History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023	

Parent: ¹⁶⁷Re: E=0+x; $J^{\pi}=(9/2^{-})$; $T_{1/2}=5.9$ s 5; $Q(\varepsilon)=7260$ syst; $\%\varepsilon+\%\beta^{+}$ decay ≈99.0

 167 Re-J^{π},T_{1/2}: From 167 Re Adopted Levels.

¹⁶⁷Re-Q(ε): 7260 40 (syst, 2021Wa16).

¹⁶⁷Re- $\%\varepsilon + \%\beta^+$ decay: $\%\alpha \approx 1$ from 1992Me10 for the decay of ¹⁶⁷Re, assuming the 137 γ and 221 γ observed following ε decay of ¹⁶⁷Re represent the total ε decay intensity.

1992Me10: ¹⁶⁷Re produced in ¹⁴¹Pr(³²S,X),E=235 MeV at the VICKSI accelerator facility of HMI-Berlin. Measured E α , I γ , γ (x ray)-coin, half-life of ¹⁶⁷Re decay from α -decay curve. Only two weak γ rays of 136.6 and 221.3 keV were observed by 1992Me10, who suggested that the 136.6 γ was the same transition as observed in the in-beam reactions, the adopted placement for which shows that it feeds a (7/2⁻) level. Evaluators assume that this is the same (7/2⁻) level as fed in ¹⁷¹Os α decay. 1992Me10 further suggested that the 137 γ and the 221 γ are probably non-cascading γ rays. If so, the unplaced 221 γ presumably feeds either the 0+x or the 79+x level, implying a possible level at either 221.3+x or 300.3+x.

¹⁶⁷W Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments	
0.0 79.2 <i>3</i> 215.8 2	$(5/2^{-})$ $(7/2^{-})$ $(9/2^{-})$	E(level): from the Adopted Levels.	

[†] From $E\gamma$ data.

[‡] From the Adopted Levels.

$\gamma(^{167}W)$

E_{γ}^{\dagger}	ients
(79.2 3)	2; α(M)=0.281 5;
	0784 10
	dataset.
136.6 2	x(M) = 0.10 4;
)34 <i>12</i> ; α (P)=0.00010 7
	992Me10).
221.3 2	992Me10).
^{136.6} 2	$\nu(M)=0.10$ 4;)34 12; $\alpha(P)=0.$ 992Me10). 992Me10).

[†] From 1992Me10.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

Legend

¹⁶⁷Re ε decay (5.9 s) 1992Me10

Decay Scheme

Intensities: Relative I_{γ}

