ 8 (1975VyZY).
1	1								$E\gamma = 1610.83 \ 32, \ I\gamma = 2.8 \ 4 \ (1976 Me06).$
$x_{1621.0d} 5$	6.2^{d} 26								$\%$ I γ =0.27 12
*1624.7 ^a 6	7.34 26	1047 48	$(0/2)^+$	317 188	$(7/2)^{-}$	$D(10)^{b}$	2 4 23		$\%_{1}\gamma = 0.32$ 12 % Ia = 0.43.7
1029.7 5	10.0 14	1747.40	(9/2)	517.400	(1/2)	D(+Q)	-2.4 23		$A_2 = +1.03 \ 64; \ \alpha(K) \exp \le 0.0012; \ \alpha(K) \exp \le 0.0025$
									$E_{\gamma}=1629.75$, $I_{\gamma}=10.014$, $Ice(K) \le 0.01$ (1975 $VyZY$).
									δ : -4.6 $\leq \delta$ (Q/D) \leq -0.1 from $\gamma(\theta)$ (1981Kr08). First α (K)
						,			exp from I γ in 1975VyZY, second in 1976Me06.
1633.69 15	36 <i>3</i>	1951.10	(9/2)	317.488	$(7/2)^{-}$	D(+Q) ^b			$\%$ I γ =1.56 19
									$R_2 = +0.22$ 22, $a(R)exp=0.00042$ 15, $a(R)exp=0.00037$ 20 E $\gamma = 1633.9$ 3, $I\gamma = 35.5$ 32, Ice(K)=0.015 5 (1975VyZY).
									$E\gamma = 1633.64$ 15, $I\gamma = 10.5$ 10, scaled to 29.4 28 (1976Me06).
									First $\alpha(K) \exp \text{ from } 1\gamma \text{ in } 19/5 \text{ VyZY}$, second in 19/6Me06. δ : +0.04 12 or +7.9 +39-872 (1981Kr08): E1 from $\alpha(K) \exp$.
1644.49 <i>11</i>	45 <i>3</i>	1952.66	$(7/2)^+$	308.401	$(7/2)^{-}$	E1		0.000925 13	%Iγ=1.96 22
									$A_2 = -0.24 \ 18; \ \alpha(K) \exp[=0.00040 \ 11]$ $\alpha(K) = 0.000524 \ 7; \ \alpha(K) = 7.18 \times 10^{-5} \ 10; \ \alpha(M) = 1.582 \times 10^{-5}$
									$\frac{a(\mathbf{K})=0.000334}{22}$
									α (N)=3.71×10 ⁻⁶ 5; α (O)=5.31×10 ⁻⁷ 7; α (P)=2.90×10 ⁻⁸ 4; α (IPF)=0.000299 4
									$E\gamma = 1644.3 \ 3, I\gamma = 45.4 \ 28, Ice(K) = 0.018 \ 5 \ (1975VyZY).$
									$E\gamma = 1644.51 \ II, \ I\gamma = 13.6 \ I3, \ scaled to \ 38.1 \ 37 \ (1976Me06).$ $\delta(\Omega/D) = -0.23 \ 20 \ (1981Kr08), \ ruling \ out \ \Lambda I = 1, \ dipole$
									$\alpha(\mathbf{K})$ exp consistent with E1.
^x 1653.9 5	4.2 6								$\%$ I γ =0.18 3 Ex=1652.5.7 Ex=4.0 15 (1075)/x(7)()
									$E_{\gamma}=1053.5$ 7, $1_{\gamma}=4.0$ 15 (1975 VyZ1). $E_{\gamma}=1654.13$ 50, $1_{\gamma}=1.5$ 2, scaled to 4.2 6 (1976Me06); 1_{γ}
1656 00 04	10.0.15	1072.07		217 400	(7/0)=				adopted from 1976Me06.
1656.22 24	10.8 15	1973.96	5/2,7/2	317.488	$(1/2)^{-}$				$\%_{1}\gamma=0.4 / \delta$ E $\gamma=1656.1.4$, I $\gamma=10.8.15$ (1975VvZY)
									$E\gamma = 1656.26 \ 24, \ I\gamma = 3.7 \ 6 \ (1976 Me06).$
1665.48 20	20.9 14	1973.96	5/2,7/2	308.401	$(7/2)^{-}$	D(+Q) ^b			%Iγ=0.91 10
									A ₂ =+0.12 26; A ₂ =+0.13 28; α (K)exp=0.00048 15; α (K)exp=0.0009 3

From ENSDF

				¹⁶⁷ Lu ε d	ecay (51	.46 min)	1976Me	06,1976Gr06,19	81Kr08 (continued)		
						<u> </u>	(¹⁶⁷ Yb) (co	ontinued)			
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^g	Comments		
^x 1671.9 ^d 9 1675.6 4	4.5 ^d 15 14.0 12	1952.66	(7/2)+	278.210	5/2-	(E1)		0.000928 13	E _γ =1665.2 3, I _γ =20.9 14, Ice(K)=0.010 3 (1975VyZY). E _γ =1665.60 20, I _γ =4.5 7, scaled to 12.6 20 (1976Me06). First α (K)exp from I _γ in 1975VyZY, second in 1976Me06. δ (Q/D)=-0.01 +26-20 for first A ₂ if J(1974)=5/2; δ (Q/D)=+0.7 +4-12 for second A ₂ if J(1974)=7/2 (1981Kr08); E1 or E2 from α (K)exp. %I _γ =0.20 7 %I _γ =0.61 8 α (K)exp≤0.00077; α (K)exp≤0.0013 α (K)=0.000518 7; α (L)=6.95×10 ⁻⁵ 10; α (M)=1.532×10 ⁻⁵ 21 α (N)=3.59×10 ⁻⁶ 5; α (O)=5.15×10 ⁻⁷ 7; α (P)=2.81×10 ⁻⁸ 4; α (IPF)=0.000322 5 E _γ =1675.8 4, I _γ =14.0 12, Ice(K)≤0.01 (1975VyZY). E _γ =1675.35 40, I _γ =3.3 6, scaled to 9.2 17 (1976Me06).		
1678.00 ^e 70	8.4 ^e 14	1995.32	(9/2-)	317.488	(7/2)-				First α (K)exp from I γ in 1975VyZY, second in 1976Me06. %I γ =0.37 7		
1680.81 25	20.8 14	1998.42	(9/2)+	317.488	(7/2)-				$I\gamma$ =3.0 5 (1976Me06), scaled to 8.4 14. % $I\gamma$ =0.90 10 α(K)exp≤0.00089 Eγ=1680.8 3, $I\gamma$ =20.8 14, Ice(K)≤0.01 (1975VyZY). Eγ=1680.81 25, $I\gamma$ =4.0 6, scaled to 11.2 17 (1976Me06).		
^x 1694.8 ^d 7 1696.29 <i>39</i>	7.6 ^d 28 8.4 14	1973.96	5/2,7/2	278.210	5/2-	D(+Q)			Mult.: E1 or E2 from α (K)exp. %I γ =0.33 <i>13</i> %I γ =0.37 <i>7</i> A ₂ =-0.35 27; A ₂ =-0.38 29 E γ =1697.1 <i>7</i> , I γ =7.6 28 (1975VyZY). E γ =1696.10 34, I γ =3.0 5, scaled to 8.4 <i>14</i> (1976Me06). E $_{\gamma}$: alternative placements from 2013 level (in 1976Me06) and from 1998 level (in 1976Gr06) are ruled out by $\gamma\gamma$ -coin and $\gamma(\theta)$ data in 1981Kr08; consequently, all I(1696a) is assigned from 1974 level		
1701.8 4	5.1 8	2330.38	9/2+	628.62	7/2+	D+Q ^b	+4.9 46		$\begin{split} & \Gamma(350\gamma) \text{ is assigned from } 1974 \text{ level.} \\ & I_{\gamma}: \text{ from } 1976\text{Me06.} \\ & \delta(Q/D) = -0.07 + 51 - 38 \text{ or } +1.9 + 20 - 11 \text{ for first } A_2 \text{ if } \\ & J(1974) = 5/2; \ \delta(Q/D) = +0.40 + 26 - 18 \text{ or } +5.8 + 119 - 33 \text{ for } \\ & \text{second } A_2 \text{ if } J(1974) = 7/2 \text{ (1981Kr08).} \\ & \% I\gamma = 0.22 \ 4 \\ & A_2 = -0.54 \ 33 \\ & E\gamma = 1701.8 \ 4, I\gamma = 5.1 \ 8 \ (1975 \text{VyZY}). \\ & E\gamma = 1701.80 \ 50, I\gamma = 1.5 \ 3 \ (1976 \text{Me06}). \\ & +0.3 \leq \delta \leq +9.6 \text{ from } \gamma(\theta) \ (1981 \text{Kr08}). \end{split}$		

				¹⁶⁷ Lu	ε decay	(51.46 min)	1976Me0	81Kr08 (continued)	
						γ	(¹⁶⁷ Yb) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments
1713.62 15	24.6 12	1952.66	(7/2)+	239.163	(5/2)-	E1		0.000934 13	%Iγ=1.07 11 α(K)exp≤0.00043 α(K)=0.000499 7; α(L)=6.69×10 ⁻⁵ 9; α(M)=1.475×10 ⁻⁵ 21 α(N)=3.46×10 ⁻⁶ 5; α(O)=4.96×10 ⁻⁷ 7; α(P)=2.71×10 ⁻⁸ 4; α(IPF)=0.000350 5 Eγ=1713.6 3, Iγ=24.6 12, Ice(K)≤0.01 (1975VyZY).
1720.1 4	4.7 6	1998.42	(9/2)+	278.210	5/2-				$E\gamma=1713.62 \ 15, \ I\gamma=7.2 \ 9 \ (1976Me06).$ % $I\gamma=0.20 \ 3$ $E\gamma=1720.2 \ 4, \ I\gamma=4.7 \ 6 \ (1975VyZY).$ $E\gamma=1719 \ 76 \ 70 \ I\gamma=1 \ 0 \ 2 \ scaled to \ 2 \ 8 \ 6 \ (1976Me06)$
^x 1730.92 <i>30</i>	8.8 7								$\%$ I γ =0.38 5 E γ =1731.1 3, I γ =8.8 7 (1975VyZY). E γ =1730.74 30, I γ =2.0 3, scaled to 5.6 8 (1976Me06).
1735.31 25	19.2 13	2052.79	9/2 ⁽⁻⁾	317.488	(7/2)-	(M1+E2) ^b	+2.2 18	0.0016 5	%Iγ=0.83 9 A ₂ =-0.88 44; α(K)exp≤0.00052; α(K)exp≤0.00078 α(K)=0.0012 4; α(L)=1.7×10 ⁻⁴ 5; α(M)=3.7×10 ⁻⁵ 11 α(N)=8.7×10 ⁻⁶ 27; α(O)=1.2×10 ⁻⁶ 4; α(P)=6.6×10 ⁻⁸ 23; α(IPF)=0.000168 30 Eγ=1735.3 3, Iγ=19.2 13, Ice(K)≤0.01 (1975VyZY). Eγ=1735.3125, Iγ=4.6 7, scaled to 12.9 20 (1976Me06). First α(K)exp from Iγ in 1975VyZY, second in 1976Me06, favoring E1 in the first case and E2 in the second, but Δπ=(no) from level scheme. δ: +0.4≤δ≤+4.1 from γ(θ) (1981Kr08).
1740.50 27	9.5 17	1979.49	(7/2 ⁻)	239.163	(5/2)-	D+Q ^b	+2.5 20		%Iγ=0.41 8 A ₂ =-1.13 67; α(K)exp≤0.00119; α(K)exp≤0.00128 Eγ=1740.7 3, Iγ=12.9 45, Ice(K)≤0.01 (1975VyZY). Eγ=1740.33 27, Iγ=3.4 6, scaled to 9.5 17 (1976Me06). I _γ : from 1976Me06. First α(K)exp from I _γ in 1975VyZY, second in 1976Me06. δ: +0.5≤δ≤+4.5 from γ(θ) (1981Kr08). α(K)exp based on I _γ from 1976Me06 allows E1 or E2.
×1747.50 <i>30</i>	10.5 8								%Iy=0.46 5 α (K)exp≤0.0010; α (K)exp≤0.0020 Ey=1747.5 3, Iy=10.5 8, Ice(K)≤0.01 (1975VyZY). Ey=1747.49 35, Iy=1.8 3, scaled to 5.0 8 (1976Me06). First α (K)exp from Iy in 1975VyZY, second from Iy in 1976Me06.
1752.7 3	5.4 15	2052.79	9/2 ⁽⁻⁾	301.48	11/2-				%Iγ=0.24 7 Eγ=1752.8 <i>3</i> , Iγ=5.4 <i>15</i> (1975VyZY).

From ENSDF

I

			1	⁶⁷ Lu ε deca	ny (51.46 r	min) 1976Me06,1976Gr06,1981Kr08 (continued)
						γ ⁽¹⁶⁷ Yb) (continued)
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
1758.97 ^h 33	10.8 ^h 8	1998.42	(9/2)+	239.163	(5/2)-	E _γ =1752.30 70, I _γ =0.8 2, scaled to 2.2 6 (1976Me06). E _γ : poor fit in the decay scheme, with level-energy difference=1751.3. %I _γ =0.47 6 A ₂ =-0.84 40; α (K)exp≤0.00161 E _γ =1758.8 2, I _γ =10.8 8, Ice(K)≤0.01 (1975VyZY). E _γ =1759.59 38, I _γ =2.2 3, scaled to 6.2 8 (1976Me06). δ: 0.0≤δ=+47.0 (1981Kr08) for doubly-placed γ.
1758.97 ^h 33 ×1770.7 5	10.8 ^h 8 8.7 9	2330.38	9/2+	571.489	(11/2)-	%Iγ=0.47 6 δ (Q/D)=+24 24 for doubly-placed line (1981Kr08). %Iγ=0.38 5 Eγ=1770.2 3, Iγ=8.7 9 (1975VyZY). Eγ=1771.11 24, Iγ=2.3 3, scaled to 6.4 8 (1976Me06). E _γ : unweighted average of the two values. γ placed in 1976Me06 from the 1951, 9/2 level to 180, (3/2 ⁻) or the 179, 9/2 ⁻ in 1981Kr08, but evaluators reject both placements based on poor energy fits.
x1778.9 ^d 3 x1785.4 ^d 12 x1788.3 ^d 15 1801.0 3	$9.7^{d} 6$ $2.2^{d} 18$ $2.3^{d} 18$ 2.6 8	1979.49	(7/2 ⁻)	178.863	9/2-	
x1808.8 ^d 3 1819.23 30 1824.8 4	3.5 ^{<i>d</i>} 4 6.2 5 2.1 7	1998.42 1951.10	(9/2) ⁺ (9/2)	178.863 125.918	9/2 ⁻ 11/2 ⁺	$\%$ I γ =0.152 22 $\%$ I γ =0.27 3 E γ =1819.0 3, I γ =6.2 5 (1975VyZY). E γ =1819.50 32, I γ =2.3 2 (1976Me06). $\%$ I γ =0.09 3 E γ =1824 8.4 I γ =2 1.7 (1975VyZY)
1833.30 28 *1838.4 ^d 10	10.5 8 3.1 ^d 5	2012.32	(7/2,9/2 ⁻)) 178.863	9/2-	Ey=1824.74 80, $Iy=0.7 2$ (1976/j21). Ey=1824.74 80, $Iy=0.7 2$ (1976/j21). % $Iy=0.46 5$ A ₂ =-0.22 23; A ₂ =-0.25 26 Ey=1833.2 3, $Iy=10.5 8$ (1975/yZY). Ey=1833.38 28, $Iy=2.9 4$ (1976/me06). $\delta(Q/D)=-0.30 + 32 - 29 \text{ or } +1.5 + 13 - 7 \text{ for first A}_2 \text{ if } J(2012)=9/2; -0.31 + 22 - 46 \text{ or } -2.4 + 13 - 26 \text{ for second A}_2 \text{ if } J(2012)=7/2$ (1981/Kr08). % $Iy=0.135 25$
x1843.9 ^d 10 1849.2 4	3.7 ^d 5 5.5 5	1975.17	(9/2)+	125.918	11/2+	$\%$ I γ =0.16 <i>3</i> $\%$ I γ =0.24 <i>3</i> E γ =1849.0 <i>4</i> , I γ =5.5 <i>5</i> (1975VyZY). E γ =1849.63 <i>57</i> , I γ =1.5 <i>2</i> (1976Me06).

From ENSDF

 $^{167}_{70}
m Yb_{97}$ -55

				¹⁶⁷ Lu ε decay (51.46 min)) 1976Me06	1976Me06,1976Gr06,1981Kr08 (continued)					
							γ ⁽¹⁶⁷ Yb) (con	tinued)				
E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	ag	Comments				
x1855 ^d 2 x1863 ^d 2 x1868.30 20	1.5 ^d 6 1.0 ^d 6 15.5 11							$\%$ I γ =0.07 3 $\%$ I γ =0.04 3 $\%$ I γ =0.67 8 E γ =1868.2 3, I γ =15.5 11 (1975VyZY). E γ =1868.34 20 I γ =5.4.6 (1976Me06)				
1873.02 20	10.5 8	1952.66	(7/2)+	78.679	7/2-	(E1)	0.000973 14					
^x 1879.28 20	9.5 7							γ_{γ} poor in the decay scheme, with reverenergy difference=1875.97. %I γ =0.41 5 E γ =1879.3 2, I γ =9.5 7 (1975VyZY). E γ =1879.12 56, I γ =1.5 5, scaled to 4.2 <i>14</i> (1976Me06).				
^x 1884.7 ^d 3 1889.87 20	7.3 ^d 6 14.3 8	2330.38	9/2+	440.676	7/2-			%Iγ=0.32 4 %Iγ=0.62 7 A ₂ =+0.35 41 Eγ=1889.9 2, Iγ=14.3 8 (1975VyZY). Eγ=1889.79 35, Iγ=2.0 5, scaled to 5.6 14 (1976Me06). δ: δ (Q/D)=-0.25 25 or ≥2.1 (1981Kr08).				
1893.30 20	8.4 28	1952.66	(7/2)+	58.539	9/2+			Designation as M1+E2 transition in 1981Kr08 seems a misprint. %I γ =0.37 <i>13</i> E_{γ} , I_{γ} : from 1976Me06. 1894.4 γ in 1975VyZY with I γ =35.7 <i>14</i> and Ice(K) \approx 0.01 is most likely a doublet corresponding to 1893.30 γ and 1895.38 γ in 1976Me06. I γ =3.0 <i>10</i> , scaled to 8.4 <i>28</i> (1976Me06). E_{ν} : poor fit in the decay scheme, with level-energy difference=1894.11.				
1895.38 20	16.8 28	1973.96	5/2,7/2	78.679	7/2-	D(+Q) ^b		% Iγ=0.73 14 % Iγ=0.73 14 A_2 =-0.47 18; A_2 =-0.50 19 E_{γ} , I_{γ} : from 1976Me06. 1894.4γ in 1975VyZY with Iγ=35.7 14 and Ice(K)≈0.01 is most likely a doublet corresponding to 1893.30γ and 1895.38γ in 1976Me06. Iγ=6.0 10 scaled to 16.8 28 (1976Me06). δ: -1.9≤δ(Q/D)≤+0.4 for first A ₂ if J(1974)=5/2; -0.2≤δ(Q/D)≤+1.5 for second A ₂ if J(1974)=7/2 (1981Kr08).				
1899.68 22	14.3 9	2330.38	9/2+	430.87	7/2+			%Iy=0.62 7				

From ENSDF

 $^{167}_{70}$ Yb₉₇-56

				167 Lu $arepsilon$ d	lecay (51	1.46 min)	1976Me06,19760	Gr06,1981Kr0	8 (continue	<u>ed)</u>
						<u>γ(</u>	¹⁶⁷ Yb) (continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	$I_{(\gamma+ce)}f$	Comments
1910.78 20	7.7 8	2330.38	9/2+	419.540	(9/2)-	b				E γ =1899.5 2, I γ =14.3 19 (1975VyZY). E γ =1899.95 25, I γ =3.0 5, scaled to 8.4 14 (1976Me06). %I γ =0.33 5 E γ =1910.8 2, I γ =7.7 8 (1975VyZY). E γ =1910.76 25, I γ =2.1 3 (1976Me06).
1917.60 20	18.9 <i>15</i>	1951.10	(9/2)	33.916	7/2+	D(+Q) ⁰	-0.18 +18-16			% $I\gamma$ =0.82 <i>10</i> A ₂ =-0.03 <i>30</i> E γ =1917.4 2, $I\gamma$ =18.9 <i>15</i> (1975VyZY). E γ =1917.79 <i>20</i> , $I\gamma$ =5.9 9 (1976Me06).
1920.9 ^d 2 1926.5 3	7.8 ^d 8 9.7 9	1979.49 2052.79	(7/2 ⁻) 9/2 ⁽⁻⁾	58.539 125.918	9/2 ⁺ 11/2 ⁺	D(+Q) ^b	-2.2 21			% $I_{\gamma}=0.345$ % $I_{\gamma}=0.426$ $A_{2}=-0.0653$ $E_{\gamma}=1926.22$, $I_{\gamma}=9.79$ (1975 $V_{\gamma}ZY$). $E_{\gamma}=1926.7618$, $I_{\gamma}=2.94$ (1976Me06).
1933.63 <i>23</i>	15.0 30	2012.32	(7/2,9/2 ⁻)	78.679	7/2-	(D+Q)				δ: -4.4 ≤ δ ≤ -0.1 from γ(θ) (1981 Kr08). $ %Iγ=0.65 14 $ $ A_2=-0.70 38; A_2=-0.80 44; α(\text{K}) \exp ≤ 0.0013 $ $ Eγ=1933.5 3, Iγ=15.0 30, Ice(\text{K})=0.018 6 $ $ for 1933.5γ+1936.5γ (1975 VyZY). $ $ Eγ=1933.70 23, Iγ=5.0 8 (1976 \text{Me06}). $ $ δ: +0.4 ≤ δ ≤ +5.9 \text{ for first } A_2, Δπ=(no) \text{ if} $ $ J(2012)=9/2; -0.09 ≤ δ(Q/D)=+1.33 \text{ for} $ second A_2 if J(2012)=7/2 (1981 Kr08).
1936.76 20	15.7 22	1995.32	(9/2 ⁻)	58.539	9/2+					$\Delta J \neq 2$ from level scheme. %I γ =0.68 <i>I1</i> E γ =1936.5 <i>3</i> , I γ =17 <i>5</i> , Ice(K)=0.018 <i>6</i> for 1933.5 γ +1936.5 γ (1975VyZY). E γ =1936.88 <i>20</i> , I γ =5.6 <i>8</i> , scaled to 15.7 <i>22</i> (1976Me06).
1941.32 <i>13</i>	44.5 32	1975.17	(9/2)+	33.916	7/2+	(M1,E2)		0.00153 24		$I_{\gamma}: \text{ from 19/6Me06.}$ %Iγ=1.93 22 A ₂ =+0.15 29; α(K)exp=0.0008 4 α(K)=0.00106 18; α(L)=0.000149 25; α(M)=3.3×10 ⁻⁵ 6 α(N)=7.8×10 ⁻⁶ 13; α(O)=1.11×10 ⁻⁶ 19; α(P)=6.1×10 ⁻⁸ 11; α(IPF)=0.000286 34 Eγ=1941.1 2, Iγ=44.5 32, Ice(K)=0.036 19 (1975VyZY). Eγ=1941.40 12, Iγ=14.7 15 (1976Me06). δ(Q/D)=+0.08 16 or ≥4.0 (magnitude of δ) (1981Kr08).

			1	⁶⁷ Lu ε de	cay (51	.46 min)	1976Me06,1976Gr06,1981Kr08 (continued)					
						$\gamma(1)$	⁶⁷ Yb) (cont	inued)				
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{g}	Comments			
1945.68 ^{he} 50	3.1 ^{he} 6	1975.17	(9/2)+	29.656	5/2+				$\%$ I γ =0.14 <i>3</i> I γ =1.1 <i>2</i> (1976Me06), scaled to 3.1 <i>6</i> .			
1945.68 ^{he} 50 1951.48 20	3.1 ^{he} 6 15.0 <i>12</i>	1979.49 1951.10	(7/2 ⁻) (9/2)	33.916 0.0	7/2 ⁺ 5/2 ⁻				%Iγ=0.14 3 %Iγ=0.65 8 A ₂ =+0.37 80; α(K)exp=0.0007 3 Eγ=1951.6 2, Iγ=15.0 12, Ice(K)=0.010 4 (1975VyZY). Eγ=1951.36 20, Iγ=5.0 8 (1976Me06). δ: -0.6≤δ(O/Q)≤+6.6 (1981Kr08). E1 or E2 from α(K)exp=0.0007 3.			
1954.2 ^{he} 6	4.2 ^{he} 6	2012.32	(7/2,9/2-)	58.539	9/2+				$\% I\gamma = 0.18 \ 3$ I $\gamma = 1.5 \ 2$, scaled to 4.2 6 (1976Me06).			
1954.2 ^{he} 6	4.2 ^{he} 6	2013.04	$(7/2^{-})$	58.539	$9/2^{+}$				%Iy=0.18 <i>3</i>			
1961.42 <i>15</i>	25.5 15	1995.32	(9/2 ⁻)	33.916	7/2+	D+Q ^b	+0.17 9		%Iy=1.11 <i>I</i> 2 A ₂ =-0.02 <i>I</i> 6; α(K)exp=0.00071 <i>2</i> 4 Ey=1961.4 2, Iy=25.5 <i>I</i> 5, Ice(K)=0.018 6 (1975VyZY). Ey=1961.43 <i>I</i> 5, Iy=8.5 <i>I</i> 2 (1976Me06). δ: α(K)exp implies E1.E2.			
1964.75 20	12 <i>I</i>	1998.42	(9/2)+	33.916	7/2+	D(+Q) ^b	-1.2 14		%Iγ=0.52 6 A ₂ =+1.08 43 (1981Kr08); α(K)exp=0.0011 4 Eγ=1964.7 2, Iγ=12 1, Ice(K)=0.013 5 (1975VyZY). Eγ=1664.81 23, Iγ=4.2 6 (1976Me06). δ: -2.6≤δ≤+0.2 from γ(θ) (1981Kr08); D or E2 from α(K) exp.			
1973.91 ^h 14	38.5 ^h 17	1973.96	5/2,7/2	0.0	5/2-				%Iγ=1.67 17 A ₂ =-0.41 12; A ₂ =-0.44 13; α(K)exp=0.00026 10 Eγ=1973.8 2, Iγ=38.5 17, Ice(K)=0.010 4 (1975VyZY). Eγ=1973.96 14, Iγ=13.4 13 (1976Me06). δ (Q/D)=-0.02 13 or +1.7 +6-4 for first A ₂ if J(1974)=5/2; δ (Q/D)=+0.45 12 or +4.7 +34-15 for second A ₂ if J(1974)=7/2; doubly-placed line			
1973.91 ^{<i>h</i>} 14	38.5 ^h 17	2052.79	9/2 ⁽⁻⁾	78.679	7/2-				% $I\gamma$ =1.67 17 % (Q/D) =+0.40 8 or +4.7 +24–14 (1981Kr08) for a doubly-placed γ ; α (K)exp giving E1 is inconsistent with this placement.			
1979.55 <i>15</i>	28.3 14	1979.49	(7/2 ⁻)	0.0	5/2-	(M1+E2)		0.00150 23	$%I\gamma = 1.23 I3$ $A_2 = -0.62 I6; \alpha(K)exp = 0.00046 I8$ $\alpha(K) = 0.00101 I7; \alpha(L) = 0.000143 23; \alpha(M) = 3.2 \times 10^{-5} 5$ $\alpha(N) = 7.4 \times 10^{-6} I2; \alpha(O) = 1.07 \times 10^{-6} I8; \alpha(P) = 5.8 \times 10^{-8}$ $I1; \alpha(IPF) = 0.00031 4$ $E\gamma = 1979.5 2, I\gamma = 28.3 I4, Ice(K) = 0.013 5 (1975VyZY).$ $E\gamma = 1979.58 I5, I\gamma = 10.4 I0 (1976Me06).$			

				¹⁶⁷ Lu	ε deca	ay (51.46 min	n) 1976 N	Me06,1976Gr0	06,1981Kr08 (continued)
							γ (¹⁶⁷ Yb)	(continued)	
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^g	Comments
									E _γ ,I _γ : alternative placement from 2013 to 7/2 ⁺ 33 level, proposed by 1976Me06, is ruled out by coincidence and nuclear orientation data (1981Kr08); hence, all I(1980γ) is assigned to the 1980-level placement. $\delta(Q/D)=+0.60 + 25 - 15$ or $+2.9 + 16 - 11$ (1981Kr08), favors $\Delta \pi$ =no, as required by level scheme; however, α (K)exp favors E1.
1983.34 <i>32</i>	7.5 8	2013.04	(7/2 ⁻)	29.656	5/2+	D(+Q) ^b	-3.3 34		%Iγ=0.33 5 A ₂ =+0.78 58 Eγ=1983.2 10, Iγ=7.5 8 (1975VyZY). Eγ=1983.35 32, Iγ=2.6 4 (1976Me06). δ: -68<δ<+0.1 (1981Kr08): AI=1 transition if $\Delta \pi$ =ves
^x 1989.41 15	23.0 12								$\%$ I γ =1.00 10 E γ =1989.3 2, I γ =23.0 12 (1975VyZY). E γ =1989.47 15, I γ =8.5 8 (1976Me06).
1995.6 7	2.2 10	1995.32	(9/2-)	0.0	5/2-				$\%$ I γ =0.10 5 E γ =1995.5 8, I γ =2.2 10 (1975VyZY). E γ =1995.69 70, I γ =0.9 2 (1976Me06).
^x 2000.6 <i>33</i>	6.7 7								$\%$ I γ =0.29 4 E γ =2000.4 5, I γ =6.7 7 (1975VyZY). E γ =2000.73 33, I γ =2.6 4 (1976Me06).
$x_{2003.2}^{d}$ 15	1.1 ^d 7	2013.04	$(7/2^{-})$	0.0	5/2-	(M1+E2)		0.001/18.22	$\%$ I γ =0.05 3 $\%$ I γ =1.69 17
2013.04 13	37.0 16	2013.04	(1/2)	0.0	5/2	(MITE2)		0.00146 22	$A_{2}=-0.27 I 3$ $\alpha(K)=0.00098 I6; \alpha(L)=0.000138 22; \alpha(M)=3.1\times10^{-5} 5$ $\alpha(N)=7.2\times10^{-6} I2; \alpha(O)=1.03\times10^{-6} I7; \alpha(P)=5.62\times10^{-8} 99; \alpha(PF)=0.00032 4$ $E\gamma=2012.9 2, I\gamma=39.0 I8 (1975VyZY).$ $E\gamma=2013.12 I5, I\gamma=13.4 I3 (1976Me06).$ $\delta(O(D)=+0.32 0 \text{ or } +9.6 \pm 225-42 (1981Kr08); \text{ favors } \Delta \pi=0.$
^x 2026.0 5	1.8 <i>3</i>								%[y=0.078 15 Ey=2026.0 5, Iy=1.8 3 (1975VyZY). Ey=2025 9 14 y=0.6 2 (1976Me06)
^x 2031.9 ^d 3	3.1 ^d 3								%Iy=0.135 <i>18</i>
^x 2042.2 ^d 11 ^x 2047.8 3	0.7 ^d 4 3.9 4								$\%$ I γ =0.030 <i>18</i> $\%$ I γ =0.169 <i>23</i> E γ =2047.8 <i>3</i> , I γ =3.9 <i>4</i> (1975VyZY). E γ =2047.77 60 I γ =1 2.2 (1976Mc06)
2052.1 ^{<i>d</i>} 6 x2062.6 7	1.6 ^d 2 2.0 8	2052.79	9/2 ⁽⁻⁾	0.0	5/2-				$E_{\gamma} = 2047.77$ 60, $1\gamma = 1.2.2$ (1976Nie06). % $I_{\gamma} = 0.070$ 11 % $I_{\gamma} = 0.09.4$ $E_{\gamma} = 2063.4.2$, $I_{\gamma} = 5.0.4$ (1975VyZY).

 $^{167}_{70}{
m Yb}_{97}$ -59

				¹⁶⁷ Lu ε decay (51.46 min)) 1976	Ie06,1976Gr06,1981Kr08 (continued)		
$\gamma(^{167}\text{Yb})$ (continued)									
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	Comments	
^x 2064.6 7	2.0 8							E _γ =2062.6 7, I _γ =0.7 3 (1976Me06). E _γ ,I _γ : from 1976Me06, as in 1975VyZY 2063.4 seems composite of 2062.6γ and 2064.6γ in 1976Me06. %I _γ =0.09 4 E _γ ,I _γ : from 1976Me06. See comment for 2062.6γ for data in 1975VyZY.	
^x 2075.0 ^d 10	0.8^{d} 4							%Iy=0.035 <i>18</i>	
$x^{2080.5d}$ 4	2.5 ^d 8							%Iy=0.11 4	
x2085 ^d 1	0.8^{d} 5							%Iy=0.035 22	
x2091.3 ^d 20	0.8^{a} 5							%Iy=0.035 22	
$x^{2095.4}d^{20}$	0.8^{a} 5							%Iy=0.035 22	
^x 2103.3 ^d 7	0.4^{a} 2							%I _Y =0.017 9	
x2107.4 ^{<i>a</i>} 16	1.2 ^{<i>a</i>} 8							%Iy=0.05 4	
x2110.3 ^{<i>a</i>} 25	0.8^{a} 6							%Iy=0.04 <i>3</i>	
x2121.5 ^d 5	$0.6^{a} 2$							$\%1\gamma = 0.0269$	
x2126.9 ^a 4	$0.55^{\circ} 20$							$\%1\gamma = 0.024$ 9	
^x 2132 ^u 2	0.2^{a} 1							%Iy=0.009 5	
x2139.5 ^{<i>a</i>} 5	$0.5^{a} 2$							$\%1\gamma = 0.022$ 9	
$x^{2145.9a}$ 6	0.9^{a} 5							$\% 1\gamma = 0.039 22$	
2140.3 4	5.6 5							$E_{\gamma}=2148.3 \ 4, \ I_{\gamma}=3.8 \ 5 \ (1975VyZY).$ $E_{\gamma}=2148.77 \ 40, \ I_{\gamma}=1.2 \ 2 \ (1976Me06).$	
2151.8 ^d 6	0.9 ^d 2	2330.38	9/2+	178.863	9/2-			%Iy=0.039 9	
$x_{2170.1}d_{5}$	0.8 ^d 2							%Iy=0.035 9	
^x 2173.7 ^d 6	0.7 d 2							%Iy=0.030 9	
^x 2177.6 ^d 12	0.25 ^d 12							%Iy=0.011 5	
^x 2190.2 ^d 3	2.4 ^d 3							%Iy=0.104 16	
x2198.40 20	11.6 8							%Iy=0.50 6	
						,		$E\gamma$ =2198.5 2, $I\gamma$ =11.6 8 (19/5 VyZY). $E\gamma$ =2198.59 27, $I\gamma$ =3.0 5, scaled to 8.4 4 (1976Me06).	
2204.34 20	7.3 5	2330.38	9/2+	125.918	11/2+	D+Q ^b	+5.7 55	%Iγ=0.32 4 A ₂ =+0.95 54 Eγ=2204.3 2, Iγ=7.3 5 (1975VyZY). Eγ=2204.43 30, Iγ=1.8 3, scaled to 5.0 8 (1976Me06). δ: +0.2≤δ≤+11.1 from γ(θ) (1981Kr08).	
$x^{2211.1}d^{d}4$	2.9 <mark>d</mark> 3							%Iy=0.126 <i>17</i>	
x2215.9 ^d 20	1.0 ^d 5							%Iy=0.043 22	
^x 2218.9 ^d 7	1.2 ^d 5							%Iy=0.052 22	

 $^{167}_{70}\mathrm{Yb}_{97}$ -60

From ENSDF

 $^{167}_{70}\mathrm{Yb}_{97}$ -60

				¹⁶⁷ Lu ε decay (51.46 min)		1976Me	1976Me06,1976Gr06,1981Kr08 (continued)		
						$\gamma(^{167}\text{Yb})$ (co	ontinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α ^g	Comments	
$x_{2225.2}^{d} 4$	1.1^{d} 3							%Iy=0.048 <i>14</i>	
x2228.6 ^d 5	1.1 ^d 3							$\%$ I γ =0.048 14	
^x 2231.4 ^d 6	0.65 ^d 22							%Iy=0.028 10	
^x 2235.2 ^d 8	0.53 ^d 27							%Iγ=0.023 <i>12</i>	
^x 2237.8 ^d 7	0.74 ^d 25							%Iγ=0.032 <i>11</i>	
^x 2244 ^d 1	1.6 ^d 5							%Iγ=0.070 23	
x2247.58 20	6.0 6							%Iγ=0.26 <i>4</i>	
								$E\gamma = 2247.6\ 2,\ I\gamma = 6.0\ 6\ (1975 VyZY).$ $E\gamma = 2247.49\ 40\ I\gamma = 1.8\ 3\ (1976 Me06)$	
x2253 7d 5	1.0d 3							$V_{y} = 2247.4940, 1y = 1.05(197000000).$	
x2257.9 3	2.6 3							%17 = 0.045 17 %17 = 0.113 17	
								$E\gamma = 2258.0 \ 3, \ I\gamma = 2.6 \ 3 \ (1975VyZY).$	
X2266.0.4	15 6 10							$E\gamma = 2257.17$ 70, $I\gamma = 0.6$ 1 (1976Me06).	
*2266.0 4	15.6 10							$\%1\gamma=0.68 \ 8$ E ₂ (-2266.0.8 I ₂)=15.6 10 (1075V ₂ /7V)	
								$E_{\gamma}=2266.00$ 50, $I_{\gamma}=13.0$ 10 (1975 V yZ1). E $\gamma=2266.00$ 50, $I_{\gamma}=4.3$ 4, scaled to 12.0 12 (1976 Me06).	
^x 2269.8 ^e 7	5.6 ^e 8							%Iγ=0.24 <i>4</i>	
					,			$I\gamma = 2.0 \ 3 \ (1976 Me06).$	
2271.81 20	24.0 12	2330.38	9/2+	58.539 9/2+	(M1+E2) ^b	+0.35 15	0.00149 4	$\%$ I γ =1.04 11	
								$A_2 = -0.69 I9$	
								$\alpha(\mathbf{N}) = 6.000854 \ 21, \ \alpha(\mathbf{L}) = 0.0001171 \ 50, \ \alpha(\mathbf{M}) = 2.00\times10^{-7} \ \alpha(\mathbf{N}) = 6.10\times10^{-6} \ 16: \ \alpha(\mathbf{O}) = 8.78\times10^{-7} \ 23: \ \alpha(\mathbf{P}) = 4.84\times10^{-8}$	
								$13; \alpha(\text{IPF})=0.000504 \ 12$	
								Eγ=2271.5 5, Iγ=24.0 12 (1975VyZY).	
								$E\gamma = 2271.86\ 20, I\gamma = 7.2\ 7\ (1976Me06).$	
								δ : +0.2 $\leq \delta \leq$ +0.5 from $\gamma(\theta)$ (1981Kr08), magnitude(δ) favors $\Delta \pi$ -no	
x2278 4 ^d 4	$1.9\frac{d}{3}$							%I ₂ =10.	
$x_{2283.0d}$ 5	0.75^{d} 20							%Iy=0.033 9	
$x_{2288.9}^{d} 6$	0.75^{d} 13							%Iy=0.033 6	
$x_{2292.7}^{d} 4$	2.4^{d} 2							%Iv=0.104 <i>13</i>	
2296.2 3	2.2 2	2330.38	9/2+	33.916 7/2+				%Iy=0.096 12	
^x 2304.7 ^d 20	0.5 ^d 3							%Iγ=0.022 <i>13</i>	
^x 2308.6 6	1.3 3							%Iγ=0.057 <i>14</i>	
								$E\gamma = 2308.9$ 6, $I\gamma = 1.3$ 3 (19/5 VyZY). $E_{22} = 2307.7$ 10 $I_{22} = 0.5$ 1 (1976 Ma06)	
x2335 0d 6	$0.6d^2$							$L_{7} = 2.507.770, 17 = 0.57(1770) MC00).$	
x2339.3 ^d 6	0.0^{-2}							$\%_{1} = 0.020$ 9 % $1_{2} = 0.012$ 6	
2007.0	0.27 13								

¹⁶⁷Lu ε decay (51.46 min) **1976Me06,1976Gr06,1981Kr08** (continued)

Comments

E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	
^x 2367.5 ^d 6	0.5 ^d 3		%Iγ=0.022 13
^x 2401.5 ^d 10	0.5 ^d 3		%Iγ=0.022 13
^x 2458.1 ^d 5	0.45 ^d 11		%Iγ=0.020 5
^x 2467.1 ^d 4	0.92 ^d 13		%Iγ=0.040 7
^x 2545.8 ^d 4	1.3 ^d 2		%Iγ=0.057 10
$x^{2559.0}d^{d}4$	0.94 ^d 12		%Iγ=0.041 6

[†] Weighted average of values from 1975VyZY and 1976Me06 for $E\gamma$ >300 keV. For $E\gamma$ <300 keV, values are from 1975VyZY as 1976Me06 stated that they took more precise values from 1971Ab04 (earlier results from the same group as 1975VyZY and 1976Gr06), except when noted otherwise. Some of the $E\gamma$ values are slightly different in 1975VyZY and 1971Ab04, evaluators assume that data in 1976Gr06 and 1975VyZY supersede those in their earlier paper 1971Ab04.

[‡] From 1975VyZY, except as noted. Data from 1976Me06 are less comprehensive, but are of comparable precision and, in general, are in agreement with those from 1975VyZY. However, data for a few lines in the energy ranges 550-900 keV and 1470-1900 keV are significantly lower in 1976Me06 (by as much as a factor of two). In order to compare data from 1975VyZY and 1976Me06, evaluators scaled data from 1976Me06 by a factor of 2.2 *I* for E γ <300 and 2.8 *I* for E γ >300; these factors are the unweighted averages of the nine most precise intensity ratios I γ (1975VyZY)/I γ (1976Me06) in each energy range, while the different scaling factors in these energy ranges are not clear. These may be due to detector efficiency calibration issues.

[#] From $\alpha(K)$ exp and/or ce subshell ratios (1975VyZY), except where noted; the photon and ce intensity scales were normalized by 1975VyZY assuming $\alpha(K)(M1$ theory) for the 401.2 γ , and this normalization implies an $\alpha(K)$ exp(213 γ) which is consistent with M1 theory (as expected on the basis of subshell ratios for the 213-keV transition).

^(a) Unless indicated otherwise, δ data given with a sign are from γ -ray anisotropy (nuclear orientation measurements of 1981Kr08) and those without a sign are from conversion electron data in 1975VyZY (authors' analysis of subshell ratios). Exceptions are noted. 1976Gr06 and 1971Ab04 are from the same group and it is assumed that ce data from 1975VyZY supersede those in 1971Ab04.

& From evaluators' analysis of ce data given under comments using the BrIccMixing code.

^a Deduced from I(ce) data (1975VyZY) and adopted mult.

^{*b*} From $\gamma(\theta, \text{temp})$, nuclear orientation measurements (1981Kr08). For analysis of $\gamma(\theta)$ data, authors used decay scheme in 1976Me06.

^{*c*} Gamma-ray energies listed in 1976Me06 and 1971Ab04 are the same. According to the statement in 1976Me06, "Below 300 keV, most transition energies derived by Abdurazakov et al [5] from their conversion electron data are more precise than the present γ -ray results; in those cases, their values were taken", 1976Me06 adopted E γ from 1971Ab04 (ref. [5] in 1976Me06). Further, evaluators assume that E γ data in 1971Ab04 are superseded in the later papers 1976Gr06 (and 1975VyZY) from the same group, and adopt values from 1975VyZY.

 $^{d} \gamma$ reported only by 1975VyZY.

- e γ reported only by 1976Me06; I γ scaled as stated in general comment for I γ .
- ^f For absolute intensity per 100 decays, multiply by 0.0434 38.
- ^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*h*} Multiply placed with undivided intensity.
- ⁱ Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹⁶⁷₇₀Yb₉₇

¹⁶⁷₇₀Yb₉₇

 $^{167}_{70} Yb_{97}$

 $^{167}_{70} Yb_{97}$

Decay Scheme (continued)

 $^{167}_{70} {
m Yb}_{97}$

Decay Scheme (continued)

¹⁶⁷₇₀Yb₉₇

¹⁶⁷₇₀Yb₉₇