¹⁴²Nd(³⁰Si,5nγ) 1992Th06

	Histo		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Includes ¹⁴²Nd(²⁸Si,3n γ) from 2016Li49, where lifetimes were measured for (17/2⁺), (21/2⁺) and (25/2⁺) levels of the yrast band. 1992Th06: E(³⁰Si)=165 MeV from the NSF Tandem Van de Graaff accelerator of the Daresbury Laboratory. Target was a stack of two thin (0.5 mg/cm²) metallic Nd foils, 98% enriched. Measured E γ , I γ , two and three-fold $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO) at 37° and 79° using Compton-suppressed Ge detectors. Deduced levels, J, π , band structures, γ -ray multipolarities. Comparison with cranked shell model calculations.

shell model calculations. 2016Li49: ¹⁴²Nd(²⁸Si,3n γ),E(²⁸Si)=144 MeV beam from the HI-13 tandem accelerator at the China Institute of Atomic Energy (CIAE). Target was a stretched ≈ 1 mg/cm² isotopically enriched ¹⁴²Nd with a 3.00 mg/cm² Au support facing the beam and a 6.0 mg/cm² Au foil to stop the recoils in the CIAE plunger. The γ rays were detected using nine Compton-suppressed HPGe detectors and two planar HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, level lifetimes by recoil-distance Doppler shifts (RDDS). Deduced B(E2), transition quadrupole moments. Comparisons with cranked shell-model calculations.

¹⁶⁷W Levels

Band assignments are proposed by 1992Th06, unless otherwise stated.

Quasiparticle nomenclature for orbitals:

A: first $v_{13/2}, \alpha = +1/2$.

B: first $vi_{13/2}, \alpha = -1/2$.

C: second $v_{i_{13/2}}, \alpha = +1/2$.

D: second $v_{i_{13/2}}, \alpha = -1/2$.

E: lowest negative-parity neutron orbital, $\alpha = -1/2$.

F: lowest negative-parity neutron orbital, $\alpha = +1/2$.

E(level) [†]	J ^{π‡}	$T_{1/2}^{\#}$	Comments
0.0	$(5/2^{-})$		J^{π} : from the Adopted Levels.
79.2 3	$(7/2^{-})$		E(level): from the Adopted Levels.
125.9 [@] 22	$13/2^{+}$		Likely an isomer in ¹⁶⁷ W.
215.6 [°] 11	$(9/2^{-})$		
350.6 [@] 21	17/2+	139 ps 10	$T_{1/2}$: from RDDS, mean lifetime=201 ps <i>15</i> (2016Li49). Transition quadrupole moment Q(t)=4.4 2 (2016Li49).
553.3 ^c 12	$(13/2^{-})$		
756.2 [@] 21	21/2+	7.0 ps 9	$T_{1/2}$: from RDDS, mean lifetime=10.1 ps <i>13</i> (2016Li49). Transition quadrupole moment Q(t)=4.7 <i>3</i> (2016Li49).
1023.2 ^c 13	$(17/2^{-})$		
1295.4 [@] 20	25/2+	1.8 ps 6	$T_{1/2}$: from RDDS, mean lifetime=2.6 ps 8 (2016Li49). Transition quadrupole moment Q(t)=4.5 7 (2016Li49).
1527.1 ^d 14	$(21/2^{-})$		
1598.7 [°] 15	$(21/2^{-})$		
1782.6 ^{<i>d</i>} 21	$23/2^{-}$		
1920.4 ^{<i>d</i>} 17	$(25/2^{-})$		
1932.3 [@] 20	$29/2^+$		
2093.6 ^b 15	$(25/2^{-})$		
2104.7 ^{<i>a</i>} 20	$27/2^{-}$		
2407.8 ^d 18	$(29/2^{-})$		
2428.1 ^b 18	$(29/2^{-})$		
2479.2 ^{<i>a</i>} 20	31/2-		
2629.0 [@] 21	$33/2^+$		
2821.8 ^b 19	(33/2 ⁻)		

		^{16/} W Levels (continued)					
E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J#‡
2937.2 ^a 20	35/2-	4197.4 ^{<i>a</i>} 21	43/2-	5700.7 ^d 26	(49/2-)	7334.1 ^d 29	(57/2-)
2960.3 ^d 18	$(33/2^{-})$	4213.2 ^d 21	$(41/2^{-})$	5849.4 ^a 26	$51/2^{-}$	7694.7 ^a 29	(59/2 ⁻)
3313.5 <mark>b</mark> 20	$(37/2^{-})$	4602.2 ^b 21	$(45/2^{-})$	6052.9 <mark>&</mark> 25	53/2+	7730.5 <mark>&</mark> 29	$61/2^{+}$
3331.3 [@] 22	$37/2^{+}$	4627.3 ^{&} 23	$45/2^{+}$	6242.0 ^b 25	(53/2 ⁻)	8108.5 <mark>b</mark> 29	$(61/2^{-})$
3509.6 ^a 21	39/2-	4933.9 ^d 24	$(45/2^{-})$	6499.4 ^d 28	$(53/2^{-})$	8660.5 <mark>&</mark> 31	$(65/2^+)$
3556.8 <mark>d</mark> 19	$(37/2^{-})$	4984.5 ^a 23	$47/2^{-}$	6764.8 ^a 27	(55/2-)	9662.0 <mark>&</mark> 32	$(69/2^+)$
3907.9 <mark>b</mark> 20	$(41/2^{-})$	5311.2 ^{&} 23	49/2+	6859.8 <mark>&</mark> 27	57/2+		
3983.6 ^{&} 22	$41/2^{+}$	5385.4 ^b 23	$(49/2^{-})$	7153.3 ^b 27	$(57/2^{-})$		

 142 Nd(30 Si,5n γ)

1992Th06 (continued)

[†] From a least-squares fit to $E\gamma$ data, however, most levels in the level scheme decay by single transitions.

[‡] Assignments from 1992Th06, based on measured DCO-ratios and deduced band structure.

[#] From 2016Li49, recoil-distance Doppler-shift (RDDS) method, uncertainty is statistical only.

[@] Band(A): Band A, $\nu i_{13/2}, \alpha = +1/2$.

& Band (a): Band A \rightarrow ABC, $\alpha = +1/2$. Alignment of two $i_{13/2}$ neutrons after $37/2^+$ in Band A, with configuration changing from $vi_{13/2}$ to $vi_{13/2} \otimes vi_{13/2}^2$.

^{*a*} Band(B): Band FAB, $\alpha = -1/2$. Alignment of two $i_{13/2}$ neutrons to a negative-parity neutron orbital.

^b Band(C): Band EAB, $\alpha = +1/2$. Alignment of two $i_{13/2}$ neutrons to a negative-parity neutron orbital.

^c Band(D): Band E, $\alpha = +1/2$. Lowest negative-parity neutron orbital.

^d Band(E): $\alpha = +1/2$ band. Cranked shell model classification is uncertain (1992Th06); the alignment pattern differs greatly from those for the other π =- bands. Assigned as α =+1/2 based on systematics for similar bands in lighter N=93 isotones.

$\gamma(^{167}W)$

All data are from 1992Th06 unless otherwise indicated.

DCO ratios are for gates on $\Delta J=2$, quadrupole (E2) transitions. Expected values are ≈ 1.0 for $\Delta J=2$, quadrupole, and ≈ 0.6 for $\Delta J=1$, dipole transitions, as determined by 1992Th06 from weighted averaged value of 1.0 for known stretched quadrupole transitions.

E_{γ}^{\dagger}	I_{γ} ‡	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. &	α^{a}	Comments
(79.2 3)		79.2	(7/2 ⁻)	0.0	(5/2 ⁻)			E_{γ} : from the Adopted Levels, Gammas dataset.
136.4 10	5.3 [#] 9	215.6	(9/2-)	79.2	$(7/2^{-})$			DCO=0.82 20
224.7 5	83.2 [#] 32	350.6	17/2+	125.9	13/2+	E2	0.210 3	B(E2)↓=0.58 4 (2016Li49) DCO=0.85 4
322.1 10	8.4 18	2104.7	$27/2^{-}$	1782.6	$23/2^{-}$	Q		DCO=1.00 10
323.4 10	3.7 17	2428.1	$(29/2^{-})$	2104.7	$27/2^{-}$			
334.5 10	8.5 14	2428.1	$(29/2^{-})$	2093.6	$(25/2^{-})$	Q		DCO=0.96 13
337.7 5	18.1 [@] 24	553.3	$(13/2^{-})$	215.6	$(9/2^{-})$			DCO=0.84 22
342.6 10	2.6 5	2821.8	$(33/2^{-})$	2479.2	$31/2^{-1}$			DCO=0.94 23
374.5 5	21.8 11	2479.2	31/2-	2104.7	$27/2^{-}$	Q		DCO=0.95 7
376.3 10	≈1.7	3313.5	$(37/2^{-})$	2937.2	$35/2^{-}$			DCO=0.96 <i>38</i>
393.3 10	6.0 15	1920.4	$(25/2^{-})$	1527.1	$(21/2^{-})$	Q		DCO=1.17 27
393.7 5	15.2 24	2821.8	$(33/2^{-})$	2428.1	$(29/2^{-})$	Q		DCO=1.15 11
405.6 5	100.0 [#] 22	756.2	$21/2^{+}$	350.6	$17/2^{+}$	E2	0.0362 5	DCO=0.89 5
								B(E2)↓=0.71 9 (2016Li49)
x428.7 10	1.1 4							
458.0 5	20.7 8	2937.2	35/2-	2479.2	$31/2^{-}$	Q		DCO=1.03 8

Continued on next page (footnotes at end of table)

142 Nd(50 Si,5n γ) 1992Th06 (continue)	142 Nd(30 Si,5n γ)	1992Th06 (continued)
---	---------------------------------------	----------------------

					/(") (continue	(u)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	J_f^π	Mult.&	α ^{<i>a</i>}	Comments
469.9 5 ^x 473 8 10	19.3 [@] 30	1023.2	(17/2 ⁻)	553.3	(13/2-)	Q		DCO=1.04 <i>14</i> DCO=1.50 <i>72</i>
193.0 10	2.00	1792.6	22/2-	1205 4	25/2+	(D)		DCO=0.77.14
487.4 5	11721	2407.8	$(29/2^{-})$	1920.4	$(25/2^{-})$	$\begin{pmatrix} D \end{pmatrix}$		DCO=1.03.16
491 7 5	14.6.11	3313.5	$(27/2^{-})$	2821.8	$(23/2^{-})$	χ ())		DCO=0.90.11
494.9 10	6.4 15	2093.6	$(25/2^{-})$	1598.7	$(21/2^{-})$	$\hat{0}$		DCO=1.34.20
503.9 5	11.6 15	1527.1	$(21/2^{-})$	1023.2	$(17/2^{-})$	õ		DCO=0.92 16
539.2 5	84.3 20	1295.4	$\frac{25}{2^+}$	756.2	$21/2^+$	Ĕ2	0.0175 <i>3</i>	DCO=0.96 6
			,		1			B(E2) = 0.67 21 (2016Li49)
546.9 10	6.9 9	2479.2	$31/2^{-}$	1932.3	$29/2^{+}$	D		DCO=0.52 8
552.5 5	10.0 15	2960.3	$(33/2^{-})$	2407.8	$(29/2^{-})$			DCO=0.79 18
566.6 10	4.6 16	2093.6	$(25/2^{-})$	1527.1	$(21/2^{-})$	Q		DCO=1.39 45
572.4 5	17.4 24	3509.6	39/2-	2937.2	35/2-	Q		DCO=0.99 9
^x 575.1 10	2.9 10							DCO=0.83 26
575.4 10	8.1 12	1598.7	$(21/2^{-})$	1023.2	$(17/2^{-})$	Q		DCO=0.91 13
594.4 5	15.2 15	3907.9	$(41/2^{-})$	3313.5	$(37/2^{-})$	Q		DCO=1.18 <i>12</i>
596.5 5	9.5 29	3556.8	$(37/2^{-})$	2960.3	$(33/2^{-})$	(Q)		DCO=1.14 28
^x 607.6 10	5.6 5					D		DCO=0.58 22
*631.7 10	5.4 15	1022.2	20/2+	1205 4	25/2+	0		DCO=0.99 17
030.9 J	52.5 <i>I</i> 5 16 5 9	1932.3	29/2 45/0+	1295.4	23/2 · 41/2+	Q		DCO=0.94.0
65235	$10.3 \ 0$	4027.5	$\frac{43}{2}$	3905.0	41/2 37/2+	Q		DCO=1.03.0
656 4 10	94 13	4213.2	$(41/2^{-})$	3556.8	$(37/2^{-})$	(U)		DCO=1.03.9
^x 663 0 10	296	7213.2	(+1/2)	5550.0	(31/2)	(Q)		DCO=0.85.40
^x 666.1 10	2.9 8							Dec-0.05 10
683.9 5	13.0 9	5311.2	$49/2^{+}$	4627.3	$45/2^{+}$			DCO=0.86 10
687.8 <i>5</i>	12.7 9	4197.4	$43/2^{-}$	3509.6	39/2-	Q		DCO=1.25 16
694.3 5	11.1 8	4602.2	$(45/2^{-})$	3907.9	$(41/2^{-})$	Q		DCO=1.24 16
696.7 5	39 6	2629.0	$33/2^{+}$	1932.3	$29/2^+$	Q		DCO=0.94 10
702.3 5	32.6 13	3331.3	$37/2^{+}$	2629.0	$33/2^{+}$	Q		DCO=0.94 10
720.7 10	6.1 7	4933.9	$(45/2^{-})$	4213.2	$(41/2^{-})$	(Q)		DCO=1.04 25
*724.5 10	3.1 10	(050.0	50 /0+	5211.0	40/2+			DCO=1.18 36
/41./ 10	8.5 5	6052.9	53/21	5311.2	49/21	D		$DCO=0.85 \ 13$
766 8 10	3.4 9	5700 7	$(40/2^{-})$	4022.0	$(45/2^{-})$	D		DCO=0.05 I9 DCO=1.21 40
783 2 10	5.07	5385.4	$(49/2^{-})$	4933.9	$(45/2^{-})$	0		DCO=1.3140
787 1 10	8712	4984 5	$(17/2^{-1})$	4197.4	$(13/2^{-})$ $43/2^{-}$	$\tilde{(0)}$		DCO=0.92.14
798.7 10	1.3.5	6499.4	$(53/2^{-})$	5700.7	$(49/2^{-})$			200 00211
806.9 10	4.8 23	6859.8	57/2+	6052.9	53/2+	(Q)		DCO=1.30 30
809.3 5	21.8 27	2104.7	$27/2^{-}$	1295.4	$25/2^+$	D		DCO=0.62 6
^x 820.1 10	2.2 5							
834.7 <mark>b</mark> 10	0.9 4	7334.1	$(57/2^{-})$	6499.4	$(53/2^{-})$			
856.6 10	5.0 7	6242.0	$(53/2^{-})$	5385.4	$(49/2^{-})$	(Q)		DCO=1.08 26
864.9 10	4.0 6	5849.4	$51/2^{-}$	4984.5	$47/2^{-}$	Q		DCO=1.3 3
870.7 10	3.3 6	7730.5	$61/2^+$	6859.8	$57/2^{+}$	(Q)		DCO=1.50 55
911.3 10	3.4 7	7153.3	$(57/2^{-})$	6242.0	$(53/2^{-})$			DCO=0.91 50
915.4 10	2.2 5	6764.8	$(55/2^{-})$	5849.4	51/2-			DCO=1.10 50
929.9 10	≈1.5 [@]	7694.7	$(59/2^{-})$	6764.8	$(55/2^{-})$			
930.0 10	2.0 [@] 6	8660.5	$(65/2^+)$	7730.5	$61/2^+$			DCO=0.81 17
955.2 10	2.4 11	8108.5	$(61/2^{-})$	7153.3	$(57/2^{-})$			
1001.4 ^b 10	1.5 6	9662.0	$(69/2^+)$	8660.5	$(65/2^+)$			DCO=1.38 60
1026.4 10	7.0 5	1782.6	$23/2^{-}$	756.2	$21/2^{+}$			

$\gamma(^{167}W)$ (continued)

Continued on next page (footnotes at end of table)

¹⁴²Nd(³⁰Si,5nγ) **1992Th06** (continued)

$\gamma(^{167}W)$ (continued)

- [†] 1992Th06 state uncertainty of ≤ 1 keV for weak transitions and doublets, and <0.5 keV for all the other gamma rays. Evaluators have assigned $\Delta E_{\gamma}=0.5$ keV for γ rays with $I\gamma \geq 10$, and 1 keV for doublets and gammas with $I\gamma < 10$.
- [‡] Photon intensity relative to I(406 γ)=100, neglecting time window effects and residual angular correlation effects; taken from spectra coincident with 225 γ , 406 γ , 338 γ or 470 γ . Data for E $\gamma \leq$ 200 are not very reliable (1992Th06).
- [#] From two-fold projection spectrum.
- [@] From relative intensities in coincidence spectra.
- & From $\gamma\gamma(\theta)$ (DCO) ratios in 1992Th06 and RUL where level T_{1/2} is available from 2016Li49.
- ^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

 $^{167}_{\ 74}W_{93}$

 $^{167}_{74}W_{93}$

¹⁴²Nd(³⁰Si,5nγ) 1992Th06

 $^{167}_{74}W_{93}$