${ }^{166} \operatorname{Er}\left({ }^{3} \mathrm{He}, \mathrm{d}\right) \quad 1974 \mathrm{Ch} 44$

$\frac{\text { Type }}{\text { Full Evaluation }} \quad$| History |
| :---: |

1974Ch44: $\mathrm{E}\left({ }^{3} \mathrm{He}\right)=24 \mathrm{MeV}$. Targets of 96.24% enriched ${ }^{166} \mathrm{Er}$ oxide. Analyzed deuterons using Enge split-pole magnetic spectrograph, and analyzed particles recorded on nuclear emulsion plates at the McMaster University FM Tandem accelerator facility. Measured $\sigma(\theta)$ distributions at nine angles. FWHM $=16-18 \mathrm{keV}$. Deduced differential cross sections and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right) /(\alpha, \mathrm{t})$ cross-section ratios. Interpreted level structure in terms of Nilsson orbitals using 'fingerprint' method of comparison of spectroscopic factors from DWBA analysis with Nilsson-model predictions, with pairing corrections and Coriolis couplings included. Uncertainties in measured absolute cross sections are stated by 1974 Ch 44 as $\approx 20 \%$, whereas relative intensities within a spectrum are $\approx 10 \%$, and relative uncertainty for a peak at different angles is $\approx 15 \%$.

$$
{ }^{167} \mathrm{Tm} \text { Levels }
$$

E(level)	$\mathrm{J}^{\pi \ddagger}$	Nuclear Structure Factor ${ }^{\text {\# }}$	Comments
$0^{@}$	$1 / 2^{+}$		E (level): obscured by strongly populated $10-\mathrm{keV}$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=41.2\left(30^{\circ}\right), 43.5\left(60^{\circ}\right)$ for $0+10$ levels. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.2$ for $0+10$ levels.
$10^{@} 2$	$3 / 2^{+}$		$\mathrm{E}($ level): doublet of $0+10$ levels, with dominant population of the $10-\mathrm{keV}$ level. $\mathrm{S}=0.64$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ for $0+10$ is assigned to the $10-\mathrm{keV}$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=41.2\left(30^{\circ}\right), 43.5\left(60^{\circ}\right)$ for $0+10$ levels. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.2$ for $0+10$ levels.
$116{ }^{\text {@ }} 2$	5/2 ${ }^{+}$	0.37	Nuclear Structure Factor: 1974Ch44 noted that this value was two to three times larger than the predicted value for the $5 / 2^{+}, \pi 1 / 2[411]$ state, as is also the case for this configuration in ${ }^{165} \mathrm{Tm},{ }^{169} \mathrm{Tm}$ and ${ }^{171} \mathrm{Tm}$. Authors further stated that their Coriolis mixing calculations could not explain this strength in terms of admixtures of other Nilsson states. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=34.9\left(30^{\circ}\right), 28.3\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.6$.
$142{ }^{\text {@ }} 2$	7/2 ${ }^{+}$	0.22	Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=2.1\left(30^{\circ}\right)$, $4.0\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.5 .$
1832			$\mathrm{E}($ level): complex peak. $\mathrm{S}=3.71$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ is assigned to $7 / 2^{+}, \pi 7 / 2[404]$ configuration; 1.05 if entire cross section is assumed to be for the $5 / 2^{-}, \pi 1 / 2[541]$ level. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=73.5\left(30^{\circ}\right), 66.9\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.8$.
2902			$\mathrm{E}($ level): complex peak. $\mathrm{S}=0.15$ if total $\mathrm{d} \sigma / \mathrm{d} \Omega$ is assigned to $3 / 2^{-}, \pi 1 / 2[541]$ configuration; 2.10 if assigned to $9 / 2^{-}, \pi 1 / 2[541]$ configuration; $S=0.33$ if assigned to $7 / 2^{-}, 7 / 2[523]$ configuration. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=44.7\left(30^{\circ}\right), 25.7\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.1$.
$325{ }^{\text {@ }} 2$	9/2+		$\begin{aligned} & \text { Measured } \mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{~b} / \mathrm{sr}) \approx 2\left(30^{\circ}\right), \approx 2\left(60^{\circ}\right) \text {. } \\ & \sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right) \approx 2 . \end{aligned}$
4632	7/2-	0.10	Proposed configuration $=\pi 1 / 2$ [541] (1974Ch44). Large decoupling parameter (≈ 3) leads to strongly perturbed ordering of level energies. Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=11.5\left(30^{\circ}\right), 8.2\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.5$.
471 \& 2	$3 / 2^{+}$	0.04	$\begin{aligned} & \text { Measured } \mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{~b} / \mathrm{sr})=5.3\left(30^{\circ}\right), 3.2\left(60^{\circ}\right) \text {. } \\ & \sigma\left({ }^{3} \mathrm{He}, \mathrm{~d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=2.7 . \end{aligned}$
4972	11/2 ${ }^{-}$	0.86	Proposed configuration $=\pi 7 / 2[523]$ (1974Ch44). Measured $\mathrm{d} \sigma / \mathrm{d} \Omega(\mu \mathrm{b} / \mathrm{sr})=7.8\left(30^{\circ}\right), 14.8\left(60^{\circ}\right)$. $\sigma\left({ }^{3} \mathrm{He}, \mathrm{d}\right)\left(60^{\circ}\right) /(\alpha, \mathrm{t})\left(60^{\circ}\right)=1.1$.
$522^{\dagger} 2$	$5 / 2^{+}$	0.33	Proposed configuration= $55 / 2[402]$ (1974Ch44).

${ }^{\dagger}$ Note that in $(\alpha, 2 \mathrm{n} \gamma)$ study, 19800105 assigned reversed configurations: $\pi 3 / 2[411]$ for the $522,5 / 2^{+}$level and $\pi 5 / 2[402]$ for the $578,5 / 2^{+}$level, based on initial proposed assignments in decay study by 1971 Fu10. This reversal was adopted in the 2000 evaluation. Present evaluators adopt assignments for these two levels from 1974Ch44, considering that 'finger-print' method in particle-transfer reaction is more sensitive to the configuration assignment than the γ-ray studies by 19800105 and 1971 Fu 10 . Additionally, 19800105 point out that the two $5 / 2^{+}$levels likely have a mixed configuration $(\pi 3 / 2[411]+\pi 5 / 2[402]$), thus assignment of a single configuration to each of these two levels is not meaningful.
${ }^{\ddagger}$ From 1974Ch44, based on $\sigma(\theta)$ distributions in $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right) /(\alpha, \mathrm{t})$ cross-section ratios, 'finger-print' method.
\# $\left(\sum_{\mathrm{a}_{\mathrm{i}}} \mathrm{C}_{\mathrm{ji}}^{\mathrm{l}} \mathrm{U}_{\mathrm{i}}\right)^{2}$, with normalization factor $\mathrm{N}=4.2$ (from theory).
${ }^{@} \operatorname{Band}(\mathrm{~A}): \pi 1 / 2[411]$ band.
${ }^{\&} \operatorname{Band}(B): \pi 3 / 2[411]$ band.

${ }^{166} \operatorname{Er}\left({ }^{3} \mathrm{He}, \mathrm{d}\right) \quad$ 1974Ch44

Band(B): $\pi 3 / 2[411]$ band
5/2 $\mathbf{2}^{+} \quad \mathbf{5 5 8}$
$\operatorname{Band}(A): \pi 1 / 2[411]$ band
3
47
$9 / 2^{+}$
325
$7 / 2^{+}$
142
$5 / 2^{+} \quad 116$

$3 / 2^{+}$	10
$1 / 2^{+}$	$\mathbf{0}$

[^0]
[^0]: ${ }_{69}^{167} \mathrm{Tm}_{98}$

