${ }^{166} \operatorname{Er}(\alpha, \mathbf{t}) \quad$ 1974Ch44

$\frac{\text { Type }}{\text { Full Evaluation }} \quad \frac{\text { Author }}{\text { Balraj Singh and Jun Chen }} \quad \frac{\text { Citation }}{\text { NDS 191,1 (2023) }} \quad \frac{\text { Literature Cutoff Date }}{22-A u g-2023}$
1974Ch44: $\mathrm{E}(\alpha)=27 \mathrm{MeV}$. Targets of 96.24% enriched ${ }^{166} \mathrm{Er}$ oxide. Analyzed deuterons using Enge split-pole magnetic spectrograph, and analyzed particles recorded on nuclear emulsion plates at the McMaster University FM Tandem accelerator facility. FWHM $=16-18 \mathrm{keV}$. Deduced differential cross sections and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right) /(\alpha, \mathrm{t})$ cross-section ratios. Interpreted level structure in terms of Nilsson orbitals using 'fingerprint' method of comparison of spectroscopic factors from DWBA analysis with Nilsson-model predictions, with pairing corrections and Coriolis couplings. Uncertainties in measured absolute cross sections are stated by 1974 Ch 44 as $\approx 20 \%$, whereas relative intensities within a spectrum are $\approx 10 \%$, and relative uncertainty for a peak at different angles is $\approx 15 \%$.

$$
{ }^{167} \mathrm{Tm} \text { Levels }
$$

E(level)	$\mathrm{J}^{\pi \ddagger}$	$\underline{\text { Nuclear Structure Factor }{ }^{\#}}$	Comments
$0^{@}$	$1 / 2^{+}$		E (level): obscured by strongly populated $10-\mathrm{keV}$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=29.3\left(45^{\circ}\right), 20.2\left(60^{\circ}\right)$ for $0+10$ levels. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.2$ for $0+10$ levels.
$10^{@} 2$	$3 / 2^{+}$		E (level): doublet of $0+10$ levels, with dominant population of the $10-\mathrm{keV}$ level. $\mathrm{S}=0.57$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ for $0+10$ levels is assigned to $10-\mathrm{keV}$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=29.3\left(45^{\circ}\right), 20.2\left(60^{\circ}\right)$ for $0+10$ levels. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.2$ for $0+10$ levels.
$116^{@} 2$	$5 / 2^{+}$	0.29	Nuclear Structure Factor: 1974Ch44 noted that this value was two to three times larger than the predicted value for the $5 / 2^{+}, \pi 1 / 2[411]$ configuration, as also is the case for ${ }^{165} \mathrm{Tm},{ }^{169} \mathrm{Tm}$ and ${ }^{171} \mathrm{Tm}$. Authors further stated that their Coriolis mixing calculations could not explain this strength in terms of admixtures of other Nilsson states. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=12.8\left(45^{\circ}\right), 10.7\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.6$.
$142^{@} 2$	$7 / 2^{+}$	0.12	$\begin{aligned} & \text { Measured } \mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{~b} / \mathrm{sr})=2.8\left(45^{\circ}\right), 2.6\left(60^{\circ}\right) . \\ & \sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.5 . \end{aligned}$
1832			E(level), J^{π} : complex peak, $J^{\pi}=7 / 2^{+}$and $5 / 2^{-}$. $\mathrm{S}=1.76$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ is assigned to the $7 / 2^{+}, \pi 7 / 2[404]$ configuration. $\mathrm{S}=0.82$ if entire cross section is assumed to be for the $5 / 2^{-}, \pi 1 / 2[541]$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=52.4\left(45^{\circ}\right), 37.4\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.8$
2902			E (level), J^{π} : complex peak, $J^{\pi}=1 / 2^{-}, 1 / 2^{-}$and $7 / 2^{-}$. $\mathrm{S}=0.52$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ is assigned to the $3 / 2^{-}, \pi 1 / 2[541]$ configuration; 1.07 if assigned to the $9 / 2^{-}, \pi 1 / 2[541]$ configuration; 0.46 if assigned to the $7 / 2^{-}, \pi 7 / 2[523]$ configuration. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=40.2\left(45^{\circ}\right), 23.0\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.1$
$\approx 325{ }^{\text {@ }}$	$9 / 2^{+}$		Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr}) \approx 1\left(45^{\circ}\right), \approx 1\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right) \approx 2 .$
4622	7/2 ${ }^{-}$	0.12	```Proposed configuration=\pi1/2[541] band member; large decoupling parameter (}~3\mathrm{) leads to strongly perturbed level order. Measured d }\sigma/\textrm{d}\Omega(\mu\textrm{b}/\textrm{sr})=7.9(4\mp@subsup{5}{}{\circ}),5.3(6\mp@subsup{0}{}{\circ}) \sigma(*)```
471 \& 2	$3 / 2^{+}$	0.05	Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=1.6\left(45^{\circ}\right), 1.2\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.7$.
4962	$11 / 2^{-}$	0.50	$\begin{aligned} & \text { Proposed configuration }=\pi 7 / 2[523] \\ & \text { Measured } \mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{~b} / \mathrm{sr})=25.5\left(45^{\circ}\right), 13.0\left(60^{\circ}\right) \text {. } \\ & \sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.1 . \end{aligned}$
$521^{\dagger} 2$	$5 / 2^{+}$	0.85	Proposed configuration $=\pi 5 / 2$ [402], strongly mixed with $\pi 3 / 2$ [411] configuration

[^0]
${ }^{\dagger}$ Note that in $(\alpha, 2 \mathrm{n} \gamma)$ study, 19800105 assigned reversed configurations: $\pi 3 / 2[411]$ for the $522,5 / 2^{+}$level and $\pi 5 / 2[402]$ for the $578,5 / 2^{+}$level, based on initial proposed assignments in decay study by 1971 Fu10. This reversal was adopted in the 2000 evaluation. Present evaluators adopt assignments for these two levels from 1974Ch44, considering that 'finger-print' method in particle-transfer reaction is more sensitive to the configuration assignment than the γ-ray studies by 19800105 and 1971 Fu 10 . Additionally, 19800105 point out that the two $5 / 2^{+}$levels likely have a mixed configuration ($\pi 3 / 2[411]+\pi 5 / 2[402]$), thus assignment of a single configuration to each of these two levels is not meaningful.

* From 1974Ch44, based on $\sigma(\theta)$ distributions in $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right) /(\alpha, \mathrm{t})$ cross-section ratios, 'finger-print' method.
\# $\left(\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{C}_{\mathrm{ji}}^{1} \mathrm{U}_{\mathrm{i}}\right)^{2}$, with normalization factor $\mathrm{N}=50$.
${ }^{@} \operatorname{Band}(\mathrm{~A}): \pi 1 / 2[411]$ band.
${ }^{\&} \operatorname{Band}(B): \pi 3 / 2[411]$ band. Strongly mixed with $\pi 5 / 2[402]$ configuration.
${ }^{166} \operatorname{Er}(\alpha, \mathrm{t}) \quad$ 1974Ch44

Band(B): $\pi 3 / 2[411]$ band
$5 / 2^{+}$
557
$\operatorname{Band}(A): \pi 1 / 2[411]$ band $3 / 2^{+} 471$
$9 / 2^{+} \quad \approx 325$
$7 / 2^{+} \quad 142$
$5 / 2^{+} \quad 116$

$3 / 2^{+}$	10
$1 / 2^{+}$	$\mathbf{0}$

[^1]
[^0]: Continued on next page (footnotes at end of table)

[^1]: ${ }_{69}^{167} \mathrm{Tm}_{98}$

