Adopted Levels, Gammas

	History								
	Туре	Author	Citation	Literature Cutoff Date					
	Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023					
$Q(\beta^{-}) = -7260 \ syst; \ S(n)$	=8277 21; S(p)=32	280 <i>30</i> ; $Q(\alpha)$ =4751 <i>30</i> 202	1Wa16						
Estimated uncertainty for	or $Q(\beta^{-})=40 \text{ keV}$ (2)	2021Wa16).							
S(2n)=19370 30, S(2p)=	=5040 <i>30</i> , Q(<i>ε</i> p)=4	480 <i>30</i> , Q(ε)=6260 <i>30</i> (2021)	Wa16).						
$O(x) = 4671 \ 12 \ am \ 4650$	20 magna attiviality for	$E_{\rm e} = 4550 \ 12 \ (1001) \ M_{\odot} 05$	an 1550 20 (1000Ma)) if a to a transition i					

 $Q(\alpha)$ =4671 *13* or 4659 *20*, respectively, from E α =4559 *13* (1991Me05) or 4550 *20* (1989Me02), if g.s. to g.s. transition in the decay of ¹⁶⁷W to ¹⁶³Hf.

1987ScZL: ¹⁶⁷W produced and identified in Cs,Ba,La,Pr(³⁶Ar,X), (⁴⁰Ar,X) reactions, through cross-bombardments, excitation functions, and coincidences with x rays. In 1989Me02, ¹⁶⁷W produced in ¹³⁶Ba(³⁶Ar,xn),E=191 MeV reaction, and half-life measured.

2019Mi12: theoretical calculations of band-crossing frequencies of the first (AB) and the second (BC) $i_{13/2}$ neutron alignments. Additional information 1.

¹⁶⁷W Levels

Band assignments are proposed by 1992Th06, unless otherwise stated.

Quasiparticle nomenclature for orbitals:

A: first $v_{i_{13/2}}, \alpha = +1/2$.

B: first $v_{i_{13/2}}, \alpha = -1/2$.

C: second $v_{i_{13/2}}, \alpha = +1/2$.

D: second $v_{i_{13/2}}, \alpha = -1/2$.

E: lowest negative-parity neutron orbital, $\alpha = -1/2$.

F: lowest negative-parity neutron orbital, $\alpha = +1/2$.

Cross Reference (XREF) Flags

A	167 Re ε decay (5.9 s)	D	142 Nd(30 Si,5n γ)
В	¹⁷¹ Os α decay (8.3 s)	Ε	147 Sm(24 Mg,4n γ)
С	¹⁷¹ Os α decay (790 ms)		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0 ^e	(5/2-)	19.9 s 5	AB D	$%ε+%β^+=99.96\ 1;$ %α=0.04 <i>I</i> (1989Me02) J ^π : low-lying ν5/2[523] bandhead expected based on Nilsson model calculations and on J ^π systematics in N=93 isotones (1989Me02); unhindered α decay from (5/2 ⁻) ¹⁷¹ Os. T _{1/2} : from 1989Me02, from 94γ- and 110.2γ-decay curves; also 21 s 4 from decay curve for 4550α. Others: 23 s 6 (1992HeZV), 19 s 7 (1989Br19 and 1987Es08 from the same authors, T _{1/2} from 142γ decay curve, but no 142γ is reported in ¹⁶⁷ W decay study by 1989Me02). Additional information 2.
79.2 ^e 3	$(7/2^{-})$		AB D	
127.1 [@] 17	$(13/2^+)$		CDE	This level could be an isomer decaying by E3 transition to the 79, $(7/2^{-})$, with $T_{1/2}>1 \ \mu$ s from systematic trend (2021Ko07).
134.20 30	$(9/2^{-})$		В	$J^{\pi}: E^{2} \gamma \text{ to } (5/2^{-}).$
215.8 [°] 4	$(9/2^{-})$		A D	
351.8 [@] 17 553.5 ^c 6	$(17/2^+)$ $(13/2^-)$	139 ps 10	DE D	Transition quadrupole moment Q(t)=4.4 2 (2016Li49).
757.1 [@] 17 1023.4 ^c 8	(21/2 ⁺) (17/2 ⁻)	7.0 ps 9	DE D	Transition quadrupole moment Q(t)=4.7 3 (2016Li49).
1296.0 [@] 17	$(25/2^+)$	1.8 ps 6	DE	Transition quadrupole moment $Q(t)=4.5$ 7 (2016Li49).

Continued on next page (footnotes at end of table)

				16	W Level	s (continued)		
E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
1527.3 ^d 9	$(21/2^{-})$	D	3313.6 ^b 17	(37/2 ⁻)	D	5700.9 ^d 24	(49/2 ⁻)	D
1598.9 ^c 12	$(21/2^{-})$	D	3331.2 [@] 17	$(37/2^+)$	DE	5848.3 ^a 21	(51/2-)	D
1782.6 ^{<i>a</i>} 17	$(23/2^{-})$	DE	3509.3 ^a 17	(39/2 ⁻)	DE	6052.8 ^{&} 19	$(53/2^+)$	DE
1920.6 ^d 14	$(25/2^{-})$	D	3557.0 ^d 16	$(37/2^{-})$	D	6242.1 ^b 23	$(53/2^{-})$	D
1932.7 [@] 17	$(29/2^+)$	DE	3908.0 ^b 18	$(41/2^{-})$	D	6499.6 ^d 26	$(53/2^{-})$	D
2093.8 ^b 12	$(25/2^{-})$	D	3983.5 <mark>&</mark> 18	$(41/2^+)$	DE	6763.7 ^{<i>a</i>} 23	$(55/2^{-})$	D
2105.1 ^{<i>a</i>} 17	$(27/2^{-})$	DE	4197.2 ^a 18	$(43/2^{-})$	DE	6859.7 <mark>&</mark> 22	$(57/2^+)$	D
2408.0 ^d 15	$(29/2^{-})$	D	4213.4 ^d 19	$(41/2^{-})$	D	7153.4 ^b 25	$(57/2^{-})$	D
2428.3 ^b 16	$(29/2^{-})$	D	4602.3 ^b 18	$(45/2^{-})$	D	7334.3? ^d 28	$(57/2^{-})$	D
2479.4 ^a 17	$(31/2^{-})$	DE	4627.0 ^{&} 18	$(45/2^+)$	DE	7693.6 ^a 25	$(59/2^{-})$	D
2629.1 [@] 17	$(33/2^+)$	DE	4934.1 ^d 22	$(45/2^{-})$	D	7730.4 ^{&} 24	$(61/2^+)$	D
2822.0 ^b 16	$(33/2^{-})$	D	4983.4 ^{<i>a</i>} 18	$(47/2^{-})$	DE	8108.6 ^b 27	$(61/2^{-})$	D
2937.1 ^{<i>a</i>} 17	$(35/2^{-})$	DE	5310.6 ^{&} 18	$(49/2^+)$	DE	8660.4 ^{&} 26	$(65/2^+)$	D
2960.5 ^d 15	$(33/2^{-})$	D	5385.5 <mark>b</mark> 21	$(49/2^{-})$	D	9661.8? ^{&} 28	$(69/2^+)$	D

[†] From a least-squares fit to $E\gamma$ data, however, most levels in the level scheme decay by single transitions. In addition, absolute level energies and their uncertainties are unknown.

[‡] From multipolarities and ΔJ deduced from $\gamma\gamma(\theta)$ (DCO) ratios and $\gamma(\theta)$ in ¹⁴²Nd(³⁰Si,5n γ) and ¹⁴⁷Sm(²⁴Mg,4n γ), band

structure and systematics of known structures in heavier isotopes and isotones. See $({}^{24}Mg,4n\gamma)$ data set for additional details. # From 2016Li49 for excited states, using recoil-distance Doppler-shift (RDDS) method, uncertainty is statistical only. See

 142 Nd(30 Si,5ny) dataset.

- [@] Band(A): Band A, $vi_{13/2}, \alpha = +1/2$.
- [&] Band(a): Band ABC, $\alpha = +1/2$. Configuration= $vi_{13/2} \otimes vi_{13/2}^2$
- ^{*a*} Band(B): Band FAB, $\alpha = -1/2$.
- ^{*b*} Band(C): Band EAB, $\alpha = +1/2$.
- ^{*c*} Band(D): Band E, $\alpha = +1/2$.
- ^d Band(E): $\alpha = +1/2$ band. Cranked shell model classification is uncertain (1992Th06); the alignment pattern differs greatly from those for the other $\pi = -$ bands. Assigned as $\alpha = +1/2$ based on systematics for similar bands in lighter N=93 isotones.

^e Band(F): Possible v5/2[523] band. Band assignment proposed by 1995Hi02.

 $\gamma(^{167}W)$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	α &	Comments
79.2	(7/2 ⁻)	79.2 3	100	0.0 (5/2 ⁻)	M1	9.3 4	E _γ : from ¹⁷¹ Os α decay. Mult.: from α (K)exp=9.0 <i>11</i> (2023Zh03) in ¹⁷¹ Os α decay (8.3 s).
134.20	(9/2 ⁻)	134.2 3	100	0.0 (5/2 ⁻)	E2	1.261 12	E _γ : from ¹⁷¹ Os α decay. Mult.: from α (K)exp=0.39 8 (2023Zh03) in ¹⁷¹ Os α decay (8.3 s).
215.8	(9/2 ⁻)	136.6 2	100	79.2 (7/2 ⁻)	[M1,E2]	1.6 4	E_{γ} : from ¹⁶⁷ Re ε decay. Other: 136.4 5 in ¹⁴² Nd(³⁰ Si,5nγ).
351.8 553.5	$(17/2^+)$ $(13/2^-)$	224.7 [#] 2 337.7 5	100 100	127.1 $(13/2^+$ 215.8 $(9/2^-)$) E2	0.210 3	B(E2)(W.u.)=108 9
757.1 1023.4	(21/2 ⁺) (17/2 ⁻)	405.3 [#] 2 469.9 5	100 100	351.8 (17/2 ⁺ 553.5 (13/2 ⁻) E2) (E2)	0.0362 5	B(E2)(W.u.)=131 17
1296.0 1527.3	(25/2 ⁺) (21/2 ⁻)	538.9 [#] 2 503.9 5	100 100	757.1 (21/2 ⁺ 1023.4 (17/2 ⁻) E2) (E2)	0.0175 <i>3</i>	B(E2)(W.u.)=120 40

Continued on next page (footnotes at end of table)

$\gamma(^{167}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	E_f	${ m J}_f^\pi$	Mult. [@]	Comments
1598.9 1782.6	(21/2 ⁻) (23/2 ⁻)	575.4 <i>10</i> 487.2 <i>10</i>	100 50 <i>20</i>	1023.4 1296.0	(17/2 ⁻) (25/2 ⁺)	(E2)	
1000	(25/2)	1025.7 [#] 5	100 7	757.1	$(21/2^+)$	D	
1920.6	$(25/2^{-})$	393.3 10	100	1527.3	$(21/2^{-})$	(E2)	
1932.7	$(29/2^+)$	636.7 " 2	100	1296.0	$(25/2^+)$	(E2)	
2093.8	(25/2)	494.9 10 566.6 10	100 <i>23</i> 72 <i>25</i>	1598.9 1527.3	$(21/2^{-})$ $(21/2^{-})$	(E2) (E2)	
2105.1	$(27/2^{-})$	322.8 [#] 5	39 8	1782.6	$(23/2^{-})$	(E2)	Other I γ : 27 12 in (²⁴ Mg,4n γ). Mult from (³⁰ Si,5n γ).
2408.0	(29/2 ⁻)	809.1 [#] 2 487.4 5	100 <i>12</i> 100	1296.0 1920.6	(25/2 ⁺) (25/2 ⁻)	D (E2)	
2428.3	$(29/2^{-})$	323.4 10	44 20	2105.1	$(27/2^{-})$	(E2)	
2470 4	(21/2-)	334.5 10	100 10	2095.8	(25/2)	(E2)	
2479.4	(31/2)	374.3" 2 546.6 [#] 5	100 5 37 6	2105.1 1932.7	(27/2) $(29/2^+)$	(E2) D	I _y : weighted average of 32 4 from (³⁰ Si,5ny), 45 5
2(20.1	(22/2+)	(0(1# 2	100	1022.7	(20/2+)		from $(-Mg, 4n\gamma)$.
2629.1	$(33/2^+)$ $(33/2^-)$	696.4" 2 342.6.10	100	1932.7 2470 A	$(29/2^+)$ $(31/2^-)$	(E2)	
2822.0	(33/2)	393.7 5	100 16	2479.4	(31/2) $(29/2^{-})$	(E2)	
2937.1	$(35/2^{-})$	457.7 [#] 2	100	2479.4	$(31/2^{-})$	(E2)	
2960.5	$(33/2^{-})$	552.5 5	100	2408.0	$(29/2^{-})$	(112)	
3313.6	(37/2-)	376.3 10	≈12	2937.1	(35/2-)		
		491.7 5	100 8	2822.0	$(33/2^{-})$	(E2)	
3331.2	$(37/2^+)$	702.1 [#] 2	100	2629.1	$(33/2^+)$	(E2)	
3509.3	$(39/2^{-})$	572.2 [#] 2	100	2937.1	$(35/2^{-})$	(E2)	
3557.0	$(37/2^{-})$	596.5 5	100	2960.5	$(33/2^{-})$	(E2)	
3908.0	$(41/2^{-})$	594.4 5	100	3313.6	$(37/2^{-})$	(E2)	
3983.5	$(41/2^+)$	652.3 [#] 2	100	3331.2	$(37/2^+)$	(E2)	
4197.2	$(43/2^{-})$	687.9 # 5	100	3509.3	$(39/2^{-})$	(E2)	
4213.4	(41/2)	656.4 <i>10</i>	100	3557.0	(37/2)	(E2) (E2)	
4002.5	$(45/2^+)$	643 5 A	100	3908.0	(41/2) $(41/2^+)$	(E2)	\mathbf{F} : weighted average from $({}^{24}\mathbf{Mg} 4\mathbf{n}_{3})$ and
4027.0	$(45/2^{-})$	720 7 10	100	4212.4	$(41/2^{-})$	(E2)	$(^{30}\text{Si},5n\gamma)$.
4954.1	(43/2)	720.7 10	100	4215.4	(41/2) $(43/2^{-})$	(E2)	\mathbf{F} : weighted average from $(^{24}\mathbf{Mg} 4\mathbf{n}_{3})$ and
5210 ((40/2+)	/00.2 4	100	+197.2	(+5/2)	(L2)	$({}^{3}\text{Si},\text{Sn}\gamma).$
5310.6	(49/2 ')	683.6 4	100	4627.0	(45/2 ')		E_{γ} : weighted average from $(^{2*}Mg,4n\gamma)$ and $(^{30}Si,5n\gamma)$.
5385.5	$(49/2^{-})$	783.2 10	100	4602.3	$(45/2^{-})$	(E2)	
5700.9	(49/2)	766.8 <i>10</i> 864 9 <i>10</i>	100	4934.1 7083 7	(45/2)	(F2)	
6052.9	(51/2)	742.9 ± 5	100	5210.6	(41/2)	(E2) (E2)	
6242 1	$(53/2^{-})$	856.6.10	100	5385 5	(49/2) $(49/2^{-})$	(E2) (E2)	
6499.6	$(53/2^{-})$	798.7 10	100	5700.9	$(49/2^{-})$	(112)	
6763.7	(55/2-)	915.4 10	100	5848.3	$(51/2^{-})$		
6859.7	$(57/2^+)$	806.9 10	100	6052.8	$(53/2^+)$	(E2)	
7153.4	$(57/2^{-})$	911.3 10	100	6242.1	$(53/2^{-})$		
7334.3?	$(57/2^{-})$	834.74 10	100	6499.6	$(53/2^{-})$		
7730.4	(59/2) $(61/2^+)$	929.9 10 870.7 10	100	6859.7	(55/2) $(57/2^+)$	(E2)	
8108.6	$(61/2^{-})$	955.2 10	100	7153.4	$(57/2^{-})$	()	

 $\gamma(^{167}W)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π
8660.4	$(65/2^+)$	930.0 <i>10</i>	100	7730.4	$(61/2^+)$
9661.8?	(69/2 ⁺)	1001.4 ^{<i>a</i>} <i>10</i>	100	8660.4	(65/2 ⁺)

[†] From 142 Nd(30 Si,5n γ), except as noted.

^{\ddagger} Relative photon branching from ¹⁴²Nd(³⁰Si,5n γ), except as noted.

[#] From 147 Sm(24 Mg,4n γ).

^(a) From DCO ratio in (³⁰Si,5n γ) and/or $\gamma(\theta)$ in (²⁴Mg,4n γ). Stretched quadrupole intraband transitions with mult=Q or (Q) in reaction datasets are assigned here as $\Delta J=2$, (E2).

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) - -_ _ _ • 1001 + $(69/2^+)$ <u>9661.8</u> 4990,000 $(65/2^+)$ 8660.4 4 9552 100 + 870, + $(61/2^-)$ 8108.6 19,000 100 $(61/2^+)$ 7730.4 (59/2-) 7693.6 -8 1 834, > 4 91 - 100 + 800.9 + (2) 100 (57/2-) _7<u>3</u>3<u>4</u>.<u>3</u> ٦ (57/2-) 10' 10' 7153.4 (57/2+) 6859.7 + 856.0 | (55/2-) 6763.7 1<u><</u>362 001 (2) 100 (53/2-) 6499.6 Ş (53/2-) -5--5--5--5-6242.1 Ð (53/2+) 0.×08 6052.8 e, 20'8' $(51/2^{-})$ S 5848.3 $(49/2^{-})$ Ľ 5700.9 + 683 283.2 1 280,2 1 1 1 200 1 $(49/2^{-})$ 5385.5 E. , 20, 20, 20, 1 $(49/2^+)$ 5310.6 1 (2) 100 | $\frac{(47/2^-)}{(45/2^-)}$ de B 4983.4 Ð 4934.1 643 | 094.3 8 $(45/2^+)$ + 0564 | (2) 4627.0 + ⁶*2,0 (2),1 $(45/2^{-})$ 4602.3 ((S) 100 (8) (8) 100 $(41/2^{-})$ 4213.4 $(43/2^{-})$ + ³⁹05 + 4197.2 _ئ ئى $(41/2^+)$ 3983.5 S 1001 (20) 100 | (⁵2, ⁶2) (41/2-) 3908.0 2 9 9 2 2 2 (37/2-) 3557.0 (39/2-) 3509.3 -16 ~ (37/2+) 3331.2 (37/2-) 3313.6 $(33/2^{-})$ 2960.5 (35/2-) 2937.1 (33/2-) ¥ 2822.0 $(33/2^+)$ 2629.1 (5/2-) 0.0

) 19.9 s 5

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{167}_{\ 74}W_{93}$

6

Adopted Levels, Gammas

 $^{167}_{74}W_{93}$

