¹⁶⁷Er(**p**,**n**γ) **1976Sv01**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Includes 168 Er(p,2n γ),E(p)=12 MeV.

1976Sv01: $(p,n\gamma)$,E(p)=8-12 MeV beam from 12 MV EN Tandem Van de Graaff generator at the University of Uppsala. Self-supporting 1-2 mg/cm² thick targets of 91.5% enriched ¹⁶⁷Er. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, ce, level lifetimes by (ce)(ce)(t) using two Ge(Li) detectors and a low-energy photon spectrometer (LEPS) for γ rays and a thick Si(Li)-detector mounted in a magnetic spectrometer for conversion electrons. ¹⁶⁸Er(p,2 $n\gamma$),E(p)=12 MeV for a few measurements.

1976Li07 (from the same lab and group as 1976Sv01): measured half-lives of 117-keV level by (117 ce(K)(t)) and 142-keV levels by (144 ce(K))(132 ce(K))(t) using magnetic long-lens electron-electron coincidence spectrometer.

¹⁶⁷Tm Levels

E(level) [†]	J π ‡	T _{1/2}	Comments
0.0#	$1/2^{+}$		
10.419 [#] 25	$3/2^{+}$		Additional information 1.
116.71 [#] 3	5/2+	66 ps 7	$T_{1/2}$: from (117 ce(K))(t) (1976Li07,1976Sv01).
142.52 [#] 4	$7/2^+$	343 ps 15	$T_{1/2}$: from (142 ce(K))(132 ce(K))(t) (1976Li07,1976Sv01).
171.84 [@] 4	$1/2^{-}$	1	
179.66 ^{&} 5	$7/2^+$		
187.76 [@] 5	5/2-		
286.02 [@] 5	9/2-		
290.99 [@] 5	3/2-		
293.06 ^{<i>a</i>} 5	$7/2^{-}$		
296.43 ^{&} 6	9/2+		
326.69 [#] 5	9/2+		
371.23 [#] 5	$11/2^{+}$		
383.98 ^{<i>a</i>} 6	9/2-		
436.32 ^{&} 7	$11/2^{+}$		
460.15 ^w 6	7/2-		
470.51 6	13/2-		
470.61° 16	3/2+		
496.94 ^a 9	11/2		
522.15° 10	5/21		Band assignment from the Adopted Levels. In 19/6Sv01, this level assigned to $\nu 5/2[402]$ band.
557.76 [°] 11	5/2+		Band assignment from the Adopted Levels. In $1976Sv01$, this level assigned to $v3/2[411]$ band.
597.78 ^{&} 8	$13/2^{+}$		
622.31 [#] 7	$13/2^{+}$		
632.13 ^{<i>a</i>} 10	13/2-		
658.09 [°] 13	7/2+		Band assignment from the Adopted Levels. In $1976Sv01$, this level assigned to $v3/2[411]$ band.
689.33 [#] 8	$15/2^{+}$		
699.15 [@] 8	$11/2^{-}$		
741.77 [@] 12	$17/2^{-}$		
779.35 ^{&} 11	$15/2^{+}$		
788.15 ^{<i>a</i>} 11	15/2-		
840.23 ⁰ 18 852.56 21	11/2 ⁺ 3/2 ⁻		

¹⁶⁷Er(**p**,**n**γ) **1976Sv01** (continued)

¹⁶⁷Tm Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	J π ‡
881.5 <i>3</i>	5/2-	944.9 <i>3</i>	11/2+	1001.67 ^b 19	13/2+	1086.90 [#] 17	19/2+
928.00 ^c 21	$11/2^{+}$	965.52 ^a 22	$17/2^{-}$	1008.6 <i>3</i>	9/2-	1096.57 [@] 16	$21/2^{-}$
929.1? ^d 4	9/2-	978.38 ^{&} 16	$17/2^{+}$	1008.62 [@] 15	$15/2^{-}$	1159.3 <i>3</i>	19/2-
935.18 16	7/2-	993.75 [#] 18	$17/2^+$	1044.37 ^d 17	$11/2^{-}$	1194.95 ^{&} 23	$19/2^{+}$

[†] From a least-squares adjustment of $E\gamma$, omitting the 639.89 γ (which fits its placement poorly) and allowing 1 keV uncertainty in values for which no uncertainty was stated by authors.

[‡] From relative excitation functions, multipolarities of transitions, and fits of cascades of coincident γ rays into an interconnected set of rotational bands (authors' values).

[#] Band(A): $\pi 1/2[411]$.

[@] Band(B): *π*1/2[541].

[&] Band(C): *π*7/2[404].

^{*a*} Band(D): $\pi 7/2[523]$.

^b Band(E): $\pi 3/2[411]$. Band assignment for levels in $\pi 3/2[411]$ and $\pi 5/2[402]$ from the Adopted Levels. In 1976Sv01, the assignments differ above 500 keV as stated in comments for individual levels.

^{*c*} Band(F): $\pi 5/2[402]$. Band assignment for levels in $\pi 3/2[411]$ and $\pi 5/2[402]$ from the Adopted Levels. In 1976Sv01, the assignments differ above 500 keV as stated in comments for individual levels. A 683.7, $7/2^+$ level decaying by a 161.5 γ (double placement) is not given in the Adopted Levels.

^d Band(G): $\pi 9/2[514]$. Assignment of levels for this band from the Adopted Levels. In 1976Sv01, only the 1044.7 level is assigned to this band.

$\gamma(^{167}\text{Tm})$

Conversion coefficients from 1976Sv01 are deduced from comparison of measured conversion-electron intensities with γ -ray intensities recorded at the same angle (55°).

${\rm E}_{\gamma}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [@]	Comments
(10.419 25)		10.419	3/2+	0.0	1/2+	M1+E2	0.043 +4-3	648 <i>3</i> 8	E_{γ} ,Mult., δ, α : from the Adopted Gammas, where values were adopted from ¹⁶⁷ Yb ε decay
25.80 20 x38.00 20 x38.90 20	2 <i>1</i> 7 <i>1</i> 9 <i>1</i>	142.52	7/2+	116.71	5/2+				
44.4		371.23	11/2+	326.69	9/2+				E_{γ} : from level-scheme Fig. 11b in 1976Sv01, transition obscured by x rays in singles spectrum
62.95 4	14 <i>I</i>	179.66	7/2+	116.71	5/2+	[M1]		11.72 17	Mult.: M1 quoted by 1976Sv01 from 1971Fu10 (167 Yb ε decay data).
67.02 5 ^x 68.83 5	1.05	689.33	15/2+	622.31	13/2+				1/(p,2n/)/1/(p,n/) = 0.702.
85.21 4	4.9 4	371.23	$11/2^{+}$	286.02	9/2-				$I\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=0.43$ 3.
90.91 2	17.5 11	383.98	9/2-	293.06	7/2-	[M1]		4.08 6	Mult.: (M1) quoted by 1976Sv01 from 1971Fu10 (167 Yb ε decay data). $I_{Y}(n, 2n_Y)/I_{Y}(n, n_Y)=0.53.2$
98.30 10	62	286.02	9/2-	187.76	5/2-	[E2]		3.28 5	Mult.: E2 quoted by 1976Sv01 from 1971Fu10 (167 Yb ε decay data).
99.25 6	91	470.51	13/2-	371.23	$11/2^+$	[E1]		0.340 5	Mult.: E1 quoted by 1976Sv01 from 1970Wi09 ((α ,2n γ) data).
106.25 4	102.4 67	116.71	5/2+	10.419	3/2+	[M1]		2.61 4	Mult.: M1 quoted by 1976Sv01 from 1971Fu10 (167 Yb ε decay data).
^x 109.93 5	4.0 3								$I_{\gamma}(p,2n\gamma)/I_{\gamma}(p,n\gamma)=1.05$ <i>5</i> , possibly mixed with a γ ray in 166 Tm.
112.95 10	15.7 11	496.94	$11/2^{-}$	383.98	9/2-				$I\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=0.33$ 10.
113.41 5	76.2 51	293.06	7/2-	179.66	7/2+	[E1]		0.2392 <i>34</i>	Mult.: E1 quoted by 1976Sv01 from 1971Fu10 (¹⁶⁷ Yb ε decay data). Delayed γ . $I_{2}(n, 2n_{2})/I_{2}(n, n_{2})=0.71$ 3
116 77 & 5	40.1 & 27	116 71	5/2+	0.0	1/2+				$I_{y}(p,2n_{y})/I_{y}(p,n_{y})=0.71.5.$
110.77×5	40.1 27	206.42	5/2 0/2+	170.66	1/2				$1\gamma(p,2\pi\gamma)/1\gamma(p,\pi\gamma)=0.70$ 1.
116.// 5	40.1~ 27	296.43	9/2	1/9.66	1/2	#			
132.12 5	100.0 69	142.52	1/2*	10.419	3/2*	E2"		1.094 15	α (K)exp=0.45 4 α (K)=0.524 7; α (L)=0.437 6; α (M)=0.1064 15 Ice(K)=2.49 27. I γ (p,2n γ)/I γ (p,n γ)=0.71 1.

From ENSDF

						167 Er(p,n γ)	1976Sv01	(continued)
						$\gamma(^{167})$	Tm) (continu	ued)
${\rm E_{\gamma}}^{\dagger}$	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
135.27 5	11.3 8	632.13	13/2-	496.94	11/2-	(M1+E2) [#]	1.16 15	α (K)exp=0.44 6 α (K)=0.79 30; α (L)=0.28 11; α (M)=0.066 29 Ice(K)=0.30 3. μ (α 2ma)/ α (α pm)=0.21 3
^x 137.70 20								Weak γ .
139.91 5	15.8 12	436.32	11/2+	296.43	9/2+	M1 [#]	1.190 <i>17</i>	$1\gamma(p,2n\gamma)/1\gamma(p,n\gamma)=1.54$ 10, possibly mixed with a transition in ¹⁵⁰ 1 m. $\alpha(K)\exp=1.01$ 10 $\alpha(K)=0.997$ 14; $\alpha(L)=0.1504$ 21; $\alpha(M)=0.0335$ 5 Ice(K)=1.00 1. Ice(K)=1.00 1.
143.53 5	65.7 46	286.02	9/2-	142.52	7/2+	E1 [#]	0.1282 18	$\alpha(K) \exp[-0.073 \ 30] \alpha(K) = 0.107 \ 15; \ \alpha(L) = 0.01655 \ 23; \ \alpha(M) = 0.00368 \ 5$ Ice(K)=0.30 4.
156.11 6	6.9 6	788.15	15/2-	632.13	13/2-			Mult: Mi $19768v01$, but no ce data.
161.45 ^{&} 6	13.2 ^{&} 10	171.84	1/2-	10.419	3/2+	D [#]		$\alpha(K) \exp[0.46 5]$ Placement from four levels in Table I of 1976Sv01. Ice(K)=0.43 3.
161.45 ^{&} 6 161.45 ^{&a} 6 169.20 <i>10</i> ^x 170.75 <i>10</i>	13.2 ^{&} 10 13.2 ^{&} 10 1.8 3 2.2 3	597.78 1001.67 460.15	13/2+ 13/2+ 7/2-	436.32 840.23 290.99	11/2 ⁺ 11/2 ⁺ 3/2 ⁻	D#		ιγ(p,2π <i>γ)</i> /1γ(p,π <i>γ</i>)-5.0 15.
171.80 6	5.4 5	171.84	1/2-	0.0	1/2+	E1 [#]	0.0798 11	α (K)exp=0.053 20 α (K)=0.0668 9; α (L)=0.01015 14; α (M)=0.002256 32 Ice(K)=0.020 7. Iv(n 2nx)/Iv(n nx)=2 25 25
174.0 2		460.15	7/2-	286.02	9/2-	(M1) [#]	0.645 9	$\begin{aligned} &\alpha(K) \exp[=0.70 \ 20 \\ &\alpha(K) = 0.540 \ 8; \ \alpha(L) = 0.0812 \ 12; \ \alpha(M) = 0.01810 \ 26 \\ &\text{Ice}(K) = 0.20 \ 4 \ \text{for} \ 174.27\gamma + 174.0\gamma. \\ &\text{I}\gamma(p, 2n\gamma)/I\gamma(p, n\gamma) = 2.00 \ 20 \ \text{for} \ 174.27\gamma + 174.0\gamma. \\ &\text{Mult.:} \ \alpha(K) \exp \text{ gives mult} = M1 \ \text{for} \ 174.27\gamma + 174.0\gamma \ \text{doublet} \ (1976\text{Sv01}). \\ &\text{But} \ \Delta J^{\pi} \ \text{requires E1 for this placement, the placement of} \ 174.0\gamma \ \text{from} \\ &460 \ \text{level, expected as M1 may be dominant.} \end{aligned}$
174.27 7	3.7 4	290.99	3/2-	116.71	5/2+	(E1) [#]	0.0769 11	α (K)exp=0.70 20 α (K)=0.0644 9; α (L)=0.00977 14; α (M)=0.002171 30 Ice(K)=0.20 4 for 174.27 γ +174.0 γ . I γ (p,2n γ)/I γ (p,n γ)=2.00 20 for 174.27 γ +174.0 γ . Mult.: from (p,2n γ)/(p,n γ) excitation-strength ratios (1976Sv01).

 $^{167}_{69}\mathrm{Tm}_{98}$ -4

н

						¹⁶⁷ Er(j	p,n γ) 1976	Sv01 (continued)
							$\gamma(^{167}\text{Tm})$ (c	ontinued)
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
								Mult.: α (K)exp gives mult=M1 for 174.27 γ +174.0 γ doublet (1976Sv01). But ΔJ^{π} requires E1 for this placement, the placement of 174.0 γ from 460 level, expected as M1 may be dominant.
176.34 6	21.5 17	293.06	7/2-	116.71	5/2+	E1 [#]	0.0746 10	α (K)exp=0.073 <i>13</i> α (K)=0.0624 <i>9</i> ; α (L)=0.00946 <i>13</i> ; α (M)=0.002103 <i>29</i> Ice(K)=0.12 <i>2</i> . I γ (p,2n γ)/I γ (p,n γ)=0.71 <i>3</i> .
177.33 6	41.7 32	187.76	5/2-	10.419	3/2+	E1 [#]	0.0735 10	α (K)exp=0.060 <i>10</i> α (K)=0.0615 <i>9</i> ; α (L)=0.00932 <i>13</i> ; α (M)=0.002071 <i>29</i> E_{γ},I_{γ} : for an unresolved doublet as indicated by 1976Sv01, but the other placement is not given. Ice(K)=0.192 <i>8</i> . $I_{\gamma}(p,2n\gamma)/I_{\gamma}(p,n\gamma)=1.66$ <i>4</i> .
^x 178.04 7 181.47 8	5.2 5 2.1 <i>4</i>	779.35	15/2+	597.78	13/2+			$I\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=1.10$ 20, possibly mixed with a transition in ¹⁶⁸ Tm. 1976Sv01 state that the peak in the spectrum is seriously disturbed by other transitions
184.17 8 184.51 7 193 ^a	38.5 20 19.7 20	326.69 470.51 1159.3	9/2 ⁺ 13/2 ⁻ 19/2 ⁻	142.52 286.02 965.52	7/2 ⁺ 9/2 ⁻ 17/2 ⁻			
199.00 <i>30</i> 204.00 <i>20</i>	2.3 4	978.38 496.94	17/2 ⁺ 11/2 ⁻	779.35 293.06	15/2 ⁺ 7/2 ⁻	E2	0.2434 35	E_{γ} : 1976Sv01 take value from 1970Wi09. α (K)exp=0.126 30 α (K)=0.1546 22; α (L)=0.0682 10; α (M)=0.01637 24 $\log(k)=0.002$ 15
210.01 7	18.0 <i>15</i>	326.69	9/2+	116.71	5/2+	E2	0.2211 <i>31</i>	
218.77 20	3.9 4	689.33	15/2+	470.51	13/2-	(E1)	0.0426 6	$\alpha(K) \exp[=0.021 \ 8]$ $\alpha(K) = 0.0358 \ 5; \ \alpha(L) = 0.00533 \ 8; \ \alpha(M) = 0.001183 \ 17$ $Ice(K) = 0.033 \ 20.$ I_{2} : for a doublet.
228.67 ^{&} 7	66.8 ^{&} 57	371.23	11/2+	142.52	7/2+	(E2)	0.1674 23	α(K)exp=0.11 2 α(K)=0.1114 I6; α(L)=0.0431 6; α(M)=0.01028 I4 $E_{\gamma}: 229.67$ in Table I of 1976Sv01 seems a misprint, Eγ listed as 228.7 authors' Fig. 11b. Ice(K)=2.58 5 for doublet. Iγ(p,2nγ)/Iγ(p,nγ)=0.37 I for doublet.
228.67 ^{&} 7 238.79 15 ^x 244.66 20	66.8 ^{&} 57 5.3 4 2.9 4	699.15 699.15	11/2 ⁻ 11/2 ⁻	470.51 460.15	13/2 ⁻ 7/2 ⁻			E_{γ} : unresolved doublet, mixed with line from (p,p') reaction. γ not observed in (p,2n γ).

S

From ENSDF

L

						¹⁶⁷ Er(p,	n γ) 1976S	v01 (continued)
							$\gamma(^{167}\text{Tm})$ (cor	ntinued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
247.98 15	4.6 4	632.13	13/2-	383.98	9/2-	E2	0.1290 18	α (K)exp=0.07 2 α (K)=0.0883 12; α (L)=0.0313 4; α (M)=0.00745 11 $\log(K)=0.113$ 14
251.07 8	11.0 <i>11</i>	622.31	13/2+	371.23	11/2+	M1	0.2345 <i>33</i>	$\begin{array}{l} \alpha(K)=0.113 \ 14.\\ \alpha(K)\exp=0.19 \ 2\\ \alpha(K)=0.1968 \ 28; \ \alpha(L)=0.0293 \ 4; \ \alpha(M)=0.00653 \ 9\\ \text{Ice}(K)=0.709 \ 15.\\ \alpha(K)=0.109 \ 15.\\$
256.67 8	13.6 14	436.32	11/2+	179.66	7/2+	E2	0.1157 16	$f_{\gamma}(\mathbf{p},2\mathbf{n}\gamma)/f_{\gamma}(\mathbf{p},\mathbf{n}\gamma)=0.277.$ $\alpha(\mathbf{K})\exp=0.079.8$ $\alpha(\mathbf{K})=0.0801.11; \ \alpha(\mathbf{L})=0.0274.4; \ \alpha(\mathbf{M})=0.00651.9$ $Ice(\mathbf{K})=0.387.8.$
271.26 10	11.6 <i>14</i>	741.77	17/2-	470.51	13/2-	(E2)	0.0973 14	$\frac{1\gamma(p,2n\gamma)}{1\gamma(p,n\gamma)} = 0.44 \ 7.$ $\alpha(K) \exp = 0.063 \ 7$ $\alpha(K) = 0.0685 \ 10; \ \alpha(L) = 0.02220 \ 31; \ \alpha(M) = 0.00526 \ 7$ Ice(K)=0.218 \ 8 for doublet with Ey=272.30.
272.30 10	2.5 10	460.15	7/2 ⁻	187.76	5/2 ⁻ 3/2 ⁺			α (K)exp=0.063 7 Ice(K)=0.218 8 for 272.30 γ +271.26 γ . α (K)exp for 272.30 γ +271.26 γ . I γ (p,2n γ)/I γ (p,n γ)=0.66 22 probably for 272.30 γ +271.26 γ . I α (D, 2n γ)/I γ (p, n γ)=1.5 9
291.02 ^{&} 9	13.9 ^{&} 15	290.99	3/2-	0.0	1/2+	(E1)	0.0207 3	α(K)exp=0.022 4 α(K)=0.01745 24; α(L)=0.00255 4; α(M)=0.000565 8 Ice(K)=0.129 8 for doublet. Iγ(p,2nγ)/Iγ(p,nγ)=1.60 10. Mult.: α(K)exp gives E1 or E2 for doublet. ΔJπ required E1 for placement from 291.0 level.
291.02 ^{&} 9 295.67 9	13.9 ^{&} <i>15</i> 18.0 <i>19</i>	788.15 622.31	15/2 ⁻ 13/2 ⁺	496.94 326.69	11/2 ⁻ 9/2 ⁺	(E2) E2	0.0784 <i>11</i> 0.0747 <i>10</i>	$\alpha(K)=0.0562 \ 8; \ \alpha(L)=0.01707 \ 24; \ \alpha(M)=0.00403 \ 6 \\ \alpha(K)\exp=0.048 \ 5 \\ \alpha(K)=0.0538 \ 8; \ \alpha(L)=0.01609 \ 23; \ \alpha(M)=0.00380 \ 5 \\ Ice(K)=0.274 \ 8. \\ 0.0541 \ 5 \\ 0.0$
301.26 9	14.7 <i>17</i>	597.78	13/2+	296.43	9/2+	E2	0.0705 10	$1\gamma(p,2n\gamma)/1\gamma(p,n\gamma)=0.24$ 5. $\alpha(K)\exp=0.052$ 6 $\alpha(K)=0.0511$ 7; $\alpha(L)=0.01503$ 21; $\alpha(M)=0.00354$ 5 Ice(K)=0.257 7. $I\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=0.27$ 4
304.50 <i>20</i> 318.15 <i>15</i>	16.3 20	993.75 689.33	17/2 ⁺ 15/2 ⁺	689.33 371.23	15/2 ⁺ 11/2 ⁺	E2	0.0599 8	$E_{\gamma,\Gamma_{\gamma}}$: weak γ from $\gamma\gamma$ -coin data. $\alpha(K)\exp=0.043 5$ $\alpha(K)=0.0439 6$; $\alpha(L)=0.01233 17$; $\alpha(M)=0.00290 4$ Lee(K)=0.250 8
331.43 20	1.7 4	658.09	7/2+	326.69	9/2+	(M1+E2)	0.082 29	$\alpha(K) = 0.250$ 3. $\alpha(K) = 0.049$ 15 $\alpha(K) = 0.066$ 27; $\alpha(L) = 0.0122$ 16; $\alpha(M) = 0.00278$ 29 Lee(K) = 0.039 7
333.36 20	2.2 4	965.52	17/2-	632.13	13/2-	(E2)	0.0522 7	$\alpha(K) \exp = 0.033 \ 10$

From ENSDF

L

							$\gamma(^{167}\text{Tm})$ (cont	inued)
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
								$\alpha(K)=0.0387 5; \alpha(L)=0.01044 15; \alpha(M)=0.002447 35$ Ice(K)=0.034 7.
342.50 ^a 20		522.15	$5/2^{+}$	179.66	$7/2^{+}$			I_{γ} : weak.
343.28 ^{&} 15	28.0 ^{&} 32	460.15	7/2-	116.71	5/2+			α (K)exp=0.017 3 Ice(K)=0.20 2 for doublet. α (K)exp for doublet gives mult=E1 or E2. I γ (p,2n γ)/I γ (p,n γ)=0.94 3 for doublet.
343.28 ^{&} 15	28.0 ^{&} 32	779.35	$15/2^+$	436.32	$11/2^+$			
354.80 10	a a & -	1096.57	21/2	/41.//	17/2	(Ta)		E_{γ} : from $\gamma\gamma$ -coin data.
371.26 ^{cc} 30	3.9 ^{cc} 5	993.75	17/2+	622.31	13/2+	(E2)	0.0382 5	α (K)exp=0.025 5 α (K)=0.0289 4; α (L)=0.00718 10; α (M)=0.001675 24 Ice(K)=0.050 7.
371.26 ^{&} <i>30</i>	3.9 & 5	1159.3	19/2-	788.15	15/2-	(E2)	0.0382 5	
372.43 15	9.9 6	699.15	11/2-	326.69	9/2+	(E1)	0.01141 <i>16</i>	α (K)exp=0.010 2 α (K)=0.00963 14; α (L)=0.001385 19; α (M)=0.000307 4 E_{γ},I_{γ} : probably a doublet. Ice(K)=0.049 7. I γ (p,2 $\eta\gamma$)/ $I\gamma$ (p, $\eta\gamma$)=0.34 5.
379.60 20	2.9 4	522.15	5/2+	142.52	7/2+	(M1)	0.0775 11	α (K)exp=0.071 <i>12</i> α (K)=0.0652 <i>9</i> ; α (L)=0.00960 <i>14</i> ; α (M)=0.002135 <i>30</i> Ice(K)=0.105 <i>7</i> .
380.60 15	3.3 4	978.38	17/2+	597.78	13/2+	(E2)	0.0356 5	$\alpha(K) \exp = 0.033$ 7 $\alpha(K) = 0.0271$ 4; $\alpha(L) = 0.00661$ 9; $\alpha(M) = 0.001538$ 22 Lee(K) = 0.056 7.
386.40 ^{<i>a</i>} 15	4.2 5	1008.62	15/2-	622.31	13/2+			$\alpha(K) \exp[-0.061 9]$ E_{γ} ,Mult.: placed by evaluators based on the Adopted Level, Gammas, but M1 from ce data is inconsistent ΔJ^{π} , which requires E1. It is likely that this γ ray is a doublet. Lce(K)=0.133.7
397.57 15	3.9 4	1086.90	19/2+	689.33	15/2+	(E2)	0.0316 4	$\alpha(K)=0.1357$. $\alpha(K)=0.0164$ $\alpha(K)=0.0241734$; $\alpha(L)=0.005718$; $\alpha(M)=0.00132719$ $\log(K)=0.0317$
405.50 20	4.5 5	522.15	5/2+	116.71	5/2+	(M1)	0.0652 9	$\alpha(K) = 0.051 7.$ $\alpha(K) \exp = 0.059 8$ $\alpha(K) = 0.0548 8; \alpha(L) = 0.00806 11; \alpha(M) = 0.001792 25$ E_{γ}, I_{γ} : mixed with a line from ¹⁶⁶ Er. Ice(K) = 0.143 7 for doublet. $\alpha(K) \exp for doublet$
413.50 25	5.4 6	699.15	11/2-	286.02	9/2-	(M1+E2)	0.045 17	α (K)exp for doublet. α (K)exp=0.03 <i>l</i> α (K)=0.037 <i>l</i> 5; α (L)=0.0063 <i>l</i> 3; α (M)=0.00143 27 Ice(K)=0.091 7.
415.60 ^{&} 20	3.0 ^{&} 4	557.76	$5/2^{+}$	142.52	7/2+	(M1+E2)	0.045 17	$\alpha(K) \exp = 0.03 I$

From ENSDF

 $^{167}_{69}\mathrm{Tm}_{98}$ -7

¹⁶⁷₆₉Tm₉₈-7

						¹⁶⁷ Er(]	ρ,n γ) 197	6Sv01 (continued)
							$\gamma(^{167}\text{Tm})$ (continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
								$\alpha(K)=0.036 \ 15; \ \alpha(L)=0.0062 \ 13; \ \alpha(M)=0.00141 \ 27$ Ice(K)=0.054 7 for doublet. $\alpha(K)$ exp for doublet. I $\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=0.91 \ 30$ for doublet.
415.60 ^{&} 20	3.0 ^{&} 4	1194.95	$19/2^{+}$	779.35	$15/2^{+}$	(E2)	0.0279 4	
440.92 15	4.0 5	557.76	5/2+	116.71	5/2+	(M1)	0.0524 7	α (K)exp=0.044 7 α (K)=0.0441 6; α (L)=0.00646 9; α (M)=0.001436 20 Ice(K)=0.101 7 for doublet. α (K)exp for doublet. I γ (p,2n γ)/I γ (p,n γ)=1.50 35 for doublet. I $_{\gamma}$: for a doublet.
^x 456.37 25	2.6 4					(M1)	0.0479 7	$\dot{\alpha}$ (K)exp=0.044 9 α (K)=0.0403 6; α (L)=0.00590 8; α (M)=0.001312 18 Ice(K)=0.068 7.
460.32 20	10.8 6	470.61	3/2+	10.419	3/2+	(M1)	0.0468 7	α (K)exp=0.038 4 α (K)=0.0394 6; α (L)=0.00577 8; α (M)=0.001282 18 E _{γ} : mixed with a line from ¹⁶⁶ Er. Ice(K)=0.242 8 for doublet. α (K)exp for doublet. Iv(p. 2m)/Iv(p. px)=1 70 15 for doublet
468.91 25	4.9 5	840.23	11/2+	371.23	11/2+	(M1)	0.0446 6	$\alpha(K) \exp[=0.042.6]$ $\alpha(K) = 0.0376.5; \ \alpha(L) = 0.00550.8; \ \alpha(M) = 0.001222.17$ Ice(K) = 0.123.7, also contribution from a line in 166Er. $Iv(n, 2m)/Iv(n, nv) = 0.67.20$
470.40 25	5.7 5	470.61	3/2+	0.0	1/2+	(M1)	0.0443 6	$\alpha(K) \exp[=0.034.5]$ $\alpha(K) = 0.0373.5; \ \alpha(L) = 0.00545.8; \ \alpha(M) = 0.001211.17$ $E_{\gamma}: mixed with a line from 166Er.$ Ice(K) = 0.118.7. Iv(n, 2m)/[r(n, nx) = 1.90.20] for doublet
474.71 25	3.0 4	935.18	7/2-	460.15	7/2-	(M1)	0.0432 6	$\alpha(K)=0.0364$ 5; $\alpha(L)=0.00533$ 7; $\alpha(M)=0.001183$ 17 $\alpha(L)=0.001183$ 17 $\alpha(L)=0.001183$ 17
^x 486.62 25	3.4 4					(M1)	0.0405 6	$\alpha(K) \exp=0.045 \ 8$ $\alpha(K) \exp=0.045 \ 8$ $\alpha(K) = 0.0341 \ 5; \ \alpha(L) = 0.00499 \ 7; \ \alpha(M) = 0.001109 \ 16$ $E_{\gamma}: 1976 \text{Sv01}$ place this γ to feed a 11/2 ⁺ levels, but it is uncertain which level it is. A similar transition was also seen and unplaced in $(\alpha, 2n\gamma)$. Ice(K)=0.095 7.
511.70 20		522.15	5/2+	10.419	3/2+			E_{γ} : from ce data.
513.90 <i>30</i>		840.23	$11/2^+$	326.69	$9/2^+$			E_{γ} : from ce data, unplaced in 1976Sv01. Placed from the Adopted Gammas.
515.60 20	111	658.09 1008.62	15/2+	142.52	$1/2^+$ $13/2^-$	(M1)	0.0314 4	E_{γ} : from ce spectrum. $\alpha(K) \exp{-0.030} I_{0}$
551.55 55	1.4 4	1000.02	13/2	470.31	13/2	(111)	0.0314 4	$\alpha(K) = 0.0264 4; \ \alpha(L) = 0.00385 5; \ \alpha(M) = 0.000855 12$

L

 ∞

							γ ⁽¹⁶⁷ Tm) (co	ontinued)
E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	α@	Comments
541.28 25		658.09	7/2+	116.71	5/2+	(M1)	0.0308 4	Placement from Adopted Gamma. Ice(K)=0.026 7. α (K)exp=0.035 8 α (K)=0.0260 4; α (L)=0.00378 5; α (M)=0.000840 12 E_{γ} : for doublet as indicated by 1976Sv01, but the other placement is unknown. Ice(K)=0.059 7 for doublet.
547.20 ^{&} 20	5.7 ^{&} 5	557.76	5/2+	10.419	3/2+	(M1)	0.0300 4	$\alpha(K)\exp=0.025 \ 4$ $\alpha(K)=0.02528 \ 35; \ \alpha(L)=0.00368 \ 5; \ \alpha(M)=0.000817 \ 11$ Ice(K)=0.097 7 for doublet. $\alpha(K)\exp$ for doublet. I $\gamma(p,2n\gamma)/I\gamma(p,n\gamma)=2.00 \ 50$ for doublet.
547.20 ^{&} 20 556.77 20	5.7 ^{&} 5 3.4 4	1044.37 928.00	11/2 ⁻ 11/2 ⁺	496.94 371.23	11/2 ⁻ 11/2 ⁺	(M1) (M1)	0.0300 <i>4</i> 0.0287 <i>4</i>	Placement from the Adopted Gammas. Different placement in 1976Sv01. $\alpha(K)\exp=0.021 4$ $\alpha(K)=0.02418 34$; $\alpha(L)=0.00352 5$; $\alpha(M)=0.000781 11$ E_{γ} : unplaced in 1976Sv01. Placement from the Adopted Gammas. Ice(K)=0.048 7 for a doubly-placed γ . Iv(n 2m)/Iv(n m)=0.95 30
^x 570.64 20	4.6 4					(M1)	0.0269 4	$\alpha(K) \exp[=0.022 4]$ $\alpha(K) \exp[=0.02271 32; \alpha(L)=0.00330 5; \alpha(M)=0.000733 10]$ Ice(K)=0.071 7. Ize(n 2m)/[ac(n ma)=1.10.30]
^x 576.86 <i>35</i>	1.8 4							$1/(p,2\pi)/(p,\pi) = 1.10$ JO.
^x 583.03 25	2.9 4							
x590.63 30 x600.18 15	2.6 <i>4</i> 5.6 <i>5</i>					(M1)	0.0237 3	$\frac{1\gamma(p,2n\gamma)}{1\gamma(p,n\gamma)=1.50} \frac{30}{30}.$ $\alpha(K) = 0.019 \frac{3}{3}.$ $\alpha(K) = 0.01998 \frac{28}{3}; \alpha(L) = 0.00290 \frac{4}{3}; \alpha(M) = 0.000644 \frac{9}{3}.$
630.00 <i>40</i>	1.6 5	1001.67	13/2+	371.23	11/2+	(M1)	0.02096 <i>30</i>	$\alpha(K)=0.017.8$ $\alpha(K)=0.01768.25; \ \alpha(L)=0.00256.4; \ \alpha(M)=0.000568.8$ Placement from Adopted Gammas. Lee(K)=0.020.7
636.00 <i>35</i>	2.1 5	929.1?	9/2-	293.06	7/2-	(M1)	0.02046 29	$\alpha(K)=0.0207.$ $\alpha(K)=0.0176$ $\alpha(K)=0.0172624; \alpha(L)=0.00250035; \alpha(M)=0.0005558$ Placement from Adopted Gammas. Lee(K)=0.0277
^x 640.10 <i>30</i>	5.0 5					(M1)	0.0201 3	$\alpha(K) = 0.027 7.$ $\alpha(K) = 0.019 5$ $\alpha(K) = 0.01698 24; \ \alpha(L) = 0.002459 35; \ \alpha(M) = 0.000546 8$ $\log(K) = 0.042 7$
649.36 20	5.0 5	935.18	7/2-	286.02	9/2-	(M1)	0.01942 27	$\alpha(K) = 0.015 \ 3$ $\alpha(K) = 0.01638 \ 23; \ \alpha(L) = 0.002370 \ 33; \ \alpha(M) = 0.000526 \ 7$ $\log(K) = 0.01638 \ 23; \ \alpha(L) = 0.002370 \ 33; \ \alpha(M) = 0.000526 \ 7$
^x 653.12 40	1.9 5							$ICC(\mathbf{K}) = 0.03 / 7.$

 $^{167}_{69}\mathrm{Tm}_{98}$ -9

L

							$\gamma(^{167}\text{Tm})$	(continued)
${\rm E_{\gamma}}^{\dagger}$	Iγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
x657.22 30	2.3 4	1044.25	11/2-	202.00	0/2-		0.01050.04	
660.70 25	3.5 5	1044.37	11/2-	383.98	9/2-	(M1)	0.01859 26	α (K)exp=0.015 4 α (K)=0.01568 22; α (L)=0.002268 32; α (M)=0.000503 7 Ice(K)=0.041 7 for doubly-placed γ .
664.79 20	4.5 4	852.56	3/2-	187.76	5/2-	(E2)	0.00857 12	$\alpha(K)\exp=0.008$ 3
								$\alpha(K)=0.00697 \ 10; \ \alpha(L)=0.001238 \ 17; \ \alpha(M)=0.000281 \ 4$
^x 669.93 <i>30</i>	2.6 4							$ICe(\mathbf{K})=0.028$ / for doubly-placed γ in the Adopted Gammas.
693.71 <i>30</i>	4.0 5	881.5	5/2-	187.76	5/2-	(M1+E2)	0.012 4	α (K)exp=0.011 3
								α (K)=0.010 4; α (L)=0.0016 4; α (M)=3.5×10 ⁻⁴ 10
								E_{γ} : doublet, unplaced in 19/68v01. Placement from the Adopted Gammas.
^x 719.32 25	4.2 5					(E2)	0.00715 10	$\alpha(K) = 0.007 \ 3$
						. ,		$\alpha(K)=0.00586 8; \alpha(L)=0.001008 14; \alpha(M)=0.0002280 32$
700 54 05	(5 10	1000 (0/2-	296.02	0/2-	$(\mathbf{\Gamma}\mathbf{Q})$	0.00700.10	Ice(K)=0.023 7.
122.54 25	6.5 10	1008.6	9/2	286.02	9/2	(E2)	0.00708 10	$\alpha(K) \exp = 0.007/2$ $\alpha(K) = 0.00580/8; \alpha(L) = 0.000997/14; \alpha(M) = 0.0002253/32$
								Ice(K)=0.038 7.
751.50 50	2.3 8	1044.37	$11/2^{-}$	293.06	7/2-	(E2)	0.00649 9	α (K)exp=0.007 4
								$\alpha(K)=0.00533\ 7;\ \alpha(L)=0.000902\ 13;\ \alpha(M)=0.0002036\ 29$
765 23 25	375	944 9	$11/2^{+}$	179 66	$7/2^{+}$	(E2)	0.00623.9	$\alpha(K) = 0.014$ 7. $\alpha(K) = 0.007$ 3
/ 00/120 20	017 0	2.112		179100	.,_	(22)	0.00020 >	$\alpha(K)=0.00512$ 7; $\alpha(L)=0.000862$ 12; $\alpha(M)=0.0001945$ 27
								Ice(K)=0.021 7.
X701 10 25	275							E_{γ} : unplaced in 1976Sv01. Placement from the Adopted Gammas.
^x 793.0.5	5.75 1.05							$\alpha(K) \exp[0.030, 21]$
								Ice(K)=0.010 5.
								α (K)exp=0.011 15 in 1976Sv01 seems a misprint. From Ice(K) in 1976Sv01,
								evaluators deduce 0.030 21, normalized to ce data for 210 γ . 1976Sv01 give mult(804 γ)=(M1), but α (K)exp is also consistent with higher multipolarities such as M2 E3
x804.38 20	1.0 5							α (K)exp=0.033 27
								Ice(K)=0.011 7.
								$\alpha(K)\exp=0.011$ 15 in 19/6Sv01 seems a misprint. From Ice(K) in 1976Sv01, evaluators deduce 0.033 27, normalized to ce data for 210y. 1976Sv01 give mult(804 γ)=(M1), but $\alpha(K)\exp$ is also consistent with higher multipolarities
x902.75 18	7.9.6							such as IV12, E.S.
x957.32 <i>35</i>	3.7 6							
°963.27 <i>35</i>	4.2 6							

From ENSDF

¹⁶⁷Er(**p**,**n**γ) **1976Sv01** (continued)

γ (¹⁶⁷Tm) (continued)

- [†] Uncertainties in 1976Sv01 are statistical only, but the authors state that divergence is expected as <0.1 keV below 500 keV.
- [‡] From $\alpha(K)$ exp deduced from Ice(K) values normalized to ce and I γ data for the 210.0 γ (mult=E2, $\alpha(K)$ =0.1422) for most transitions, and to ce and I γ data for 139.9 γ (mult=M1, $\alpha(K)$ =0.999) for others as indicated. Note that authors' $\alpha(K)$ exp values can be reproduced from their measured Ice(K) given under comments and relative I γ very well for γ rays with energy up to E γ =318 keV, however, for other transitions, authors $\alpha(K)$ exp values are significantly different from Ice(K)/I γ with the above normalizations, making Mult assignments for those transitions questionable. For this reason, the evaluators have placed firm Mult assignments for those transitions in the parentheses as tentative.
- [#] The ce data normalized to ce and I γ data for 139.9 γ (mult=M1, α (K)=0.999).
- [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- [&] Multiply placed with undivided intensity.
- ^{*a*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

From ENSDF

 $\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

& Multiply placed: undivided intensity given

¹⁶⁷₆₉Tm₉₈

¹⁶⁷₆₉Tm₉₈

¹⁶⁷Er(**p**,**n**γ) 1976Sv01

¹⁶⁷₆₉Tm₉₈

¹⁶⁷ Er(p,nγ) 1976Sv01 (continued)

Band(G): π9/2[514]

11/2- 1044.37

Band(F): *π*5/2[402]

7/2+ 658.09

5/2+ 557.76

¹⁶⁷₆₉Tm₉₈