¹⁴²Nd(³⁰Si,p4nγ) **1992Th02**

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

1992Th02: $E({}^{30}Si)=165$ MeV. Measured $E\gamma$, $I\gamma$, two- and three-fold $\gamma\gamma$ -coin, $\gamma(x \text{ ray})$ -coin, $\gamma\gamma(\theta)(DCO)(\theta=37^\circ, 63^\circ, 79^\circ, 101^\circ, 117^\circ, 143^\circ)$ using ESSA30 array of 29 Compton-suppressed Ge detectors, and 98% enriched ${}^{142}Nd$ target at the Tandem Van de Graaff accelerator of the Daresbury Laboratory. Comparison with cranked shell model calculations.

¹⁶⁷Ta Levels

B(M1)/B(E2) ratios given under comments are from 1992Th02, with B(M1) for the de-exciting transition of J to J-1 (assuming δ =0) and B(E2) for J to J-2 transition.

E(level) [†]	Jπ‡	Comments
0.0	$(3/2^+)$	Possible configuration= $\pi 1/2[411]$ (1992Th02).
94.40 [#] 20	$5/2^{+}$	
204.7 [@] 5	7/2+	
0.0+x ^{&}	9/2-	Additional information 1. E(level): $x \approx 206$ from the Adopted Levels.
214.3 7		
232.9 5 99.07+x ^a 19	$(7/2^+)$ 11/2 ⁻	
374.4 [#] 6	9/2+	B(M1)/B(E2)=1.42 45.
289.9+x ^{&} 4	$13/2^{-}$	B(M1)/B(E2)=0.79 27.
574.4 [@] 6	$11/2^+$	B(M1)/B(E2)=0.82 10.
611.3 ^b 7	9/2-	
$472.5 + x^{a} 4$	15/2-	$B(M1)/B(E2)=1.00 \ 6.$
790.9# 6	$13/2^{+}$	B(M1)/B(E2)=0.66 8.
853.4 ⁰ 9	13/2-	
$741.5 + x^{\infty} 5$	17/2-	B(M1)/B(E2)=1.05 7.
1036.3 7	$15/2^+$	B(M1)/B(E2)=0.71 8.
$959.9 + x^{-5}$	19/2	B(M1)/B(E2)=0.907.
$1217.4^{+}10$ 1285 $^{\#}7$	17/2	P(M1)/P(E2) = 0.81.8
1203.4 /	$\frac{1}{2}$	B(M1)/B(E2)=0.81 6. B(M1)/B(E2)=0.04 7.
1200.0+x = 0 1557 7 @ 8	$\frac{21}{2}$	B(M1)/B(E2)=0.94 /. B(M1)/B(E2)=0.61 //
1557.7 = 0 1690 1 ^b 12	$\frac{19/2}{21/2^{-}}$	B(M1)/B(E2)=0.01 11.
$1527.4 + x^{a} 6$	$\frac{21/2}{23/2^{-}}$	B(M1)/B(E2)=1.25 18.
1820.6 [#] 8	$21/2^{+}$	B(M1)/B(E2)=0.95 11.
2089.8 [@] 8	$23/2^{+}$	B(M1)/B(E2)=1.20 71.
1892.0+x ^{&} 7	$25/2^{-}$	B(M1)/B(E2)=1.18 18.
2215.6 <mark>b</mark> 13	25/2-	
2329.0 [#] 9	$25/2^{+}$	B(M1)/B(E2)=1.5 12.
2144.7+ x^{a} 8	$27/2^{-}$	B(M1)/B(E2)=1.38 44.
2567.5 [@] 9 2376.0+x ^c 9	$27/2^+$ $(25/2^-)$	$B(M1)/B(E2)=3.9\ 23.$
$2513.8 + x^{\&} 9$ $2549.3 + x^{c} 10$	29/2 ⁻ (29/2 ⁻)	B(M1)/B(E2)=0.56 24.
2782.3 [#] 10	29/2+	B(M1)/B(E2)=1.82 69.

¹⁴²Nd(³⁰Si,p4nγ) **1992Th02** (continued)

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
2798.2 ^b 14	29/2-	This level corresponds to 2810.0 , $(29/2^{-})$ level in the Adopted dataset.
2670.4+x ^d 11	$(31/2^{-})$	
2969.8 [@] 12	$31/2^{+}$	$B(M1)/B(E2)=2.03\ 59.$
2775.8+x ^a 10	31/2-	$B(M1)/B(E2)=1.42 \ 31.$
2837.9+x ^c 11	$(33/2^{-})$	B(M1)/B(E2)=2.23 62.
3213.8 [#] 12	33/2+	$B(M1)/B(E2)=1.66\ 60.$
3031.4+x ^d 11	$(35/2^{-})$	$B(M1)/B(E2)=2.76\ 28.$
3122.6+x ^{&} 11	33/2-	B(M1)/B(E2)=0.53 11.
3380.8 ^b 15	$(33/2^{-})$	This level corresponds to 3392.5, (33/2 ⁻) level in the Adopted dataset.
3429.0 [@] 13	$35/2^{+}$	
3265.2+x ^c 12	$(37/2^{-})$	B(M1)/B(E2)=1.91 27.
3391.2+x ^{<i>a</i>} 13	35/2-	
3723.5 [#] 14	$37/2^+$	
3530.4+x ^d 12	(39/2 ⁻)	B(M1)/B(E2)=2.14 21.
3977.2 ^b 15	$(37/2^{-})$	This level corresponds to 3974.1 , $(37/2^{-})$ level in the Adopted dataset.
3992.9 [@] 15	$(39/2^+)$	
3820.4+x ^c 12	$(41/2^{-})$	B(M1)/B(E2)=1.95 27.
4308.3 [#] 15	$(41/2^+)$	
4145.4+x ^d 12	$(43/2^{-})$	B(M1)/B(E2)=1.91 69.
4607.8 ^b 18	$(41/2^{-})$	This level corresponds to 4557.2 , $(41/2^{-})$ level in the Adopted dataset.
4621.9 [@] 16	$(43/2^+)$	
4481.8+x ^c 13	$(45/2^{-})$	B(M1)/B(E2)=1.89 36.
4925.6 [#] 17	$(45/2^+)$	This level corresponds to 4920.4, (45/2 ⁺) level in the Adopted dataset.
4851.8+x ^d 13	$(47/2^{-})$	B(M1)/B(E2)=1.75 67.
5225.2+x ^c 13	$(49/2^{-})$	B(M1)/B(E2)=1.86 63.
5623.8+x ^d 14	$(51/2^{-})$	B(M1)/B(E2)=2.22 79.
$6025.9 + x^{c}$ 15	$(53/2^{-})$	B(M1)/B(E2)=1.88 67.
6438.0+x ^d 16	$(55/2^{-})$	
6864.8+x ^c 16	$(57/2^{-})$	
7281.4+x ^d 17	$(59/2^{-})$	

[†] From a least-squares fit to $E\gamma$, assigning an uncertainty of 0.5 keV to transitions for which $I\gamma \ge 15$, and 1 keV to all the other $E\gamma$ data, also when $E\gamma$ is stated to nearest keV. From Adopted Levels, the energy offset x ≈ 206 .

[‡] As proposed in 1992Th02, based largely on systematics of transition energies, signature splittings and alignments for the light odd-A Ta and Lu isotopes, and on deduced transition multipolarities.

- [#] Band(A): $\pi 5/2[402], \alpha = +1/2$. In-band decay properties, transition energy systematics in nearby odd-A Ta isotopes, and small negative signature splitting favor d_{5/2} orbital assignment over g_{7/2} (1992Th02).
- [@] Band(a): $\pi 5/2[402], \alpha = -1/2$.
- [&] Band(B): $\pi 9/2[514], \alpha = +1/2$.
- ^{*a*} Band(b): $\pi 9/2[514], \alpha = -1/2$.
- ^b Band(C): $\pi 1/2[541], \alpha = +1/2$. Decoupled band, analogous to bands observed in many neighboring odd–A, even–N nuclei; large decoupling parameter shifts unfavored signature levels to energies so high they are not normally observed in (HI,xn γ) studies. Note also that energies for J>25/2 band members differ from those in the Adopted Levels, as the 631 γ -596 γ -583 γ -583 γ cascade reported by 1992Th02 (and given here) has been replaced in the Adopted Levels, Gammas dataset by a 629 γ -583 γ -582 γ -583 γ -596 γ cascade reported by 2011Ha25 using ¹²⁰Sn(⁵¹V,4n γ) reaction.

^{*c*} Band(D): $\pi 9/2[514] \otimes vi_{13/2}^2, \alpha = +1/2.$

^d Band(d): $\pi 9/2[514] \otimes vi_{13/2}^2, \alpha = -1/2.$

1992Th02 (continued)

¹⁴²Nd(³⁰Si,p4n γ)

					$\gamma(10)$	⁵⁷ Ta)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	Comments
94.4 2 99.1 2		94.40 99.07+x	$5/2^+$ 11/2 ⁻	0.0 0.0+x	$(3/2^+)$ $9/2^-$		E_{γ} : from the Adopted dataset. E_{γ} : from the Adopted dataset. E_{γ} =98.7 in
110.0.5	aa@	204 5	<i>,</i> -	04.40	5/0+		1992Th02.
110.3 5 120.1 <i>10</i>	23 C 7	204.7 214.3	1/2*	94.40 94.40	5/2+ 5/2+		
121.1 5	29 [@]	2670.4+x	$(31/2^{-})$	2549.3+x	$(29/2^{-})$		
157 10	<3 [@]	2670.4+x	$(31/2^{-})$	2513.8+x	29/2-		
160.1 5	19	374.4	9/2+	214.3			
167.5 5	65	2837.9+x	$(33/2^{-})$	2670.4+x	$(31/2^{-})$		
169.6 5	31	374.4	9/2 '	204.7	1/2		
182.0 3	00 12	472.5+X 2060.8	$\frac{15}{2}$ $\frac{31}{2^+}$	289.9+X 2782 3	$\frac{13}{2}$		
191.0.5	100	2909.8 289.9+x	$\frac{31/2}{13/2^{-}}$	2782.3 99.07+x	$\frac{29}{2}$ 11/2 ⁻		
193.5 5	70	3031.4 + x	$(35/2^{-})$	2837.9+x	$(33/2^{-})$		
200.1 5	31	574.4	$11/2^{+}$	374.4	9/2+		
214.8 5	≈16 ^{<i>a</i>}	2782.3	$29/2^+$	2567.5	$27/2^{+}$		
215.2 10	$\approx 8^{a}$	3429.0	$35/2^+$	3213.8	33/2+		
216.4 5	24	790.9	$13/2^{+}$	574.4	$11/2^{+}$		
218.4 5	48	959.9+x	19/2-	741.5+x	17/2-	(D)	DCO=0.72 24
~226.4 10	10 22 <mark>4</mark>	222.0	$(7/2^{+})$	0.0	$(2/2^{+})$		
232.9 5	52" 55	232.9 3265.2 L x	$(1/2^{+})$ $(37/2^{-})$	0.0 3031.4 + v	$(3/2^{+})$ $(35/2^{-})$		
233.7 5	$\approx 19^{a}$	2567 5	(37/2) $27/2^+$	2329.0	(33/2) 25/2 ⁺		
239.2.5	$\approx 22^{a}$	2329.0	$25/2^+$	2089.8	$\frac{23}{2}^{+}$		
239.4 5	24	1527.4 + x	$\frac{23}{2}^{-}$	1288.0+x	$\frac{20}{2}$ $\frac{2}{21}$		
242.1 5	41	853.4	$13/2^{-}$	611.3	9/2-	Q	DCO=1.00 12
243.9 10	12	3213.8	$33/2^{+}$	2969.8	$31/2^{+}$		
245.4 5	31	1036.3	$15/2^+$	790.9	$13/2^+$	-	
249.2 5	25	1285.4	$17/2^{+}$	1036.3	15/2+	(D)	DCO=0.72 20
252.7 10	14	2144.7 + X 2775 8 + x	21/2	1892.0+x 2513.8+x	23/2		
262 9 5	24	1820.6	$\frac{31/2}{21/2^+}$	1557 7	29/2 19/2 ⁺	D	DCO=0.67.15
265.2 5	47	3530.4+x	$(39/2^{-})$	3265.2+x	$(37/2^{-})$	D	Dec -0.07 15
268.9 5	68 <mark>a</mark>	741.5+x	17/2-	472.5+x	15/2-	D	DCO=0.64 14
269 1	≤10 ^{<i>a</i>}	3391.2+x	35/2-	3122.6+x	33/2-		
269.2 5	≈23 ^a	2089.8	$23/2^{+}$	1820.6	$21/2^+$		
269.4 ^d 10	$\approx 6^{a}$	3992.9	$(39/2^+)$	3723.5	$37/2^+$		
272.2 5	23	1557.7	19/2+	1285.4	17/2+		
279.9 10	9 u	374.4	9/2+	94.40	$5/2^+$		$1\gamma(280\gamma)/1\gamma(170\gamma)=0.17$ 6.
288.3 10	≈ 0	2837.9 + x	(33/2)	2549.3+x	(29/2)		$1\gamma(288\gamma)/1\gamma(168\gamma)=0.13$ 4. Ly(200y)/((101y)=0.27.0
289.75	30^{-1}	289.9+x 3820 $4+x$	$\frac{15}{2}$ ($\frac{11}{2}$)	0.0+x 3530 $4+x$	$\frac{9}{2}$ (30/2 ⁻)		$1\gamma(290\gamma)/1(191\gamma)=0.27$ 9.
294.4 10	6	3723.5	$(\frac{1}{2})$ $37/2^+$	3429.0	$(35/2^+)$		
$303.9^{d}.10$	8	4925.6	$(45/2^+)$	4621.9	$(43/2^+)$		
$3130^{d}10$	$\sim 6^{a}$	4621.0	$(13/2^+)$	/308 3	$(13/2^{+})$		
$2140 \frac{10}{10}$	~ 0	4021.9	(+3/2)	2002 0	(+1/2)		
314.9 ⁴ 10 324.0 5	21	4308.3 4145 4±v	$(41/2^{-})$ $(43/2^{-})$	3820 1±v	$(39/2^{+})$ $(41/2^{-})$		
328.0 5	51	1288.0+x	(-3/2)	959.9+x	19/2	(D)	DCO=0.73 <i>19</i>
x333 0 ^b 10	5	1200.01A		75717 I A	17/2		
336.5.5	21	4481.8+x	$(45/2^{-})$	4145.4+x	$(43/2^{-})$		
x337 9 ^b 10	4		(,=)		(,=)		
347 1	12	3122.6+x	33/2-	2775.8+x	31/2-		

Continued on next page (footnotes at end of table)

¹⁴²Nd(³⁰Si,p4nγ) **1992Th02** (continued)

$\gamma(^{167}\text{Ta})$ (continued)

E_{γ}^{\dagger}	Iγ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
361.2.5	26	$3031.4 \pm x$	$(35/2^{-})$	$2670.4 \pm x$	$(31/2^{-})$		$I_{\gamma}(361_{\gamma})/I_{\gamma}(194_{\gamma})=0.22.2$
364.0.5	40	1217.4	$17/2^{-}$	853.4	$13/2^{-1}$	0	DCO=1.02.18
364.6.5	30	1892.0+x	$25/2^{-}$	1527.4 + x	$\frac{13}{2}$	×	
369 1	16 ^a	2513.8+x	$29/2^{-}$	2144.7 + x	27/2-		
369 7 5	19 ^a	574.4	$\frac{2}{11/2^+}$	204 7	$\frac{2}{7/2}^+$		$I_{\gamma}(370\gamma)/I_{\gamma}(200\gamma)=0.73.9$
369.9.10	<12 ^a	4851 8+x	$(47/2^{-})$	4481.8 + x	$(45/2^{-})$		
373.5.5	71^{a}	472.5 + x	$15/2^{-1}$	99.07 + x	$11/2^{-1}$		$I_{\gamma}(374\gamma)/I_{\gamma}(183\gamma)=0.84.5$
373.5 10	11	5225.2+x	$(49/2^{-})$	4851.8+x	$(47/2^{-})$		
378.4.5	37	611.3	9/2-	232.9	$(7/2^+)$	D	DCO=0.76 12
398.5 10	7	5623.8+x	$(51/2^{-})$	5225.2+x	$(49/2^{-})$		
402 1	7	6025.9+x	$(53/2^{-})$	5623.8+x	$(51/2^{-})$		
402.2 10	6	2969.8	$31/2^{+}$	2567.5	$27/2^{+}$		$I_{\gamma}(402\gamma)/I_{\gamma}(188\gamma)=0.55\ 16.$
405 1	12	2549.3+x	$(29/2^{-})$	2144.7+x	$27/2^{-}$		
412 <i>I</i>	5	6438.0+x	$(55/2^{-})$	6025.9+x	$(53/2^{-})$		
416.5 5	33	790.9	$13/2^{+}$	374.4	9/2+		$I_{\gamma}(417\gamma)/I_{\gamma}(216\gamma)=1.30$ 15.
417 ^d 1	<7&	7281 4+x	$(59/2^{-})$	6864 8+x	$(57/2^{-})$		
427 1	$\approx 4^{a}$	6864 8+x	$(57/2^{-})$	6438.0+x	$(55/2^{-})$		
427.2.5	21	3265.2+x	$(37/2^{-})$	2837.9 + x	$(33/2^{-})$		$I_{\gamma}(427\gamma)/I_{\gamma}(234\gamma)=0.41.6$
431.6 10	6	3213.8	$33/2^+$	2782.3	$\frac{(80)}{29/2^+}$		$I_{\gamma}(432\gamma)/I_{\gamma}(244\gamma)=0.44$ 16.
451.6.5	52	741.5+x	$17/2^{-}$	289.9 + x	$13/2^{-}$		$I_{\gamma}(452\gamma)/I_{\gamma}(269\gamma)=0.64.4$
453.3 10	12	2782.3	$29/2^+$	2329.0	$25/2^+$		$I_{\gamma}(453\gamma)/I_{\gamma}(215\gamma)=0.75$ 29.
459.2 10	5	3429.0	$35/2^+$	2969.8	$\frac{31}{2^+}$		
461.9 5	38	1036.3	$15/2^{+}$	574.4	$11/2^{+}$		$I_{\gamma}(462\gamma)/I_{\gamma}(245\gamma)=1.39$ 15.
462.7 5	38	1680.1	$21/2^{-}$	1217.4	$17/2^{-}$	Q	DCO=0.96 11
477.7 10	≈6	2567.5	$27/2^+$	2089.8	$23/2^+$		$I_{\gamma}(478\gamma)/I_{\gamma}(238\gamma)=0.33\ 20.$
484 1	9	2376.0+x	$(25/2^{-})$	1892.0+x	$25/2^{-}$		
487.4 5	97	959.9+x	19/2-	472.5+x	$15/2^{-}$		$I\gamma(487\gamma)/I\gamma(218\gamma)=2.05\ 17.$
494.5 5	38	1285.4	$17/2^{+}$	790.9	$13/2^{+}$		$I\gamma(495\gamma)/I\gamma(249\gamma) = 1.64$ 16.
499.0 5	24	3530.4+x	$(39/2^{-})$	3031.4+x	$(35/2^{-})$		$I\gamma(499\gamma)/I\gamma(265\gamma) = 0.54$ 6.
508.4 5	≈26 ^{<i>a</i>}	2329.0	$25/2^+$	1820.6	$21/2^{+}$		$I\gamma(508\gamma)/I\gamma(239\gamma)=1.18\ 98.$
509.6 10	$\approx 6^{a}$	3723.5	$37/2^+$	3213.8	$33/2^{+}$		
521.4 5	52	1557.7	$19/2^{+}$	1036.3	$15/2^{+}$		$I\gamma(521\gamma)/I\gamma(272\gamma)=2.19\ 38.$
532.1 5	32	2089.8	$23/2^{+}$	1557.7	$19/2^{+}$		$I\gamma(532\gamma)/I\gamma(269\gamma) = 1.28$ 75.
535.3 5	41	1820.6	$21/2^{+}$	1285.4	$17/2^{+}$		$I\gamma(535\gamma)/I\gamma(263\gamma) = 1.81\ 21.$
535.5 5	32	2215.6	$25/2^{-}$	1680.1	$21/2^{-}$	Q	DCO=1.06 13
546.5 5	61	1288.0+x	$21/2^{-}$	741.5+x	$17/2^{-}$		$I\gamma(547\gamma)/I\gamma(328\gamma) = 1.02 \ 8.$
555.1 5	28	3820.4+x	$(41/2^{-})$	3265.2+x	$(37/2^{-})$		$I\gamma(555\gamma)/I\gamma(290\gamma)=0.78$ 11.
564.1 ^d 10	9	3992.9	$(39/2^+)$	3429.0	$35/2^+$		
567.5 5	79	1527.4+x	$23/2^{-}$	959.9+x	$19/2^{-}$		$I\gamma(568\gamma)/I\gamma(239\gamma)=2.38\ 33.$
582.6 [°] 5	38 [°]	2798.2	$29/2^{-}$	2215.6	$25/2^{-}$		DCO=0.87 17
							DCO ratio for 582.6 doublet (1992Th02).
582.6 [°] 5	38 ^C	3380.8	$(33/2^{-})$	2798.2	$29/2^{-}$		DCO=0.87 17
							DCO ratio for 582.6 doublet (1992Th02).
584.5 ^d 10	≈9	4308.3	$(41/2^+)$	3723.5	$37/2^{+}$		
596.4 5	16	3977.2	$(37/2^{-})$	3380.8	$(33/2^{-})$		DCO=1.46 59
604.0 5	44	1892.0+x	$25/2^{-1}$	1288.0+x	$21/2^{-1}$		$I_{\gamma}(604\gamma)/I_{\gamma}(365\gamma)=0.98$ 15.
609 1	25	3122.6+x	33/2-	2513.8+x	29/2-		$\gamma(609\gamma)/I\gamma(347\gamma)=2.63\ 55.$
615 <i>1</i>	≈9	3391.2+x	35/2-	2775.8+x	$31/2^{-}$		• • •
615.2 5	<22 ^{&}	4145.4+x	$(43/2^{-})$	3530.4+x	$(39/2^{-})$		$I\gamma(615\gamma)/I\gamma(325\gamma)=0.94$ 34.
617.0^{d} 10	~1?	4925.6	$(45/2^+)$	4308 3	$(41/2^+)$		
617 3 5	~12	2144.7 + x	(73/2)	$1527.4 \pm x$	$\frac{1}{23/2}$		$I_{\gamma}(617\gamma)/I_{\gamma}(253\gamma)=2.82.90$
622.1	26	$2513.8 \pm x$	$\frac{2}{29/2}$	1892.0+x	$25/2^{-}$		$I_{\gamma}(627\gamma)/I_{\gamma}(269\gamma)=2.29.98$
620 od 10	20	4601 0	$(42/2^{+})$	2002.017	$(20/2^{+})$		1/(022/)/1/(00/)/2.2/ /0.
029.9 10	<4	4021.9	(43/2)	3992.9	$(39/2^{\circ})$		

Continued on next page (footnotes at end of table)

¹⁴²Nd(³⁰Si,p4nγ) **1992Th02** (continued)

$\gamma(^{167}\text{Ta})$ (continued)

E_{γ}^{\dagger}	Ι _γ ‡	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Comments
630.6 10	5	4607.8	$(41/2^{-})$	3977.2	$(37/2^{-})$	
631 <i>1</i>	21	2775.8+x	31/2-	2144.7+x	27/2-	$I\gamma(631\gamma)/I\gamma(262\gamma)=2.75\ 61.$
^x 643 ^b 1	≈4					
^x 653 ^b 1	<4					
657 1	20	2549.3+x	$(29/2^{-})$	1892.0+x	$25/2^{-}$	
661.3 5	24	4481.8+x	$(45/2^{-})$	3820.4+x	$(41/2^{-})$	$I_{\gamma}(661\gamma)/I_{\gamma}(337\gamma)=1.22\ 23.$
706.5 5	24	4851.8+x	$(47/2^{-})$	4145.4+x	$(43/2^{-})$	$I_{\gamma}(707\gamma)/I_{\gamma}(370\gamma)=1.34\ 53.$
743.4 <i>5</i>	16	5225.2+x	$(49/2^{-})$	4481.8+x	$(45/2^{-})$	$I_{\gamma}(743\gamma)/I_{\gamma}(374\gamma)=1.64\ 56.$
771.9 10	12	5623.8+x	$(51/2^{-})$	4851.8+x	$(47/2^{-})$	$I_{\gamma}(772\gamma)/I_{\gamma}(399\gamma)=1.37$ 49.
801 <i>1</i>	13	6025.9+x	$(53/2^{-})$	5225.2+x	$(49/2^{-})$	$I_{\gamma}(801\gamma)/I_{\gamma}(402\gamma)=1.88$ 67.
814 <i>1</i>	10	6438.0+x	$(55/2^{-})$	5623.8+x	$(51/2^{-})$	
839 1	12	6864.8+x	$(57/2^{-})$	6025.9+x	$(53/2^{-})$	
843 ^d 1	<13 ^{&}	7281.4+x	(59/2 ⁻)	6438.0+x	(55/2-)	
^x 873 1	≈ 8					
1088 1	17	2376.0+x	(25/2 ⁻)	1288.0+x	21/2-	

[†] From 1992Th02. $\Delta E\gamma \le 0.5$ keV, and ≤ 1 keV for weak γ rays and doublets stated by 1992Th02. Evaluators assign 0.5 keV to all single transitions with I $\gamma \ge 15$, and 1 keV for others, including those when $E\gamma$ is stated to nearest keV.

[‡] Relative photon intensity from spectra coincident with principal γ rays in a band, internally normalized to I(191 γ)=100; uncertainties range from 5% to 40%. For many levels, 1992Th02 also report I(γ)(Δ J=2, E2)/I(γ)(Δ J=1, M1) for transitions within bands having the same configuration, deduced from $\gamma\gamma$ -coin data with gates on the top of a level, as well as gates at the bottom transitions.

[#] Based on measured DCO ratios (79° (or 101°) and 37° (or 143°)). With gates on stretched quadrupole transitions, expected ratios are 1.00 for stretched quadrupole, and 0.6 for stretched dipole.

[@] I γ not reliable for E $\gamma \leq 150$ keV due to low efficiency (1992Th02).

& Possibly contaminated by unassigned transition of same energy associated with same band (1992Th02).

^{*a*} From $\gamma\gamma$ -coincidence spectra.

^b Unplaced γ associated with 9/2[514] band, above the level crossing.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

¹⁶⁷₇₃Ta₉₄

¹⁴²Nd(³⁰Si,p4nγ) 1992Th02

$\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

& Multiply placed: undivided intensity given

Legend

¹⁶⁷₇₃Ta₉₄

¹⁴²Nd(³⁰Si,p4nγ) 1992Th02

$\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

& Multiply placed: undivided intensity given

Legend

¹⁶⁷₇₃Ta₉₄

¹⁶⁷₇₃Ta₉₄

¹⁴²Nd(³⁰Si,p4nγ)

p4nγ) 1992Th02 (continued)

