154 Sm(17 O,4n γ),(18 O,5n γ) 1982Ro08

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023					

1982Ro08: 154 Sm(17 O,4n γ),E(17 O)=80 MeV; 154 Sm(18 O,5n γ),E(18 O)=84 MeV. Metallic >98% enriched 154 Sm targets.

Measured E γ , I γ , $\gamma(\theta)$ at nine angles, $\gamma\gamma$ -coin using Ge(Li), Compton-suppressed Ge(Li), and a large-volume NaI(Tl) detectors at the Niels Bohr Institute Tandem Accelerator facility. Comparison with cranked shell-model calculations.

Other:

1977Ri13: ¹⁵², ¹⁵⁴Sm(¹⁶O,xn γ e⁻), (¹⁸O,xn γ e⁻), E=85-95 MeV: Measured conversion electrons using recoil shadow method with a solenoid transport system and a Si(Li) detector at MPI Nuclear Physics, Heidelberg MP Tandem accelerator facility. The paper is focused on study of comparative behavior of backbending in i_{13/2} and 5/2[523] bands in ¹⁶³Yb, ¹⁶⁵Yb and ¹⁶⁷Yb. Authors state that the i_{13/2} band was observed up to 41/2⁺ and 5/2[523] band up to 33/2⁻ in ¹⁶⁷Yb. No spectroscopic data are available for ¹⁶⁷Yb.

¹⁶⁷Yb Levels

All data are from 1982Ro08, unless otherwise indicated.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 [#]	5/2-	407.92 [@] 23	$17/2^{+}$	1601.3 [@] 4	$29/2^{+}$	3398.7 [@] 5	$41/2^{+}$
29.66 [@] 1	$5/2^{+}$	442.4 ^{#} 3	$13/2^{-}$	1656.6 [#] 4	$25/2^{-}$	3531.6 ^{&} 15	39/2+
33.91 ^{&} 1	7/2+	644.43 ^{&} 24	$19/2^{+}$	2148.3 [@] 4	$33/2^+$	3836.7 [#] 15	$41/2^{-}$
58.540 [@] 12	9/2+	721.4 [@] 3	$21/2^{+}$	2158.4 [#] 4	$29/2^{-}$	4091.0 [@] 12	$45/2^{+}$
78.7 4	$7/2^{-}$	783.6 [#] 3	$17/2^{-}$	2158.6 ^{&} 4	$31/2^{+}$	4291.6 ^{&} 18	$43/2^{+}$
125.86 ^{&} 20	$11/2^{+}$	1060.8 ^{&} 3	$23/2^+$	2683.7 [#] 5	33/2-	4496.7 [#] 18	45/2-
178.80 [#] 23	9/2-	1121.9 [@] 3	$25/2^+$	2751.1 [@] 5	$37/2^+$	4833.0 [@] 15	$49/2^{+}$
186.01 [@] 17	$13/2^{+}$	1192.7 [#] 4	$21/2^{-}$	2816.6 ^{&} 11	$35/2^+$	5212.7 [#] 21	49/2-
330.24 ^{&} 21	$15/2^+$	1569.7 ^{&} 4	$27/2^+$	3236.7 [#] 11	37/2-	5634.0 [@] 18	$53/2^{+}$

[†] From a least-squares fit to $E\gamma$ data.

[‡] From 1982Ro08; based on multipolarities of transitions and fits of cascades of coincident γ rays into rotational bands.

Band(A): v5/2[523].

[@] Band(B): $v5/2[642], \alpha = +1/2$.

[&] Band(b): $v5/2[642], \alpha = -1/2$.

$\gamma(^{167}\text{Yb})$

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α ^{C}	Comments
(24.63 [‡] 1)		58.540	9/2+	33.91	7/2+			
(28.88 [‡] 1)		58.540	9/2+	29.66	$5/2^{+}$			
29.66 [‡] 1		29.66	$5/2^{+}$	0.0	$5/2^{-}$			
33.91 [‡] 1		33.91	$7/2^{+}$	0.0	$5/2^{-}$			
60.1 2	36.0 <i>36</i>	186.01	13/2+	125.86	11/2+	[M1]	2.44 5	I _y : obtained by 1982Ro08 from intensity balance at 186 level, assuming that the 60 γ is pure M1. For E2, evaluators estimate I $\gamma \ge 4.9$ based on I(γ +ce)(60 γ) \ge 117 <i>18</i> and α (E2)=24.8.
61.1 5		1121.9	$25/2^+$	1060.8	$23/2^+$			
67.4 5		125.86	$11/2^{+}$	58.540	9/2+			
76.9 5	-	721.4	$21/2^{+}$	644.43	$19/2^{+}$			
77.7 5	15.0 [@] 23	407.92	17/2+	330.24	15/2+			

Continued on next page (footnotes at end of table)

¹⁵⁴Sm(¹⁷O,4nγ),(¹⁸O,5nγ) **1982Ro08** (continued)

$\gamma(^{167}$ Yb) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. <mark>b</mark>	Comments
78.6 5 91.9 5		78.7 125.86 178.80	$7/2^{-}$ 11/2 ⁺ 9/2 ⁻	0.0 33.91 78 7	$5/2^{-}$ $7/2^{+}$ $7/2^{-}$		
120.2 5	5.5 11	178.80	$9/2^{-}$	58.540	$\frac{7}{2}$		$A_2 = +0.04 \ 17; A_4 = -0.09 \ 19$
127.5 2	41.3 41	186.01	$13/2^{+}$	58.540	$9/2^{+}$	Q	$A_2 = +0.25 \ 3; \ A_4 = -0.06 \ 3$
144.2 2	45.8 46	330.24	$15/2^{+}$	186.01	$13/2^{+}$	D+Q	$A_2 = -0.78 \ 3; \ A_4 = +0.14 \ 7$
144.9 5	8.0 [@] 16	178.80	9/2-	33.91	$7/2^{+}$		
178.7 5	7.8 16	178.80	9/2-	0.0	5/2-	-	$A_2 = +0.09 6; A_4 = -0.01 7$
204.4 2	76.0 76	330.24	$15/2^+$	125.86	$11/2^+$	Q	$A_2 = +0.27 3; A_4 = -0.05 4$
221.9 2	100.0	407.92	$\frac{1}{2}$	186.01	$\frac{13}{2^+}$	Q	$A_2 = +0.28 \ 3; \ A_4 = -0.06 \ 4$
250.5 2	20.0 29	044.45 442 4	19/2 $13/2^{-}$	407.92	$9/2^{-}$	D+Q O	$A_2 = -0.72$ 3, $A_4 = -0.01$ 3 $A_2 = \pm 0.21$ 2: $A_4 = -0.03$ 2
313.5 2	176 18	721.4	$\frac{13/2}{21/2^+}$	407.92	$17/2^+$	(0)	$A_2 = +0.212, A_4 = -0.052$ $A_2 = +0.47$ 16: $A_4 = -0.18$ 16
314.2 2	53.3 53	644.43	$19/2^+$	330.24	$15/2^+$	(\mathbf{Q})	$A_2 = +0.23 \ 11; A_4 = -0.13 \ 12$
316.6.3	14.7 <mark>&</mark> 22	442.4	$13/2^{-}$	125.86	$11/2^{+}$	D+0	$A_2 = +0.41$ 5; $A_4 = +0.10$ 5
339.4 3	13.0 20	1060.8	$\frac{23}{2^+}$	721.4	$21/2^+$	D+Q	$A_2 = -0.65 \ 3; \ A_4 = -0.08 \ 4$
							Negative A ₄ is inconsistent with $\Delta J=1$ transition.
341.2 2	23.2 23	783.6	$17/2^{-}$	442.4	$13/2^{-}$	Q	$A_2 = +0.26 2; A_4 = -0.09 2$
400.5 2	152 15	1121.9	$25/2^+$	721.4	$21/2^+$	Q	$A_2 = +0.28 4; A_4 = -0.07 5$
409.1 2	33.0 33	1192.7	$21/2^{-}$	783.6	$17/2^{-}$	Q	$A_2 = +0.33 3; A_4 = -0.06 3$
416.4 2	61.6.62	1060.8	$\frac{23}{2}^{+}$	644.43	19/2*	Q	$A_2 = +0.24$ 3; $A_4 = -0.04$ 3
447.8 3	7.5 IS	1309.7	27/2*	1121.9	25/2*	D+Q	$A_2 = -0.52 \ 3; \ A_4 = +0.13 \ 0$
455 1	12.0 - 18	/83.0	$\frac{1}{2}$	330.24	$\frac{15}{2^{-1}}$	(0)	$A_{1} = \pm 0.25$ 3; $A_{2} = -0.02$ 4
405.92	128 13	1601.3	29/2+	1192.7	$\frac{21}{2}$ 25/2+	$\hat{\mathbf{Q}}$	$A_2 = +0.25$ 5, $A_4 = -0.05$ 4 $A_2 = +0.26$ 4: $A_4 = -0.06$ 4
501.8.2	33.1.33	2158.4	$29/2^{-}$	1656.6	$25/2^{-}$	õ	$A_2 = +0.224, A_4 = -0.103$
508.9 2	66.0 66	1569.7	$\frac{27}{2^+}$	1060.8	$\frac{23}{2^+}$	ò	$A_2 = +0.20 \ 3; \ A_4 = -0.05 \ 4$
525 1	а	2683.7	$33/2^{-}$	2158.6	$31/2^{+}$	-	
525.3 2	34.4 34	2683.7	33/2-	2158.4	$29/2^{-}$	Q	$A_2 = +0.18 \ 3; \ A_4 = -0.07 \ 3$
547.0 2	103 10	2148.3	$33/2^{+}$	1601.3	$29/2^{+}$	Q	$A_2 = +0.26 5; A_4 = -0.08 5$
548 1	4.0 [@] 8	1192.7	$21/2^{-}$	644.43	$19/2^{+}$		
553 1	52.4 ^{&} 52	3236.7	$37/2^{-}$	2683.7	$33/2^{-}$	Q	$A_2 = +0.48$ 7; $A_4 = -0.19$ 7
557.4 5	a	2158.6	$31/2^{+}$	1601.3	$29/2^{+}$		
588.9 2	42.5 ^{&} 43	2158.6	$31/2^+$	1569.7	$27/2^+$	(Q)	$A_2 = +0.17 2; A_4 = -0.02 2$
589 1	a	2158.4	29/2-	1569.7	$27/2^+$		
596 1	<i>u</i>	1656.6	$25/2^{-}$	1060.8	$23/2^+$	$\langle \mathbf{O} \rangle$	
600 1	22.7 23	3836.7	41/2	3236.7	37/2	(Q)	$A_2 = +0.22$ 6; $A_4 = -0.07$ /
602.8 2	77.5° 78	2751.1	37/2+	2148.3	33/2+	Q	$A_2 = +0.19 2; A_4 = -0.05 3$
647.6 2	34.0° <i>34</i>	3398.7	$41/2^+$	2751.1	37/2+		$A_2 = +0.08\ 2;\ A_4 = +0.06\ 3$
658 1	24.0 24	2816.6	35/2*	2158.6	31/2*		$A_2 = +0.134; A_4 = +0.065$
660 I 602 2 10	u	4496.7	45/2 45/2 ⁺	3836.7	41/2		I a not available due to large interference from
092.5 10	a	4091.0	45/2	3398.7	41/2		background.
/15 I 716 J	a	3331.6 5212.7	39/2 ' 40/2-	2816.6	35/2 ' 45/2-		
710 I 742 I		3212.7 1833 0	49/2 10/2+	4490./ /001.0	45/2 45/2+		
760 1	a	4291.6	+7/2 43/2+	3531.6	+3/2 30/2+		
801 1		5634.0	$53/2^+$	4833.0	$49/2^+$		

[†] Energy uncertainties are stated by 1982Ro08 as <0.2 keV for $I\gamma \ge 20$, up to 0.5 keV for weaker lines. Evaluators assign 0.2 keV for γ rays with $I\gamma \ge 20$, 0.3 keV for γ rays with $I\gamma = 10$ -19.9, 0.5 keV for for γ rays with $I\gamma < 10$ or when $I\gamma$ value is not

¹⁵⁴Sm(¹⁷O,4nγ),(¹⁸O,5nγ) **1982Ro08** (continued)

$\gamma(^{167}$ Yb) (continued)

available, and 1 keV when E γ stated to nearest keV in Table 2 of 1982Ro08.

- [‡] From the Adopted Gammas.
- [#] Relative intensities are from ¹⁵⁴Sm(¹⁸O,5n γ),E(¹⁸O)=84 MeV reaction, and are average of the 30° and 90° projected spectra. Uncertainties are stated by 1982Ro08 as 10% for I $\gamma \ge 20$, and up to 20% for weaker gammas. Evaluators assign 10% for I $\gamma \ge 20$, 15% for I $\gamma = 10$ -19.9 and 20% for I $\gamma < 10$.
- [@] From coincidence data; not corrected for possible angular correlation effects.
- & Includes contribution from contaminant lines.

- ^b From $\gamma(\theta)$ in ¹⁵⁴Sm(¹⁸O,5n γ) (1982Ro08). Authors interpret stretched Q transitions as E2, $\Delta J=1$ or 0, D+Q transitions as M1+E2.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Weak.

154 Sm(17 O,4n γ),(18 O,5n γ) 1982Ro08

Level Scheme

Intensities: Relative I_{γ}

Legend

 $^{167}_{70} Yb_{97}$

154 Sm(17 O,4n γ),(18 O,5n γ) 1982Ro08

 $^{167}_{70}{\rm Yb}_{97}$