	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

 $Q(\beta^{-}) = -6260 \ 30$; $S(n) = 10320 \ 40$; $S(p) = 1780 \ 40$; $Q(\alpha) = 4020 \ 40$ 2021Wa16

 $S(2n)=18650 \ 30, \ S(2p)=6490 \ 40, \ Q(\varepsilon p)=380 \ 40, \ Q(\varepsilon)=5120 \ 40 \ (2021Wa16).$

Measured $\varepsilon K/\beta^+=0.57$ 11 (1989Me02) from Ta I(K x ray) and I(γ^{\pm}) in coincidence with 497 γ , implying Q(ε)=5590 +300-240 (1989Me02) for 167 W ε decay, compared to 6260 30 from 2021Wa16.

1969Ar22: ¹⁶⁷Ta known as the ε parent of ¹⁶⁷Hf. 1969Ar22 base the nuclidic assignment on the observation of ¹⁶⁷Lu and ¹⁶⁷Yb γ rays in the tantalum fraction following 660 MeV proton spallation of Hg and Re. Detailed level and band structure has been deduced using the 142 Nd(30 Si,p4n γ) and 120 Sn(51 V,4n γ) reactions.

Mass measurement: 2000Ra23.

Theoretical structure calculations and systematics:

2021Bu05: calculated triaxiality, moment of inertia and inertial parameters, one phonon and two phonon wobbling excitation energies, B(E2), B(M1), B(M1)/B(E2) using semiclassical treatment for a triaxial rotor Hamiltonian.

2013Ha02: comparison of level energies in π i_{13/2}, π h_{9/2} and π h_{11/2} bands in ¹⁶⁷Ta and neighboring odd-A nuclides.

2010Su27: particle + triaxially-deformed rotor calculations; calculated TSD bands, level energies, B(M1)/B(E2).

2001Fe12: analysis of level energies and B(M1); deduced triaxial deformation.

2001Je09: cranked mean-field approach; analyzed bands, calculated deformation, potential energy surface.

1996Su12: calculated high-spin levels, J^{π} , transition energies using projected shell model.

1995Wu04: analyzed rotational spectra; deduced role of decoupling parameter in band crossing frequency shift.

1994Ch72: analyzed crossing frequencies anomalous delays; deduced deformation driving effect, role of pairing mean fields using mean field theory.

1994Su10: calculated rotational frequency vs angular momentum for proton bands; deduced role of quadrupole pairing interaction in delaying crossing point using angular momentum projection theory.

Additional information 1.

The level scheme and band assignments are adopted from $({}^{51}V,4n\gamma)$ (2011Ha25).

167 Ta Levels

Quasiparticle nomenclature for orbitals:

A: first $i_{13/2}$ neutron, $\alpha = +1/2$.

B: first $i_{13/2}$ neutron, $\alpha = -1/2$.

C: second $i_{13/2}$ neutron, $\alpha = +1/2$.

D: second $i_{13/2}$ neutron, $\alpha = +1/2$.

E: lowest $\pi = -$ orbital, $\alpha = +1/2$.

F: lowest $\pi = -$ orbital, $\alpha = -1/2$.

Cross Reference (XREF) Flags

 167 W ε decay (19.9 s) Α

R

 120 Sn(51 V,4n γ) 142 Nd(30 Si,p4n γ) C

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 ^h	(3/2+)	80 s 4	ABC	$%ε+%β^+=100$ J ^π : 94.4γ, M1+E2 from (5/2 ⁺) bandhead of π5/2[402] band; possible member of configuration=π1/2[411] (1992Th02). T _{1/2} : from 1992HeZV. Others: 80 s 20 (1989Br19 and 1987Es08 from the same authors, T _{1/2} from 140γ decay curve, quoted as 1.3 min 3 in 1987Es08); 1.4 min 3 (1982Li17, γ decay curves for several α rays); 2.9 min 15 (1969Ar22). Additional information 2.

Continued on next page (footnotes at end of table)

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
94.66 ⁱ 15	$(5/2^+)$	ABC	
175.86 <mark>8</mark> 17	$(5/2^+)$	В	
205.19 ^j 20	$(7/2^+)$	ABC	
206.3 [#] 3	$(9/2^{-})$	BC	
214.7 3	(-1-)	С	
232.95 ^h 13	$(7/2^+)$	ABC	
254.68 ⁿ 17	$(7/2^+)$	AB	
289.49 24	$(5/2^+, 7/2^+, 9/2^+)$	Α	J^{π} : M1(+E2) 84 γ to 205, (7/2 ⁺) level.
305.38 [@] 24	$(11/2^{-})$	BC	
374.73 ⁱ 18	$(9/2^+)$	BC	
392.0 4	(≤7/2)	A	E(level): 175.4 3 also possible; order of 175γ and 392γ uncertain. J ^{π} : γ to $(3/2^+)$.
431.79 ^m 18	$(9/2^+)$	В	
496.2 [#] 3	$(13/2^{-})$	BC	
496.73 ^c 16	$(5/2^{-})$	AB	
503.13 ⁸ 17	$(9/2^+)$	AB	
527.6 4		В	J^{π} : 321 γ to (9/2 ⁻) 206.
567.4 5		Α	
574.64J 18	$(11/2^+)$	BC	
610.46 ⁿ 20	$(11/2^+)$	В	
611.09 ^c 17	$(9/2^{-})$	ABC	
656.67 19	$(11/2^{+})$	В	
603.24	(15/2-)	A	
6/8./ 3	(15/2 ⁻)	BC	
790.92 ^t 19	$(13/2^+)$	BC	
852.95° 25	(13/2)	BC	
074.12 21 030 07 <mark>8</mark> 20	(13/2) $(13/2^+)$	D R	
$0.47.3^{\#}.3$	$(15/2^{-})$	D PC	
$102621\dot{1}21$	(17/2)	DC DC	
1050.21 ⁵ 21	$(15/2^{+})$	BC	
1091.04 ⁿ 23	$(15/2^{+})$	В	
1133.4° 3	$(13/2^{-})$	В	
1156.25" 21	$(15/2^{+})$	В	
1165.5 3	(19/2)	BC	
$1210.3^{\circ}3$	(1/2)	BC	
1285.0720	$(1/2^{+})$ $(17/2^{+})$	BC	
1394.10 ¹¹ 23	$(17/2^+)$	В	
$1403.75^{\circ} 21$	(11/2)	D DC	
$1493.2 \ J$	(21/2)	DC DC	
$1557.52^{5}22$	(19/2)		
$1030.7^{\circ}3$	(19/2)	D	
1041.4° <i>3</i> 1678 7° <i>4</i>	(1/2) (21/2)	BC	
1070.7^{n} 3	(21/2) $(19/2^+)$	DC R	
$17323^{@}3$	(1)/2) $(23/2^{-})$	BC	
1732.3 = 3	(23/2)		
$1020.04^{\circ} 23$ 1950 $40^{\circ} 24$	$(21/2^+)$ $(21/2^+)$	BC	
2019.25 ⁸ 24	$(21/2^+)$	B	

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2056.96 ⁰ 22	$(21/2^+)$	В	
2088.86 ^j 25	$(23/2^+)$	BC	
2096.5 [#] 3	$(25/2^{-})$	BC	
2199.1 ^b 3	$(21/2^{-})$	В	
2213.8 [°] 4	$(25/2^{-})$	BC	
2222.0 ⁿ 4	$(23/2^+)$	В	
2234.34	$(25/2^{+})$	В	
$2327.9^{\circ} 3$	$(25/2^{+})$	BC	
$2348.9 \circ 3$ 2462.77 m 24	(21/2) $(25/2^+)$	BC	
2477.37 [°] 23	$(25/2^+)$ $(25/2^+)$	B	
2566.2 ^j 3	$(27/2^+)$	BC	
2579.6 ^{&} 3	$(25/2^{-})$	BC	
2634.8 3	$(27/2^+)$	В	
2651.8 ^{<i>a</i>} 4	$(27/2^{-})$	В	
2717.6# 4	$(29/2^{-})$	BC	
2753.3° 3	(29/2 ⁻)	BC	
2780.9 ^{<i>i</i>} 3	$(29/2^+)$ $(20/2^-)$	BC	VDEE. C/2700 2)
2810.0- 4	(29/2) $(29/2^+)$	BC	XREF: C(2798.2).
$28210^{h} 4$	$(27/2^+)$	B	
2874.2^{a} 4	$(31/2^{-})$	BC	
2962.8 ⁰ 3	$(29/2^+)$	В	
2968.1 ^j 3	$(31/2^+)$	BC	
2979.5 [@] 4	$(31/2^{-})$	BC	
3007.4 ¹ 3	$(31/2^+)$	В	
3041.7 4	$(33/2^{-})$	BC	
3211.8 ¹ 3	$(33/2^+)$	BC	
3235.0 ^d 4	$(35/2^{-})$	BC	
3253.0^{c} 4	$(33/2^{+})$	В	
3326.2" 4	(33/2)	BC	
3346.2^{n} / 3392 5 ^C /	$(31/2^+)$ $(33/2^-)$	BC	XPEE (C(3380.8))
$34267\frac{j}{3}$	$(35/2^+)$	BC	AREF : C(5500.0).
3468.7 ^{&} 4	$(37/2^{-})$	BC	
3474.0^{l} 3	$(35/2^+)$	B	
3480.2 ⁰ 4	$(33/2^+)$	В	
3594.3 [@] 4	(35/2-)	BC	
3720.7 ⁱ 3	$(37/2^+)$	BC	
3733.6 ^{<i>a</i>} 4	(39/2-)	BC	
3772.1 ^{<i>k</i>} 4	$(37/2^+)$	В	
3880.6 ⁿ 9	$(35/2^+)$	В	
3913.1 [#] 4	$(37/2^{-})$	B	
39/4.1° 5	$(37/2^{-})$	BC	XREF: C(39/7.2).
3990.97 3	$(39/2^+)$	BC	
4023.4°° 4	$(41/2^{-})$	BC	

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4026.0 ^{<i>l</i>} 4	$(39/2^+)$	В	
4045.2 [°] 4	$(37/2^+)$	В	
4133.1 ^P 6	$(35/2^+)$	В	
4189.9° 4	$(39/2^{-})$	В	
$4304.7^{\mu} 4$	$(41/2^{+})$ $(43/2^{-})$	BC	
$4360.3^{k} 4$	$(41/2^+)$	R	
4300.3 + 4 $4489.3^{h} 10$	$(\frac{1}{2})$ $(\frac{39}{2^+})$	R	
$4501.3^{\#} 4$	$(3)/2^{-})$ $(41/2^{-})$	B	
4557.2 [°] 5	$(41/2^{-})$	BC	XREF: C(4607.8).
4607.9 ^j 4	$(43/2^+)$	BC	
4658.3 ¹ 4	$(43/2^+)$	В	
4661.0° 5	$(41/2^+)$	В	
4684.1 ^{&} 4	$(45/2^{-})$	BC	
4687.7P 5	$(39/2^{+})$	В	
4/99.8 - 4	(43/2)	BC	VDEE. C(4025 6)
$4920.4^{\circ} 4$	$(45/2^+)$	BC	XREP: C(4925.0).
$5053.5^{a} 4$	(43/2) $(47/2^{-})$	в BC	
5126.7 [#] 4	$(45/2^{-})$	В	
5186.6 ^c 5	$(45/2^{-})$	В	
5206.6 ^d 5	$(45/2^{-})$	В	
5235.9 ^j 4	$(47/2^+)$	В	
5293.3 ^P 6	$(43/2^+)$	B	
5520.2° 5	(43/2)	D D	
5345.1 4	(47/2)	D PC	
5420.5 + 4 5465 0 [@] 4	(49/2)	R	
5514.7 ^e 5	$(47/2^{-})$	B	
5550.3 ⁱ 4	$(49/2^+)$	В	
5697.4 ^k 4	$(49/2^+)$	В	
5802.3 [#] 4	$(49/2^{-})$	В	
5824.7 ^{<i>a</i>} 5	$(51/2^{-})$	BC	
5849.5 ^{<i>a</i>} 5	(49/2 ⁻)	В	
5888.3 ^J 4	$(51/2^+)$	B	
5890.2° 5 5949 4 ^P 6	(49/2) $(47/2^+)$	B R	
6035.6° 5	$(49/2^+)$	B	
6054.5 ¹ 4	$(51/2^+)$	В	
6182.1 [@] 4	$(51/2^{-})$	В	
6205.7 ^e 5	(51/2 ⁻)	В	
6221.7 ¹ 4	$(53/2^+)$	В	
6226.3° 5	(53/2 ⁻)	BC	
$6421.7^{\kappa} 4$	$(53/2^+)$	В	
6518.4" 5	$(53/2^{-})$	В	
6593.2 ⁴ 7	$(53/2^{-})$	В	

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
6598.8 ^j 4	$(55/2^+)$	В	8278.0 ^d 10	$(61/2^{-})$	В	10250.4 ^j 6	$(71/2^+)$	В
6637.6 ^a 5	$(55/2^{-})$	BC	8294.2 [°] 6	$(61/2^{-})$	В	10267.3 ⁹ 12	$(69/2^+)$	В
6642.9 [°] 5	$(53/2^{-})$	BC	8324.4 ^{<i>f</i>} 6	$(61/2^{-})$	В	10424.2 [@] 8	$(71/2^{-})$	В
6653.7 <mark>P</mark> 6	$(51/2^+)$	В	8354.4 ^a 5	$(63/2^{-})$	В	10681.3 ⁱ 6	$(73/2^+)$	В
6674.2 ^{<i>f</i>} 6	$(53/2^{-})$	В	8398.6 <mark>0</mark> 7	$(61/2^+)$	В	10825.6 ^{&} 6	$(73/2^{-})$	В
6779.9 <mark>0</mark> 6	$(53/2^+)$	В	8437.2 ⁹ 9	$(61/2^+)$	В	10906.1 ^p 13	$(71/2^+)$	В
6799.9 <mark>9</mark> 6	$(53/2^+)$	В	8564.2 [@] 5	$(63/2^{-})$	В	10986.8 [#] 8	$(73/2^{-})$	В
6815.9 ¹ 4	$(55/2^+)$	В	8564.3 ¹ 5	$(63/2^+)$	В	11031.8? ^k 13	$(73/2^+)$	В
6919.6 [@] 5	$(55/2^{-})$	В	8685.4 ¹ 5	$(65/2^+)$	В	11200.4 ⁰ 10	$(73/2^+)$	В
6963.5 ¹ 4	$(57/2^+)$	В	8744.8 <mark>°</mark> 8	$(63/2^{-})$	В	11225.3 ^a 6	$(75/2^{-})$	В
6987.6 ^e 5	$(55/2^{-})$	В	8843.6 ^{&} 5	$(65/2^{-})$	В	11239.3? ⁹ 16	$(73/2^+)$	В
7063.8 ^{&} 5	$(57/2^{-})$	BC	9020.7 <mark>#</mark> 6	$(65/2^{-})$	В	11346.1 ^j 8	$(75/2^+)$	В
7213.8 ^k 4	$(57/2^+)$	В	9030.4 ^k 5	$(65/2^+)$	В	11434.7 [@] 9	$(75/2^{-})$	В
7292.8 [#] 5	$(57/2^{-})$	В	9054.3 <mark>P</mark> 11	$(63/2^+)$	В	11756.5 ⁱ 6	$(77/2^+)$	В
7389.2 ^j 4	$(59/2^+)$	В	9204.7 ^d 12	$(65/2^{-})$	В	11907.0 ^{&} 6	$(77/2^{-})$	В
7405.4 ^d 9	$(57/2^{-})$	В	9206.8 ^c 8	$(65/2^{-})$	В	11910.9 ^p 14	$(75/2^+)$	В
7406.1 <mark>P</mark> 8	$(55/2^+)$	В	9219.6 ^j 5	$(67/2^+)$	В	12065.5 [#] 9	$(77/2^{-})$	В
7438.6 [°] 6	$(57/2^{-})$	В	9222.6 ^f 8	$(65/2^{-})$	В	12240.4 <mark>°</mark> 11	$(77/2^+)$	В
7471.7 ^f 6	$(57/2^{-})$	В	9267.2 ^a 5	$(67/2^{-})$	В	12271.0 ^{<i>a</i>} 8	$(79/2^{-})$	В
7480.3 ^a 5	$(59/2^{-})$	BC	9280.0 <mark>0</mark> 7	$(65/2^+)$	В	12486.2 ^j 9	$(79/2^+)$	В
7565.8 <mark>0</mark> 6	$(57/2^+)$	В	9331.8 <mark>9</mark> 11	$(65/2^+)$	В	12492.8 [@] 11	$(79/2^{-})$	В
7596.3 <mark>9</mark> 8	$(57/2^+)$	В	9466.0 [@] 6	$(67/2^{-})$	В	12871.9 ⁱ 8	$(81/2^+)$	В
7654.4 ¹ 5	$(59/2^+)$	В	9654.1 ⁱ 5	$(69/2^+)$	В	12968.0 ^P 15	$(79/2^+)$	В
7716.3 [@] 5	(59/2 ⁻)	В	9805.1 <mark>&</mark> 6	$(69/2^{-})$	В	13047.3 ^{&} 7	$(81/2^{-})$	В
7785.8 ⁱ 5	$(61/2^+)$	В	9954.1 <mark>P</mark> 12	$(67/2^+)$	В	13343.4? ⁰ 15	$(81/2^+)$	В
7830.2 ^e 6	(59/2 ⁻)	В	9972.8 <mark>#</mark> 6	(69/2 ⁻)	В	13357.6 ^a 9	(83/2 ⁻)	В
7933.5 <mark>&</mark> 5	$(61/2^{-})$	В	10019.8 ^k 7	$(69/2^+)$	В	13596.2 [@] 12	(83/2-)	В
8085.3 ^k 5	$(61/2^+)$	В	10143.7 ^f 10	(69/2-)	В	14025.6 ⁱ 9	$(85/2^+)$	В
8128.2 [#] 5	$(61/2^{-})$	В	10158.7 ^C 9	$(69/2^{-})$	В	14229.9 <mark>&</mark> 7	$(85/2^{-})$	В
8205.6 <mark>P</mark> 9	$(59/2^+)$	В	10213.8 <mark>0</mark> 9	$(69/2^+)$	В	14483.0 ^a 11	(87/2-)	В
8263.5 ^j 5	$(63/2^+)$	В	10223.8 ^{<i>a</i>} 6	$(71/2^{-})$	В			

¹⁶⁷Ta Levels (continued)

[†] From a least-squares fit to $E\gamma$ data. Note that J=1/2 member of 1/2[411] band has not been identified and may lie below the g.s. level shown here.

[‡] From (⁵¹V,4n γ), based on deduced band structure and measured angular distribution ratios. Consistent with conclusions from (³⁰Si,p4n γ), based largely on systematics of transition energies, signature splittings and alignments in the light odd-A Ta and Lu isotopes, and on deduced transition multipolarities, except as noted.

[#] Band(A): $\pi 9/2[514], \alpha = +1/2$. Band parameters: E₀=118.5, A=13.4 (J=9/2 to 19/2 band members). First band crossing at $\hbar\omega \approx 0.29$ MeV (alignment gain 9 \hbar), second crossing at $\hbar\omega \approx 0.35$ MeV. Configuration= $\pi h_{11/2} \rightarrow \pi h_{11/2}BC \rightarrow \pi h_{11/2}BCAD$.

^(a) Band(a): $\pi 9/2[514], \alpha = -1/2$. See comments for $\alpha = +1/2$ signature band for band crossings and configurations.

[&] Band(B): $\pi h_{11/2} \otimes AB, \alpha = +1/2$. Band crossing at $\hbar \omega \approx 0.41$ MeV. Configuration= $\pi h_{11/2}AB \rightarrow \pi h_{11/2}ABCD$. Configuration= $\pi 9/2[514] \otimes vi(_{13/2})^2$ in 1992Th02.

^{*a*} Band(b): $\pi h_{11/2} \otimes AB, \alpha = -1/2$. See comment for signature partner band.

^{*b*} Band(C): $\alpha = +1/2$ band. Continuation of $\pi h_{11/2} \otimes AB, \alpha = +1/2$ band.

^c Band(D): $\pi 1/2[541], \alpha = +1/2$. Band parameters: E₀=538, A=8.5, B=-44.9, a=5.3 (J=5/2 through 21/2 levels). Decoupled band,

¹⁶⁷Ta Levels (continued)

analogous to bands observed in many neighboring odd-A, even-N nuclei; the large decoupling parameter shifts unfavored signature levels to energies so high they are not normally observed in (HI,xn γ) studies. Note that energies for J>25/2 band members differ from those deduced in (30 Si,p4n γ) because the J=1/2 band member not identified yet. 631γ -596 γ -583 γ -583 γ cascade reported there has been replaced by the 629 γ -583 γ -582 γ -583 γ -596 γ cascade adopted from (51 V,4n γ). Band crossing at $\hbar\omega$ \approx 0.29 MeV. Configuration= π h_{9/2} $\rightarrow \pi$ h_{9/2}AB.

- ^{*d*} Band(E): Band based on $45/2^-, \alpha = +1/2$. Possible configuration= $\pi d_{5/2} \otimes AEBC$.
- ^e Band(e): Band based on $(45/2^{-}), \alpha = -1/2$. See comment for signature partner band.
- ^{*f*} Band(F): Band based on 53/2⁻, $\alpha = +1/2$. Possible configuration= $\pi d_{3/2} \otimes AEBC$.
- ^g Band(G): $\pi 1/2[411], \alpha = +1/2$. J=1/2 band member has not been identified yet; decoupling parameter implies that it will be
- lowest-energy member of band. Band parameters: $E_0 = -44.2$, A = 21.4, B = -41.6, a = -0.66 (J=3/2 through 13/2 levels).
- ^h Band(g): $\pi 1/2[411], \alpha = -1/2$. See comment for signature partner band.
- ^{*i*} Band(H): $\pi 5/2[402], \alpha = +1/2$. Band parameters: $E_0 = -44.0$, A=18.1, B=-41.6, a=-0.66 (J=3/2 through 13/2 levels). In-band decay properties, transition energy systematics in nearby odd-A Ta isotopes, and small negative signature splitting favor $d_{5/2}$ orbital assignment over $g_{7/2}$ (1992Th02). First band crossing at $\hbar\omega \approx 0.24$ MeV, second crossing at $\hbar\omega > 0.24$ MeV, third band crossing at $\hbar\omega \approx 0.31$ MeV. Configuration= $\pi d_{5/2} \rightarrow \pi d_{5/2}AB \rightarrow \pi h_{11/2}AE \rightarrow \pi h_{11/2}AEBC$.
- ^j Band(h): $\pi 5/2[402], \alpha = -1/2$. See comment for $\alpha = -1/2$ signature band for band crossings and configurations.
- ^k Band(I): $\pi h_{11/2} \otimes AF, \alpha = +1/2$. Band crossing at $\hbar \omega \approx 0.35$ MeV. Configuration= $\pi h_{11/2}AF \rightarrow \pi h_{11/2}AFBC$.
- ¹ Band(i): $\pi h_{11/2} \otimes AF, \alpha = -1/2$. See comment for $\alpha = +1/2$ signature band for band crossing and configuration.
- ^{*m*} Band(J): $\pi 7/2[404], \alpha = +1/2$.
- ^{*n*} Band(j): $\pi 7/2[404], \alpha = -1/2$.
- ^{*o*} Band(K): $\pi 1/2[660], \alpha = +1/2$. band parameters: E₀=517.3, A=5.73, a=-13.4 (J=21/2 to 37/2). Reported as TSD-1 band based on $\pi i_{13/2}$ orbital by 2009Ha33.
- ^{*p*} Band(k): Triaxial $\pi i_{13/2}, \alpha = -1/2$. Reported as TSD-2 band by 2009Ha33; shares a common structure with TSD-1 band. One-phonon wobbling-mode excitation, $n_w = 1$ band.
- ^{*q*} Band(L): $\pi i_{13/2}$ (?), $\alpha = +1/2$. Band based on 53/2⁺, and reported as TSD-3 band by 2009Ha33. Band assignment and configuration are tentative.

$\gamma(^{167}\text{Ta})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	I_f^{π} Mu	lt.†	δ	α #	Comments
94.66	(5/2+)	94.4 [‡] 2	100‡	0.0 (3/2	2 ⁺) M1+	-E2		4.9 3	Mult.: from ¹⁶⁷ W ε decay. Other Ex: 94.9.2 from (⁵¹ V4nx).
175.86	$(5/2^+)$	175.9 2	100	0.0 (3/2	2 ⁺) (M1-	+E2)		0.67 21	
205.19	$(7/2^+)$	110.6 2	100	94.66 (5/2	2 ⁺) M1+	-E2		2.9 4	Mult.: from 167 W ε decay.
214.7		120.1 10	100	94.66 (5/2	2+)				
232.95	$(7/2^+)$	138.1 2	10.7 11	94.66 (5/2	2 ⁺) (M1·	+E2)		1.4 4	
254 (0	(7/0+)	233.1 2	100 11	0.0 (3/2	(E2]			0.180 3	
254.68	(7/2*)	160.0 2	100	94.66 (5/2	2') (M1-	+E2)		0.9 3	E_{γ} : presumed to be the same as the $E_{\gamma}=159.74$ transition reported in ε decay. Mult.: Δ π from level scheme.
289.49	$(5/2^+, 7/2^+, 9/2^+)$	84.4 [‡] 2	100^{\ddagger} 7	205.19 (7/2	2 ⁺) M1(-	+E2)	<1.25	7.25 15	Mult δ : from ¹⁶⁷ W ε decay.
		194.6 [‡] 3	55 [‡] 7	94.66 (5/2	2+)	,	_		
305.38	$(11/2^{-})$	99.1 2	100	206.3 (9/2	$(M1)^{-1}$	+E2)		4.2 4	
374.73	$(9/2^+)$	120.0 2		254.68 (7/2	2 ⁺) (M1-	+E2)		2.2 4	Mult.: $\Delta \pi$ from level scheme.
		160.0 2	61	214.7					
		169.6	100	205.19 (7/2	2 ⁺) (M1·	+E2)		0.75 23	Mult.: $\Delta \pi$ from level scheme.
		280.1 2	31 11	94.66 (5/2	2+)				
392.0	(≤7/2)	392.0 [‡] 4	1007	0.0 (3/2	2+)				
431.79	$(9/2^+)$	177.3 2	≈100	254.68 (7/2	(M1 - M1)	+E2)		0.65 21	
406.2	$(12/2^{-})$	337.12	≈52	94.66 (5/2	(E2) (E2)	(E2)		0.0582 8	Mult.: $\Delta \pi$ from level scheme.
490.2	(13/2)	190.8 2	≈100	305.38 (11	/2) (MII· 2-)	+E2)		0.52 18	Other I. 42.14 from $(30\%$ rand)
406 72	(5/0-)	269.92	≈ 21	200.5 (9/2	2) 2+)				Other 1γ : 42 14 from ($(51, p41)\gamma$).
496.73	(5/2)	263.7 3	100 0	232.95 (7/2	2') 2+) (E1:	M2)		0.00.8	I trom a dagay
502.12	(0/2+)	490.02	100 9	0.0 (3/2	(E17)	-1V12		0.09 8	r_{γ} . nom ε decay.
503.13	$(9/2^{+})$	$270.2^{+}2$	100 25	232.95 (7/2	$(M1 \cdot 2^+)$ (M1 \cdot (E2)	+E2)		0.19 8	
527.6		321.5 2	100 25	206.3 (9/2	2) (E2) 2-)			0.0034 9	
567.4		175 4 3	100	392.0 (<7	-) (2)				
574.64	$(11/2^+)$	143.1.2	6.5.6	431.79 (9/2	(M1)	+E2)		1.3.3	
07.1101	(11/2)	199.9 2	98.8	374.73 (9/2	2^+) (M1-	+E2)		0.46 16	
		319.8 2	10.5 13	254.68 (7/2	2+)				
		369.4 2	100 6	205.19 (7/2	2+)				
610.46	$(11/2^+)$	377.5 2	100	232.95 (7/2	2+)				
611.09	$(9/2^{-})$	83.7 5	1.9 6	527.6				• • • • •	
		114.4 2	4.0 4	496.73 (5/2	(E2) (E2)	· E2)		2.20 4	
		305.72 35672	5.0 <i>12</i> 8 1 <i>10</i>	303.38 (11 254.68 (7/	(MI) (MI) (E1)	+E2)		0.13 0	
		378 1 2	100.8	232.95 (7/2	(E1) (E1) (E1)	-M2)		0 20 19	
656.67	$(11/2^+)$	224.8 2	68 8	431.79 (9/2	2^+) (M1-	+E2)		0.32 12	
1	· · · /			(-7	· · · ·	/			

7

$\gamma(^{167}\text{Ta})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α #	Comments
656.67	$(11/2^+)$	402.0 2	100 18	254.68 (7/2+)			
663.2		430.2 [‡] 3	100 [‡]	$232.95 (7/2^+)$			
678.7	$(15/2^{-})$	182.5 2	100.8	$496.2 (13/2^{-})$	(M1+E2)	0.60 20	Other Iv: 74 4 and 93 from $({}^{30}\text{Si.p4nv})$.
0/01/	(10/2)	373.4 2	100 6	$305.38 (11/2^{-})$	(E2)	0.0436 6	
790.92	$(13/2^+)$	134.1 2	6.5 5	$656.67 (11/2^+)$	(M1+E2)	1.5 4	
		216.3 2	66 5	574.64 (11/2 ⁺)	. ,		Other Iy: 53 6 and 73 from $({}^{30}Si,p4n\gamma)$.
		416.2 2	100 7	374.73 (9/2+)	(E2)	0.0324 5	
852.95	$(13/2^{-})$	241.9 2	100	611.09 (9/2-)	(E2)	0.160 2	
874.12	$(13/2^+)$	217.5 2	36 5	656.67 (11/2 ⁺)	(M1+E2)	0.36 13	
		442.3 2	100 9	431.79 (9/2+)	(E2)	0.0276 4	
939.97	$(13/2^+)$	329.5 2	24 6	$610.46 (11/2^+)$			
		436.9 2	100 17	503.13 (9/2+)	(E2)	0.0285 4	
947.3	$(17/2^{-})$	268.5 2	100 6	$678.7 (15/2^{-})$	(M1+E2)	0.19 8	20
		451.0 2	54 4	496.2 (13/2 ⁻)	(E2)	0.0262 4	Other I γ : 80 5 from (³⁰ Si,p4n γ).
1036.21	$(15/2^+)$	97.0 5	< 0.32	939.97 (13/2+)			20
		245.2 2	54 6	790.92 (13/2+)	(M1+E2)	0.25 10	Other I γ : 82 from (⁵⁰ Si,p4n γ).
1001.04	(15/0+)	461.6 2	100 8	$574.64 (11/2^+)$	(E2)	0.0247 4	
1091.04	$(15/2^{+})$	480.6 2	100	$610.46 (11/2^+)$	(E2)	0.0223 3	
1133.4	(13/2)	454.7 2	44 8	6/8.7 (15/2)			
1156 05	$(15/2^{+})$	037.12	100 12	490.2 (13/2)			
1130.23	(13/2)	202.2 2	18 4	6/4.12 (15/2) 656.67 (11/2+)			
1165 5	$(10/2^{-})$	499.0 2	54 4	0.00.07 (11/2) 0.47.2 (17/2)	(M1 + E2)	0 25 12	Other Lag 22, 2 and 40 from $(30 \text{ Sim}/max)$
1105.5	(19/2)	210.2 Z	100 7	947.3 (17/2) 6787 (15/2 ⁻)	$(\mathbf{M}\mathbf{I}+\mathbf{E}\mathbf{Z})$	0.33 I3 0.0216 3	Other 1γ . 55 5 and 49 from ($^{-51},^{-1},^{-1},^{-1})$.
1216.5	$(17/2^{-})$	363.6.2	100 /	$852.95 (13/2^{-})$	(E2)	0.0210 5	
1210.5	$(17/2^+)$	128.9.2	2 84 21	$1156.25 (15/2^+)$	(112)	0.01027	
1203.07	(1//2)	248.9.2	52.4	$1036\ 21\ (15/2^+)$	(M1 + E2)	0 24 10	Other Ly: 46.5 and 66 from $({}^{30}Si p4n\gamma)$
		494.1.2	100.8	$790.92 (13/2^+)$	(E2)	0.0208.3	
1394.16	$(17/2^+)$	520.0 2	100	874.12 (13/2 ⁺)	(E2)		
1456.73	$(17/2^+)$	365.7 2	26 8	1091.04 (15/2+)	(M1)	0.1186 17	
		516.8 2	100 38	939.97 (13/2+)	. ,		
1493.2	$(21/2^{-})$	327.7 2	100 7	1165.5 (19/2 ⁻)	(M1+E2)	0.11 5	Other I γ : 85 7 from (³⁰ Si,p4n γ).
		546.0 2	100 7	947.3 (17/2 ⁻)	(E2)		
1557.32	$(19/2^+)$	272.4 2	41 4	1285.07 (17/2 ⁺)	(M1+E2)	0.19 8	
		521.0 2	100 8	$1036.21 \ (15/2^+)$	(E2)		
1638.7	$(19/2^+)$	547.7 2	100	$1091.04 \ (15/2^+)$	(E2)		
1641.4	$(17/2^{-})$	475.9 2	90 10	1165.5 (19/2 ⁻)			
		508.1 2	63 8	$1133.4 (13/2^{-})$		0.0001.0	
		694.2 2	100 13	947.3 $(17/2^{-})$	(M1)	0.0221 3	Mult.: $\Delta \pi$ from level scheme.
1679.7	(21/2-)	962.7 2	38 J	0/8./(15/2)	(\mathbf{E}_{2})	0.0246.4	
10/8./	(21/2)	402.2 2	100	1210.3 (17/2)	(E2)	0.0246 4	

From ENSDF

$\gamma(^{167}\text{Ta})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	α [#]	Comments
1722.7	$(19/2^+)$	566.4.2	100	1156.25	$(15/2^+)$			
1732.3	$(23/2^{-})$	239.1 2	32.3	1493.2	$(21/2^{-})$	(M1+E2)	0.27 11	
	()	566.8 2	100.8	1165.5	$(19/2^{-})$	(E2)		
1820.04	$(21/2^{+})$	262.7.2	39.4	1557.32	$(19/2^+)$	(M1+E2)	0.21.9	Other Iv: 43.5 and 59 from $({}^{30}Sip4nv)$.
	(,-)	534.9 2	100	1285.07	$(17/2^+)$	(E2)		
1950.40	$(21/2^+)$	556.2 2	100	1394.16	$(17/2^+)$	(E2)		
2019.25	$(21/2^+)$	380.5 5	19.8	1638.7	$(19/2^+)$	`		
		562.5 2	100 17	1456.73	$(17/2^+)$			
2056.96	$(21/2^+)$	600.3 2	100 16	1456.73	$(17/2^+)$			
		771.9 2	89 11	1285.07	$(17/2^+)$	(E2)		Mult.: $\Delta \pi$ from level scheme.
2088.86	$(23/2^+)$	268.8 2	47 4	1820.04	$(21/2^+)$	(M1)	0.272 4	
		531.6 2	100 8	1557.32	$(19/2^+)$	(E2)		
2096.5	$(25/2^{-})$	364.2 2	60 5	1732.3	$(23/2^{-})$	(M1+E2)	0.08 4	Other Iy: 92 14 and 68 from $({}^{30}Si,p4ny)$.
		603.3 2	100 8	1493.2	$(21/2^{-})$			
2199.1	$(21/2^{-})$	466.8 2	56 6	1732.3	$(23/2^{-})$	(M1+E2)	0.043 20	Mult.: $\Delta \pi$ from level scheme.
		557.7 2	100 11	1641.4	$(17/2^{-})$			
		705.8 2	68 8	1493.2	$(21/2^{-})$			
2213.8	$(25/2^{-})$	535.1 2	100	1678.7	$(21/2^{-})$	(E2)		
2222.0	$(23/2^+)$	583.3 2	100	1638.7	$(19/2^+)$	(E2)		
2234.3		592.8 2	100	1641.4	$(17/2^{-})$			
2327.9	$(25/2^+)$	239.0 2	716	2088.86	$(23/2^+)$			
		507.8 2	100 8	1820.04	$(21/2^+)$			a a
2348.9	$(27/2^{-})$	252.3 2	26.6 13	2096.5	$(25/2^{-})$	(M1+E2)	0.23 10	Other I γ : 73 23 and 28 from (³⁰ Si,p4n γ).
		616.5 2	100 5	1732.3	$(23/2^{-})$	(E2)		Other E γ : 617.3 5 from (³⁰ Si,p4n γ).
2462.77	$(25/2^+)$	512.4 2	65 9	1950.40	$(21/2^+)$			
		642.7 2	100 11	1820.04	$(21/2^+)$			
2477.37	$(25/2^+)$	420.5 2	83 10	2056.96	$(21/2^+)$	(E2)	0.0315 5	
		458.1 2	24.5	2019.25	$(21/2^+)$			
2566.2	(07/0+)	526.9 2	100 12	1950.40	$(21/2^{+})$	(E2)		Mult.: $\Delta \pi$ from level scheme.
2566.2	$(27/2^{+})$	238.3 2	100 /	2327.9	$(25/2^+)$		0.0007.3	
2570 6	(25/2-)	4/1.5 2	/5 0	2088.86	$(23/2^{+})$	(E2)	0.0227 3	
2579.6	(25/2)	345.3 2	10.0 9	2234.3	$(21/2^{-1})$			
		380.4 2	45 0	2199.1	(21/2)		0.0570.0	
		483.2 2	61.6	2096.5	(25/2)	(M1)	0.05708	Mult.: interpreted as $\Delta J=0$, dipole from R_q in $({}^{31}V,4n\gamma)$; $\Delta \pi$ from level scheme.
		847.2 2	37 <i>3</i>	1732.3	$(23/2^{-})$	(M1)		Mult.: $\Delta \pi$ from level scheme.
		1086.4 2	100 9	1493.2	$(21/2^{-})$	(E2)		Mult.: $\Delta \pi$ from level scheme.
2634.8	$(27/2^+)$	546.0 2	100	2088.86	$(23/2^+)$			20
2717.6	$(29/2^{-})$	368.7 2	68 <i>6</i>	2348.9	$(27/2^{-})$	(M1+E2)	0.08 4	Other I γ : 40 17 and 62 from (³⁰ Si,p4n γ).
		621.2 2	100 10	2096.5	$(25/2^{-})$	(E2)		
2753.3	$(29/2^{-})$	101.5 2	76 <i>5</i>	2651.8	$(27/2^{-})$	(M1)	4.18 <i>6</i>	

9

 $^{167}_{73}{
m Ta_{94}}$ -9

$\gamma(^{167}\text{Ta})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α #	Comments
2753.3	(29/2 ⁻)	404.2 2	100 10	2348.9	$(27/2^{-})$	(M1+E2)	0.063 1	
		539.6 <i>2</i> 656.9 2	67 5 95 10	2213.8 2096.5	(25/2) $(25/2^{-})$	(E2) (E2)		Mult.: $\Delta \pi$ from level scheme.
								Other I γ : 167 from (³⁰ Si,p4n γ).
2780.9	$(29/2^+)$	214.7 2	100 8	2566.2	$(27/2^+)$ $(25/2^+)$	(E2)	0.0250 4	Other Ly 109, 22 and 75 from $(30\%; \pi/m_{\odot})$
2810.0	$(29/2^{-})$	433.0 2 596.2 2	100	2327.9	$(25/2^{-})$ $(25/2^{-})$	(E2) (E2)	0.0239 4	Other ry. 108 55 and 75 from $(-51, p4fry)$.
2815.0	$(29/2^+)$	180.3 2	29 3	2634.8	$(27/2^+)$			
		248.7 2	36 4 100 8	2566.2	$(27/2^+)$ $(25/2^+)$			
2821.0	$(27/2^+)$	599.0 2	100 8	2222.0	$(23/2^{+})$ $(23/2^{+})$			Mult.: R_{θ} in (⁵¹ V.4n γ) implies $\Delta J=1$, D+Q, but placement requires $\Delta J=2$,
								Q.
2874.2	$(31/2^{-})$	120.9 2	100 11	2753.3	$(29/2^{-})$ $(29/2^{-})$	(M1+E2)	2.2 4	
		222.4 2	≈11 ≈11	2651.8	$(27/2^{-})$			
2962.8	$(29/2^+)$	485.4 2	100 10	2477.37	$(25/2^+)$	(E2)		
2968-1	$(31/2^+)$	500.0 2	40 <i>4</i> 7 8 6	2462.77	$(25/2^+)$ $(29/2^+)$	Q (M1)	1 293 18	Mult : $\Delta \pi$ from level scheme
2900.1	(31/2)	187.2 2	100 6	2780.9	$(29/2^+)$ $(29/2^+)$	(M1+E2)	0.55 19	
		333.3 2	18.1 <i>16</i>	2634.8	$(27/2^+)$	(E2)	0.0217 3	Other I γ : 5.8 5 from (³⁰ Si,p4n γ).
		401.0.2	17 6	2566 2	(27/2+)	(E2)	0.0256.5	Mult.: $\Delta \pi$ from level scheme.
2979 5	$(31/2^{-})$	401.9 2	4/0 296.19	2300.2	$(21/2^{+})$ $(29/2^{-})$	(E2) (M1+F2)	0.0350 5	Other Ly: 48 (from $({}^{30}Si n4n\alpha)$)
2717.5	(31/2)	630.6 2	100 7	2348.9	$(27/2^{-})$	(E2)	0.21)	
3007.4	$(31/2^+)$	226.6 2	100 9	2780.9	$(29/2^+)$	(M1+E2)	0.32 12	Mult.: $\Delta \pi$ from level scheme.
2041.7	(22)(2-)	441.3 2	63 6	2566.2	$(27/2^+)$	(E2)	0.0277 4	Mult.: $\Delta \pi$ from level scheme.
3041.7	(33/2)	288.4 2	15.5 17	2874.2	(31/2) $(29/2^{-})$	(M1+E2)	0.78 25	
3211.8	$(33/2^+)$	204.5 2	19.7 19	3007.4	$(31/2^+)$	(M1)	0.576 8	Mult.: $\Delta \pi$ from level scheme.
		243.7 2	100 8	2968.1	$(31/2^+)$	(M1+E2)	0.26 10	
		396.6 2	10.6 17	2815.0	(29/2+)			Mult.: R_{θ} in (⁵¹ V,4n γ) implies $\Delta J=1$, D+Q, but placement requires $\Delta J=2$,
		431.0 2	61 6	2780.9	$(29/2^+)$	(E2)	0.0295 4	X.
3235.0	$(35/2^{-})$	193.3 2	100 12	3041.7	$(33/2^{-})$	(M1+E2)	0.50 17	
3253.0	$(33/2^+)$	360.8 2	34 <i>3</i> 100	2874.2	(31/2) $(31/2^+)$	(E2) (M1+F2)	0.0480 7	
3326.2	$(33/2^{-})$	346.8 2	67.8	2979.5	$(31/2^{-})$	(M1 + L2)	0.137 2	Other Iy: 34 7 and 48 from $({}^{30}Si,p4n\gamma)$.
	(608.6 2	100 8	2717.6	$(29/2^{-})$	(E2)		······································
3346.2	$(31/2^+)$	525.2 5	100	2821.0	$(27/2^+)$			
3392.3 3426.7	(33/2) $(35/2^+)$	382.5 2 214.9 2	100 13	2810.0	(29/2) $(33/2^+)$			
2.2017	(,-)				(,-)			

10

 $^{167}_{73}{
m Ta_{94}}$ -10

$\gamma(^{167}\text{Ta})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f J	\int_{f}^{π} Mult. [†]	a#	Comments
3426.7	$(35/2^+)$	458.6 2	100 10	2968.1 (31)	(E2)	0.0251 4	Other Iy: 63 from $({}^{30}Si,p4n\gamma)$.
3468.7	$(37/2^{-})$	233.7 2	100 8	3235.0 (35)	(2^{-}) (M1+E2)	0.29 11	
		427.0 2	40 8	3041.7 (33)	(2-)		Other Iy: 56 8 and 38 from $({}^{30}Si,p4ny)$.
3474.0	$(35/2^+)$	221.1 2	30 3	3253.0 (33)	(2^+) (M1)	0.464 7	
		262.2 2	31 <i>3</i>	3211.8 (33)	(2^+) (M1)	0.291 5	Mult.: $\Delta \pi$ from level scheme.
		466.7 2	100 11	3007.4 (31/	(2^+) (E2)	0.0240 4	
3480.2	$(33/2^+)$	517.4 2	100	2962.8 (29/	(E2) (E2)		
3594.3	$(35/2^{-})$	268.1 2	57 7	3326.2 (33/	(2^{-}) (M1+E2)	0.19 8	
		614.8 2	100 10	2979.5 (31/	(2^{-}) (E2)		
3720.7	$(37/2^+)$	246.7 2	20.3 21	3474.0 (35)	(2+)		
		294.0 2	83 7	3426.7 (35)	(2^+) (M1+E2)	0.15 7	20
		508.8 2	100 14	3211.8 (33/	(2+)		Other E γ : 509.6 from (³⁰ Si,p4n γ).
3733.6	$(39/2^{-})$	264.9 2	100 10	3468.7 (37)	(2^{-}) (M1+E2)	0.20 9	
0550 1	(27/2+)	498.5 2	64 6	3235.0 (35/	(2^{-}) (E2)	0.0203 3	
3772.1	$(37/2^{+})$	298.2 2	81 13	34/4.0 (35)	(M1+E2)	0.14 6	
2000 6	(25/2+)	519.2 2	100 13	3253.0(33)	(E2) (E2)		
3880.0	$(33/2^{+})$	554.4 5 219 9 5	100	3340.2 (31/	(2^{+}) (M1+E2)	0.12.6	
5915.1	(37/2)	516.0 2	94 0	3394.3 (33)	(1011+E2)	0.12.0	
3974-1	$(37/2^{-})$	581.6.2	100 11	3392 5 (33)	(2^{-})		
3000.0	(31/2) (30/2+)	270.1.2	61 5	3720 7 (33)	(2^{+}) (M1+E2)	0.10.8	Other Fac. 260.4 from $({}^{30}$ Si p(hac))
5990.9	(39/2)	564 1 2	100.8	3426.7 (37)	$(1777)^{(1717122)}$	0.19 0	Outer E_{γ} . 209.4 Hold ($Si,pan\gamma$).
4023 4	$(41/2^{-})$	289.8.2	100 10	3733.6 (39)	(2^{-}) (M1+E2)	0.16.7	
1023.1	(11/2)	55472	94.6	3468 7 (37)	(1011122) (2^{-}) (F2)	0.10 /	Other Ev: 555.1 from $({}^{30}Si p4p\gamma)$
4026.0	$(39/2^+)$	253.9.2	45 4	3772.1 (37)	(2^{+}) (122)		
1020.0	(3)[2])	552.0.2	100 11	3474.0 (35)	(2^+) (E2)		
4045.2	$(37/2^+)$	565.0 2	100	3480.2 (33)	(2^{+}) (E2)		
4133.1	$(35/2^+)$	653.0 5	100	3480.2 (33)	⁽²⁺⁾		
4189.9	$(39/2^{-})$	276.8 2	76 5	3913.1 (37)	(2^{-}) (M1+E2)	0.18 8	
		595.6 2	100 10	3594.3 (35)	(E2) (E2)		
4304.7	$(41/2^+)$	278.8 2	17.4 23	4026.0 (39/	(2+)		
		313.8 2	71 13	3990.9 (39)	(2+)		Other E γ (I γ): 314.9 (\approx 133) from (³⁰ Si,p4n γ).
		583.9 2	100 10	3720.7 (37)	(2 ⁺) (E2)		Other Ey: 584.5 from $({}^{30}\text{Si},\text{p4n}\gamma)$.
4347.9	$(43/2^{-})$	324.5 2	100 10	4023.4 (41)	(2^{-}) (M1+E2)	0.11 5	Other Ey: 324.9 from $({}^{30}Si,p4n\gamma)$.
		614.4 2	72 6	3733.6 (39)	(E2)		Other E γ (I γ): 615.2 (108) from (³⁰ Si,p4n γ).
4360.3	$(41/2^+)$	334.2 2	45 5	4026.0 (39/	(2^+) (M1+E2)	0.11 5	
		$588.2^{@}$ 2	100 [@] 9	3772.1 (37)	(2^+) (E2)		
4489.3	$(39/2^+)$	608.7 5	100	3880.6 (35)	(2+)		
4501.3	$(41/2^{-})$	311.5 2	92.8	4189.9 (39)	(2^{-1}) (M1+E2)	0.13 6	
		588.2 [@] 2	100 [@] 8	3913.1 (37)	(2-)		

11

$\gamma(^{167}\text{Ta})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [†]	α [#]	Comments
4557.2	$(41/2^{-})$	583.0 2	100	3974.1 ($(37/2^{-})$			
4607.9	$(43/2^+)$	247.6 2	8.3 17	4360.3 ($(41/2^+)$			
		303.3 2	100 9	4304.7 ($(41/2^+)$	(M1+E2)	0.14 6	
		582.0 2	41 4	4026.0 ((39/2 ⁺)			Mult.: R_{θ} in (⁵¹ V,4n γ) suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q.
		617.0 2	25 <i>3</i>	3990.9 ((39/2+)			
4658.3	$(43/2^+)$	298.0 2	33 4	4360.3 ($(41/2^+)$	(M1+E2)	0.14 6	
		632.3 2	49 5	4026.0 ($(39/2^+)$	(E2)		
		667.3 2	100 14	3990.9 ($(39/2^+)$	(E2)		Mult.: $\Delta \pi$ from level scheme.
4661.0	$(41/2^+)$	615.8 2	100	4045.2 ($(37/2^+)$	(E2)		
4684.1	$(45/2^{-})$	336.1 2	98 8	4347.9 ($(43/2^{-})$	(M1+E2)	0.10 5	Other I γ : 72 14 from (³⁰ Si,p4n γ).
		660.7 2	100 8	4023.4 ($(41/2^{-})$	(E2)		Other Ey: 661.3 from $({}^{30}$ Si,p4n γ).
4687.7	$(39/2^+)$	554.6 5	50 17	4133.1 ($(35/2^+)$			
		642.6 5	100 17	4045.2 ($(37/2^+)$	(M1)	0.0273 4	Mult.: $\Delta \pi$ from level scheme.
4799.8	$(43/2^{-})$	298.5 2	55 <i>5</i>	4501.3 ($(41/2^{-})$	(M1+E2)	0.14 6	
		609.9 2	100 7	4189.9 ((39/2 ⁻)	(E2)		
4920.4	$(45/2^+)$	312.5 2	97 <i>17</i>	4607.9 ($(43/2^+)$			Other E γ (I γ): 313.0 (\approx 50) from (³⁰ Si,p4n γ).
		615.8 2	100 17	4304.7 ($(41/2^+)$			Other Ey: 617.0 from $({}^{30}Si,p4n\gamma)$.
5008.7	$(45/2^+)$	350.4 2	90 9	4658.3 ($(43/2^+)$			
		648.4 2	100 10	4360.3 ($(41/2^+)$			R_{θ} in (⁵¹ V,4n γ) suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q.
5053.5	$(47/2^{-})$	369.4 2	70 7	4684.1 ($(45/2^{-})$	(M1+E2)	0.08 4	
		705.6 2	100 9	4347.9 ($(43/2^{-})$	(E2)		Other Ey: 706.5 from $({}^{30}\text{Si},p4n\gamma)$.
5126.7	$(45/2^{-})$	327.0 2	56 6	4799.8 ($(43/2^{-})$	(M1+E2)	0.11 5	
		625.4 2	100 9	4501.3 ($(41/2^{-})$	(E2)		
5186.6	$(45/2^{-})$	629.4 2	100	4557.2 ($(41/2^{-})$	(E2)		
5206.6	$(45/2^{-})$	649.4 2	100	4557.2 ($(41/2^{-})$	(E2)		Mult.: $\Delta \pi$ from level scheme.
5235.9	$(47/2^+)$	315.5 2	100 18	4920.4 ($(45/2^+)$			
		627.9 2	24 9	4607.9 ($(43/2^+)$	(E2)		
5293.3	$(43/2^+)$	605.7 5	100 13	4687.7 ((39/2+)			
		632.3 5	100 13	4661.0 ($(41/2^+)$	(M1(+E2))	0.020 9	Mult.: $\Delta \pi$ from level scheme.
5326.2	$(45/2^+)$	665.2 2	100	4661.0 ($(41/2^+)$	(E2)		
5345.1	$(47/2^+)$	336.4 [@] 2	40 [@] 5	5008.7 ($(45/2^+)$			
		686.8 2	100 9	4658.3 ($(43/2^+)$			
5426.5	$(49/2^{-})$	373.0 2	68 8	5053.5 ($(47/2^{-})$	(M1+E2)	0.08 4	Other: $E\gamma = 373.5$, $I\gamma = 55$ 19 from (³⁰ Si,p4n γ).
		742.4 2	100 8	4684.1 ($(45/2^{-})$	(E2)		
5465.0	$(47/2^{-})$	338.3 2	57 6	5126.7 ($(45/2^{-})$			
		665.2 2	100 10	4799.8 ($(43/2^{-})$	(E2)		
5514.7	$(47/2^{-})$	308.1 5	100 13	5206.6 ($(45/2^{-})$			
		328.0 5	75 13	5186.6 ($(45/2^{-})$			
5550.3	$(49/2^+)$	314.4 2	65 15	5235.9 ($(47/2^+)$			
		629.9 2	100 10	4920.4 ($(45/2^+)$	(E2)		

12

From ENSDF

$\gamma(^{167}\text{Ta})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α #	Comments
5697.4	(49/2+)	352.4 2	16.4 <i>16</i>	$5345.1 (47/2^+) \\ 5008.7 (45/2^+)$			
5802.3	(49/2 ⁻)	337.4 2	39 5	$5465.0 (47/2^{-})$			
5824.7	(51/2 ⁻)	675.5 2 398.2 2	100 <i>10</i> 56 6	5126.7 (45/2) $5426.5 (49/2^{-})$	(E2) (M1+E2)	0.07 3	
5849.5	(49/2-)	771.2 2 334.8 5	100 8 38.5 8	5053.5 (47/2 ⁻) 5514.7 (47/2 ⁻)	(E2)		
		642.9 <i>5</i> 662 9 2	30.8 8 100 75	$5206.6 (45/2^{-})$ $5186.6 (45/2^{-})$			
5888.3	$(51/2^+)$	338.0 2	70 5	$5550.3 (49/2^+)$ $5225.0 (47/2^+)$	(M1+E2)	0.10 5	
5890.2	(49/2 ⁻)	683.7 2	14 6	5235.9 (47/2) 5206.6 (45/2)	(E2)		
5949.4	$(47/2^+)$	703.6 2 623.2 5	100 <i>12</i> 67 8	$5186.6 (45/2^{-}) 5326.2 (45/2^{+})$	(E2)		
6035.6	$(49/2^+)$	$656.1\ 2$ 709\ 4 [@] \ 2	100 <i>17</i> 100 [@]	$5293.3 (43/2^+)$ $5326.2 (45/2^+)$	(F2)		
6054.5	$(4)/2^{+})$ $(51/2^{+})$	357.1 2	24.6 29	$5697.4 (49/2^+)$	(L2)		
6182.1	(51/2 ⁻)	709.4 ^w 2 379.8 2	100 ^{^w} 10 45 6	$5345.1 (47/2^+) 5802.3 (49/2^-)$	(E2)		
		667.2 <i>5</i> 717.1 <i>2</i>	9.0 <i>15</i> 100 <i>10</i>	5514.7 (47/2 ⁻) 5465.0 (47/2 ⁻)			
6205.7	$(51/2^{-})$ $(52/2^{+})$	740.7 2	100	5465.0 $(47/2^{-})$	$(\mathbf{M}1 + \mathbf{E}2)$	0 11 5	
0221.7	(33/2)	671.3 2	100 12	5550.3 (49/2 ⁺)	(E2)	0.11 5	
6226.3	(53/2-)	401.7 2 799.8 2	38 3 100 9	$5824.7 (51/2^{-}) 5426.5 (49/2^{-})$	(M1+E2) (E2)	0.06 3	
6421.7	(53/2+)	367.2 2 724.4 2	69 8 100 <i>10</i>	$\begin{array}{r} 6054.5 (51/2^+) \\ 5697.4 (49/2^+) \end{array}$			
6518.4	(53/2 ⁻)	$336.4^{@} 2$	35 [@] 6	$6182.1 (51/2^{-})$ 5802.3 (40/2 ⁻)			
6593.2	(53/2 ⁻)	743.7 5	100 11	5849.5 (49/2 ⁻)			
6598.8	(55/2+)	377.2 2 710.5 2	100.0 24 100.0 24	$\begin{array}{c} 6221.7 (53/2^+) \\ 5888.3 (51/2^+) \end{array}$	(M1) (E2)	0.1093	
6637.6	(55/2 ⁻)	411.3 2 812.9 2	38 <i>4</i> 100 <i>12</i>	$6226.3 (53/2^{-})$ $5824.7 (51/2^{-})$	(E2)		Other I γ : 50 from (³⁰ Si,p4n γ).
6642.9	(53/2-)	752.7 2	100	5890.2 (49/2-)	(E2)		
6653.7	$(51/2^+)$	618 ^{&} <i>1</i> 704.3 <i>2</i>	<27 100 <i>18</i>	$\begin{array}{r} 6035.6 & (49/2^+) \\ 5949.4 & (47/2^+) \end{array}$			
6674.2 6779.9	$(53/2^{-})$ $(53/2^{+})$	784.0 2 744.3 2	100 100	5890.2 (49/2 ⁻) 6035.6 (49/2 ⁺)	(E2)		R_{θ} in (⁵¹ V,4n γ) suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q.

13

 $^{167}_{73}\mathrm{Ta}_{94}$ -13

$\gamma(^{167}\text{Ta})$ (continued)

6799.9(53/2 ⁺)764.3 21006035.6(49/2 ⁺)(E2)Mult.: $\Delta \pi$ from level scheme.6815.9(55/2 ⁺)394.2 523.7 266421.7(53/2 ⁺)(53/2 ⁺)(51/2 ⁺)6919.6(55/2 ⁻)401.2 238 56518.4(53/2 ⁻)(M1)0.11956963.5(57/2 ⁺)364.7 287 136598.8(55/2 ⁺)(M1)0.11956987.6(55/2 ⁻)781.9 21006205.7(51/2 ⁻)(E2)6987.6(55/2 ⁻)781.9 21006205.7(51/2 ⁻)7063.8(57/2 ⁻)426.2 231 46637.6(55/2 ⁻)I _Y : ≈33 in (³⁰ Si,p4ny).837.5 2100 96226.3(53/2 ⁻)I _Y : ≈33 in (⁵¹ V,4ny) suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q.7213.8(57/2 ⁺)397.9 268 86815.9(55/2 ⁻)I _Y : ≈327292.8(57/2 ⁻)373.3 222 46919.6(55/2 ⁻)E2)		Comments	α #	Mult. [†]	${ m J}_f^\pi$	E_f	I_{γ}^{\dagger}	${\rm E_{\gamma}}^{\dagger}$	\mathbf{J}_i^{π}	E _i (level)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mult.: $\Lambda \pi$ from level scheme.		(E2)	$(49/2^+)$	6035.6	100	764.3 2	$(53/2^+)$	6799.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(11)	$.7 (53/2^+)$	6421.7	23.7 26	394.2 5	$(55/2^+)$	6815.9
					$.5 (51/2^+)$	6054.5	100 11	761.4 2	(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$.4(53/2^{-})$	6518.4	38 5	401.2 2	$(55/2^{-})$	6919.6
					$.1 (51/2^{-})$	6182.1	100 13	737.5 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.1195	(M1)	$.8 (55/2^+)$	6598.8	87 <i>13</i>	364.7 2	$(57/2^+)$	6963.5
				(E2)	.7 (53/2+)	6221.7	100 13	741.8 2		
7063.8 $(57/2^-)$ 426.2 2 31 4 6637.6 $(55/2^-)$ I _y : ≈ 33 in $({}^{30}Si,p4n\gamma)$. 837.5 2 100 9 6226.3 $(53/2^-)$ R _{θ} in $({}^{51}V,4n\gamma)$ suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q. 7213.8 $(57/2^+)$ 397.9 2 68 8 6815.9 $(55/2^+)$ 7292.8 $(57/2^-)$ 373.3 2 22 4 6919.6 $(55/2^-)$ 774.4 2 100 11 6518.4 $(53/2^-)$ (E2)					.7 (51/2 ⁻)	6205.7	100	781.9 2	$(55/2^{-})$	6987.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		I_{γ} : ≈ 33 in (³⁰ Si,p4n γ).			.6 (55/2 ⁻)	6637.6	31 4	426.2 2	$(57/2^{-})$	7063.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.	R_{θ} in (⁵¹ V,4ny) suggests $\Delta J=1$, D+Q, but placement requires $\Delta J=2$, Q.			$(53/2^{-})$	6226.3	100 9	837.5 2		
$792.1 \ 2$ $100 \ 12$ $6421.7 \ (53/2^+)$ $7292.8 \ (57/2^-)$ $373.3 \ 2$ $22 \ 4$ $6919.6 \ (55/2^-)$ $774.4 \ 2$ $100 \ 11$ $6518.4 \ (53/2^-)$ (E2)					$.9(55/2^+)$	6815.9	68 8	397.9 2	$(57/2^+)$	7213.8
7292.8 $(57/2^-)$ 373.3 2 22 4 6919.6 $(55/2^-)$ 774.4 2 100 11 6518.4 $(53/2^-)$ (E2)					.7 (53/2+)	6421.7	100 12	792.1 2		
774.4 2 100 11 6518.4 $(53/2^{-})$ (E2)					.6 (55/2 ⁻)	6919.6	22 4	373.3 2	$(57/2^{-})$	7292.8
				(E2)	.4 (53/2 ⁻)	6518.4	100 11	774.4 2		
7389.2 $(59/2^+)$ 425.7 2 83 8 6963.5 $(57/2^+)$.5 (57/2 ⁺)	6963.5	83 8	425.7 2	$(59/2^+)$	7389.2
790.3 2 100 8 $6598.8 (55/2^+)$ (E2)				(E2)	.8 (55/2 ⁺)	6598.8	100 8	790.3 2		
7405.4 (57/2-) 812.2 5 100 6593.2 (53/2-)					.2 (53/2 ⁻)	6593.2	100	812.2 5	$(57/2^{-})$	7405.4
7406.1 $(55/2^+)$ 752.4 5 100 6653.7 $(51/2^+)$					$.7 (51/2^+)$	6653.7	100	752.4 5	$(55/2^+)$	7406.1
$7438.6 (57/2^{-}) 764.4 \ 5 <11 \qquad 6674.2 (53/2^{-})$					$.2 (53/2^{-})$	6674.2	<11	764.4 5	$(57/2^{-})$	7438.6
$795.7 2 100 14 6642.9 (53/2^-) (E2)$				(E2)	.9 (53/2 ⁻)	6642.9	100 14	795.7 2		
7471.7 (57/2 ⁻) 797.4 5 75 17 667.4 2 (53/2 ⁻)					.2 (53/2 ⁻)	6674.2	75 17	797.4 5	$(57/2^{-})$	7471.7
$828.8 2 100 8 6642.9 (53/2^{-})$					$.9 (53/2^{-})$	6642.9	100 8	828.8 2	(50/2-)	7 400 2
7480.3 (59/2) 416.52 36.4 7063.8 (57/2)					.8 (57/2)	7063.8	36 4	416.5 2	(59/2)	7480.3
842.72 100 12 6057.60 (52/2) (E2)				(E2)	.6 (55/2)	0037.0	100 12	842.7 2	(57/0+)	7565.0
$7505.8 (57/2^+) 766.4 5 100 12 6700 0 (52/2^+) (E2)$				(E2) (E2)	$.9 (53/2^{+})$	6700.0	100 13	785.9 2	$(57/2^+)$	/ 303.8
(390.3 (37/2) (90.43 100 13 0799) (33/2) (E2)				(E2)	.9 (33/2)	0799.9	100 15	790.4 J	(31/2)	7390.3
816^{44} / <38 $67/9.9$ $(53/2^{+})$					$.9 (53/2^+)$	6779.9	<38	816 7	(50/2+)	7654 4
7654.4 $(59/2^{\circ})$ $838.5.2$ 100 6815.9 $(55/2^{\circ})$.9 (55/21)	6815.9	100	838.5 2	(59/21)	/654.4
7716.3 $(59/2^{-})$ $423.5^{\circ\circ}$ 2 $25^{\circ\circ}$ 5 7292.8 $(57/2^{-})$.8 (57/2 ⁻)	7292.8	25 5	423.5° 2	$(59/2^{-})$	7716.3
796.72 100 13 6919.6 (55/2 ⁻⁷)			0.07.2		$.6 (55/2^{-})$	6919.6	100 13	796.7 2	((1/2+)	7705.0
7/85.8 (61/2 ⁺) 396.7 2 51.5 7389.2 (39/2 ⁺) (M1+E2) 0.07.3			0.07 3	(M1+E2)	$.2 (59/2^+)$	/389.2	51.5	396.72	$(61/2^{+})$	//85.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(E2)	$.5 (57/2^{-1})$	6963.3	100 14	822.4 2	(50/2-)	7920.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0 (33/2)	7480.3	33 1	042.0 Z	(39/2) $(61/2^{-})$	7033.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(F2)	$(57/2^{-})$	7063.8	100.8	455.12	(01/2)	1955.5
$8085.3 (61/2^+) 871.5.2 100 7213.8 (57/2^+)$				(12)	$(57/2^+)$	7213.8	100 0	871 5 2	$(61/2^+)$	8085 3
8128.2 $(61/2^{-})$ 835.4.2 100 7292.8 $(57/2^{-})$ R _a in $(5^{1}V4na)$ suggests AI-1 D+O but placement requires AI-2 O	0	R_{a} in $(51V4ny)$ suggests $\Lambda I = 1$ D+O but placement requires $\Lambda I = 2$ O			$(57/2^{-})$	7213.0	100	835 4 2	$(61/2^{-})$	8128.2
$(5120, 2)$ (512^{-1}) (512	<u>ح</u> .	M_{θ} in ($\gamma, \pi n_{f}$) suggests $\Delta j = 1, D + Q$, but pracement requires $\Delta j = 2, Q$.			(57/2)	7406 1	100	799 5 5	$(51/2^{-})$ $(59/2^{+})$	8205.6
8263.5 $(63/2^+)$ $477.7.2$ 58.8 7785.8 $(61/2^+)$					(55/2)	7785.8	58.8	47772	$(53/2^+)$	8263.5
874.3.2 100 10 7389.2 (59/2 ⁺) (E2)				(E2)	$(59/2^+)$	7389.2	100 10	874.3 2	(05/2)	0205.5
8278.0 (61/2 ⁻) 872.6 5 100 7405.4 (57/2 ⁻)				()	$(57/2^{-})$	7405.4	100	872.6 5	$(61/2^{-})$	8278.0

14

 $^{167}_{73}\mathrm{Ta}_{94}$ -14

$\gamma(^{167}\text{Ta})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
8294.2	$(61/2^{-})$	855.6 2	100	7438.6	$(57/2^{-})$	(E2)	10213.8	$(69/2^+)$	933.8 5	100	9280.0	$(65/2^+)$
8324.4	$(61/2^{-})$	852.7 2	100	7471.7	$(57/2^{-})$. ,	10223.8	$(71/2^{-})$	956.6 2	100	9267.2	$(67/2^{-})$
8354.4	$(63/2^{-})$	420.9 2	42 4	7933.5	$(61/2^{-})$		10250.4	$(71/2^+)$	1030.8 2	100	9219.6	$(67/2^+)$
		874.2 2	100 9	7480.3	$(59/2^{-})$	(E2)	10267.3	$(69/2^+)$	935.5 <i>5</i>	100	9331.8	$(65/2^+)$
8398.6	$(61/2^+)$	832.8 2	100	7565.8	$(57/2^+)$	(E2)	10424.2	$(71/2^{-})$	958.2 <i>5</i>	100	9466.0	$(67/2^{-})$
8437.2	$(61/2^+)$	840.9 5	100	7596.3	$(57/2^+)$		10681.3	$(73/2^+)$	1027.2 2	100	9654.1	$(69/2^+)$
8564.2	$(63/2^{-})$	847.9 2	100	7716.3	$(59/2^{-})$		10825.6	$(73/2^{-})$	1020.5 2	100	9805.1	$(69/2^{-})$
8564.3	$(63/2^+)$	909.9 2	100	7654.4	$(59/2^+)$		10906.1	$(71/2^+)$	952.0 <i>5</i>	100	9954.1	$(67/2^+)$
8685.4	$(65/2^+)$	421.9 2	32 5	8263.5	$(63/2^+)$		10986.8	$(73/2^{-})$	1014.0 5	100	9972.8	$(69/2^{-})$
		899.6 2	100 10	7785.8	$(61/2^+)$	(E2)	11031.8?	$(73/2^+)$	1012 ^{&} 1	100	10019.8	$(69/2^+)$
8744.8	$(63/2^{-})$	914.6 5	100	7830.2	$(59/2^{-})$		11200.4	$(73/2^+)$	986.6 5	100	10213.8	$(69/2^+)$
8843.6	$(65/2^{-})$	489.2 2	49 5	8354.4	$(63/2^{-})$		11225.3	$(75/2^{-})$	1001.5 2	100	10223.8	$(71/2^{-})$
		910.1 2	100.8	7933.5	$(61/2^{-})$	(E2)	11239.3?	$(73/2^+)$	972 <mark>&</mark> 1	100	10267.3	$(69/2^+)$
9020.7	$(65/2^{-})$	892.4 2	100	8128.2	$(61/2^{-})$		11346.1	$(75/2^+)$	1095.7 5	100	10250.4	$(71/2^+)$
9030.4	$(65/2^+)$	945.1 2	100	8085.3	$(61/2^+)$		11434.7	$(75/2^{-})$	1010.5 5	100	10424.2	$(71/2^{-})$
9054.3	$(63/2^+)$	848.7 5	100	8205.6	$(59/2^+)$		11756.5	$(77/2^+)$	1075.2 2	100	10681.3	$(73/2^+)$
9204.7	$(65/2^{-})$	926.7 5	100	8278.0	$(61/2^{-})$		11907.0	$(77/2^{-})$	1081.4 2	100	10825.6	$(73/2^{-})$
9206.8	$(65/2^{-})$	912.6 5	100	8294.2	$(61/2^{-})$		11910.9	$(75/2^+)$	1004.7 5	100	10906.1	$(71/2^+)$
9219.6	$(67/2^+)$	956.1 2	100	8263.5	$(63/2^+)$	(E2)	12065.5	$(77/2^{-})$	1078.7 5	100	10986.8	$(73/2^{-})$
9222.6	$(65/2^{-})$	898.2 5	100	8324.4	$(61/2^{-})$		12240.4	$(77/2^+)$	1040.0 5	100	11200.4	$(73/2^+)$
9267.2	$(67/2^{-})$	423.5 [@] 2	15.6 [@] 26	8843.6	$(65/2^{-})$		12271.0	$(79/2^{-})$	1045.7 5	100	11225.3	$(75/2^{-})$
		912.8 2	100 10	8354.4	$(63/2^{-})$	(E2)	12486.2	$(79/2^+)$	1140.1 5	100	11346.1	$(75/2^+)$
9280.0	$(65/2^+)$	881.4 2	100	8398.6	$(61/2^+)$	(E2)	12492.8	$(79/2^{-})$	1058.1 5	100	11434.7	$(75/2^{-})$
9331.8	$(65/2^+)$	894.6 5	100	8437.2	$(61/2^+)$		12871.9	$(81/2^+)$	1115.4 5	100	11756.5	$(77/2^+)$
9466.0	$(67/2^{-})$	901.8 2	100	8564.2	$(63/2^{-})$		12968.0	$(79/2^+)$	1057.1 5	100	11910.9	$(75/2^+)$
9654.1	$(69/2^+)$	968.7 2	100	8685.4	$(65/2^+)$		13047.3	$(81/2^{-})$	1140.3 2	100	11907.0	$(77/2^{-})$
9805.1	$(69/2^{-})$	961.4 2	100	8843.6	$(65/2^{-})$		13343.4?	$(81/2^+)$	1103 ^{&} 1	100	12240.4	$(77/2^+)$
9954.1	$(67/2^+)$	899.8 5	100	9054.3	$(63/2^+)$		13357.6	$(83/2^{-})$	1086.6 5	100	12271.0	$(79/2^{-})$
9972.8	$(69/2^{-})$	952.1 2	100	9020.7	$(65/2^{-})$		13596.2	$(83/2^{-})$	1103.4 5	100	12492.8	$(79/2^{-})$
10019.8	$(69/2^+)$	989.4 5	100	9030.4	$(65/2^+)$		14025.6	$(85/2^+)$	1153.7 5	100	12871.9	$(81/2^+)$
10143.7	$(69/2^{-})$	921.1 5	100	9222.6	$(65/2^{-})$		14229.9	$(85/2^{-})$	1182.6 2	100	13047.3	$(81/2^{-})$
10158.7	$(69/2^{-})$	951.9 5	100	9206.8	$(65/2^{-})$		14483.0	$(87/2^{-})$	1125.4 5	100	13357.6	$(83/2^{-})$

[†] From (⁵¹V,4n γ), except as noted. For many levels, additional estimates of γ branching are available from (³⁰Si,p4n γ); inconsistencies are noted. $\Delta \pi$ =(no) has been assigned for intraband transitions. Stretched quadrupoles in the $({}^{51}V,4n\gamma)$ dataset are assigned (E2) here, and $\Delta J=1$, D or D+Q as (M1) or (M1+E2), as there appears no evidence for long-lived levels, which could permit M2 transitions.

[‡] From ¹⁶⁷W ε decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

15

 γ ⁽¹⁶⁷Ta) (continued)

[@] Multiply placed with intensity suitably divided. [&] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

80 s 4

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

0 80 s 4

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

80 s 4

Legend Level Scheme (continued) Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided γ Decay (Uncertain) ---- $\frac{1}{1}$ + 812,2 100 ا ا المحري مح + 224 (23) | 100 (57/2-) 7405.4 (59/2+) 7389.2 + 3₂₃32 | + 20, 10, $(57/2^{-})$ 7292.8 -°° e_{i} $(57/2^+)$ 7213.8 + ⁸³,5 100 + 426.2 31 1 241.8 (E2) 100 - 364 - an 1 $(57/2^{-})$ 7063.8 -S 0.182 $\frac{(55/2^-)}{(57/2^+)}$ 6987.6 8 6963.5 ⁻³². -*i*0 (55/2-) 6919.6 $|_{\zeta_{i\xi}}|_{\zeta_{i\xi}}$ + ²61.4 100 | $\frac{(55/2^+)}{(53/2^+)}$ 6815.9 6799.9 + ²⁸⁴.0 100 + (53/2+) (E) 100 204.3 100 | 6779.9 (53/2-) , <u>(</u>,), 6674.2 $(51/2^+)$ 6653.7 (53/2-) 6642.9 (55/2-) 6637.6 (55/2+) 6598.8 (53/2-) 6593.2 (53/2-) 6518.4 (53/2+) 6421.7 $\frac{(53/2^-)}{(53/2^+)}$ $\frac{(51/2^-)}{(51/2^-)}$ 6226.3 6221.7 6205.7 $(51/2^{-})$ 6182.1 (51/2+) 6054.5 (49/2+) 6035.6 $(47/2^+)$ 5949.4 (49/2-) 5890.2 $(3/2^+)$ 0.0 80 s 4 ¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

) 80 s 4

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

¹⁶⁷₇₃Ta₉₄

						Band(b): π h	ı _{11/2} ⊗AB,				
				Band(B): nh	$\mathbf{h}_{11/2} \otimes \mathbf{AB},$	α=-1	/2				
				$\alpha = +1$	/2	(87/2-)	14482.0				
		Band(a): <i>π</i> 9/	/2[514],	(85/2-)	14229 9	(0//2)	14403.0				
		α=-1/2	2		1422/1/						
		(83/2-)	12506.2			1125					
		(03/2)	13390.2	1183		(83/2-)	13357.6				
				$(81/2^{-})$	13047 3		1000/10				
Band(A): π 9	9/2[514],	1103		(01/2)	13047.3						
<i>α</i> =+1	/2	(79/2 ⁻)	12492.8			1087					
				1140		(79/2 ⁻)	12271.0				
(77/2 ⁻)	12065.5	1058		(77/2 ⁻)	11907.0						
		1058		· · · ·		1046					
1079		(75/2 ⁻)	11434.7	1091		$(75/2^{-})$	11005.0				
$(73/2^{-})$	10986 8			1001		(1312)	11225.5				
	10/00.0	1010		(73/2 ⁻)	10825.6					Band(D): π	1/2[541],
1014		(71/2 ⁻)	10424.2			1002				u=+1	.14
1014				1020		(71/2 ⁻)	10223.8			(69/2-)	10158.7
(69/2 ⁻)	9972.8	958		(69/2-)	9805 1						
		(67/2-)	0466.0		7005.1	957				952	
952		(0//2)	9400.0	961		(67/2-)	9267.2			(65/2-)	9206 8
(65/2-)	9020.7	902		(65/2-)	0042 (
		(63/2-)	8561 2		<u> </u>	913				913	
892		(00/2)	0304.2	010		(63/2-)	8354.4			(61/2 ⁻)	8294 2
(61/2 ⁻)	8128.2	848		(61/2-)	7022 5						
		(59/2-)	7716.3		1933.5	874				856	
835				870		(59/2-)	7480.3			(57/2-)	7438.6
(5112)	7292.8	797		(57/2-)	7063.8 🗸						•
774		(55/2-)	6919.6		<	843				796	
(53/2 ⁻)	6518.4 🎽	738		838		(55/2)	6637.6			(53/2)	6642.9
		(51/2 ⁻)	6182.1	(53/2-)	6226.3 🖌	812				753	
716 (49/2)	5802.3		•			(51/2-)	5824 7			(49/2-)	5890.2
(13/2)		717	54650	800							•
676		(4//2)	5405.0	(49/2)	5426.5	771				704 (45/2)	5186.6
(45/2)	5126.7	665		742		(47/2 ⁻)	5053.5			(40/2)	5160.0
625		(43/2-)	4799.8	(45/2 ⁻)	4684.1 🖌	706				(41/2-) 629	4557.0
(41/2)	4501.3	610				(43/2-)	4347.9			(41/2)	4337.2
(27/2-) 588		(39/2 ⁻)	4189.9	$(41/2^{-})$	4023.4					$(37/2^{-})^{-583}$	307/ 1
(3//2)	3913.1	596			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(39/2-)	3733.6			(0.112)	
(33/2-) 587	2226.2	(35/2)	3594.3	(37/2 ⁻)	3468.7 🖌	408				$(33/2^{-}) \stackrel{582}{\downarrow}$	3392.5
(33/2)	3320.2	615		$(33/2^{-})$ 427	3041 7		3235.0				
(20/2-) 609	2717 ((31/2)	2979.5	(29/2-) 288	2753.3	(31/2-) 361	2874.2		. 1/2 1 1	$(29/2^{-})$ \downarrow 582	2810.0
(2)(2)	2/1/.0	631	/	(25/2)	2579.6	$(27/2^{-})$ 222	2651.8	Band(C): α =	+1/2 band	<u> </u>	
(25/2-) 621	2 00 < 2		2348.9		·			(21/2-)	2199.1	(25/2-)	2213.8
(4314)	2096.5	616	/					FF 0		E25	
(21/2-) 603	1402.2	(23/2 ⁻)	1732.3					(17/2 ⁻)	1641.4	(21/2 ⁻)	1678.7
(2112)	1493.4	(10/2=) 567	11/7 -					508	•	$(17/2^{-})$ 462	1216 5
$(17/2^{-})$	947.3		1165.5					(13/2 ⁻)	1133.4	$(13/2^{-})$ 264	852.95
		(15/2 ⁻) 487	678.7							(9/2)	611.09
(13/2 ⁻) 451	496.2	(11/2-) 373	305 38							$(5/2^{-})$ 114^{-}	- 496.73
$(9/2^{-})$ 290	206.3		505.50								

¹⁶⁷₇₃Ta₉₄

Band(g): *π*1/2[411], $\alpha = -1/2$

609

525

599

583

548

481

378

233

÷

4489.3

3880.6

3346.2

2821.0

2222.0

1638.7

1091.04

610.46

232.95

0.0

(39/2+)

 $(35/2^+)$

 $(31/2^+)$

 $(27/2^+)$

 $(23/2^+)$

(19/2+)

(15/2+)

(11/2+)

(7/2+)

(3/2+)

2019.25

1456.73

939.97

503.13

175.86

Adopted Levels, Gammas (continued)

¹⁶⁷₇₃Ta₉₄

Adopted Levels, Gammas (continued)

¹⁶⁷₇₃Ta₉₄

Adopted Levels, Gammas (continued)

¹⁶⁷₇₃Ta₉₄