¹⁷¹Ir α decay (1.27 s) 2023Zh03,2013An10,2014Pe02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023				

Parent: ¹⁷¹Ir: E=0+x; J^{π} =(11/2⁻); T_{1/2}=1.27 s 5; Q(α)=5997 12; % α decay=62 5

 171 Ir-E,J^{π}: From 171 Ir Adopted Levels in the ENSDF database (June 2018 update).

¹⁷¹Ir-T_{1/2}: weighted average of 1.28 s 4 (2023Zh03, weighted average of values from decays of the two alpha lines), 1.14 s 5 (2014Pe02), 1.4 s 1 (2010An01), 1.15 s +13-11 (2002Ro17), 1.3 s 2 (1996Pa01), 1.6 s 2 (1992Sc16), 1.4 s 2 (1978Ca11), 1.6 s 1 (1978Sc26), 1.7 s 4 (1978Ca11); and 1.0 s 3 (1967Si02). Reduced χ²=2.8 is somewhat higher than 1.9 at 95% confidence level.

¹⁷¹Ir-Q(α): 5997 12 from systematics (2021Wa16).

¹⁷¹Ir- $\%\alpha$ decay: $\%\alpha=62.5$ (2023Zh03). Other: 54.5 from ¹⁷¹Ir Adopted Levels in the ENSDF database (June 2018 update), where data are from 2010An01 and 1996Pa01.

2023Zh03: ^{171m}Ir produced in ⁹²Mo(⁸³Kr,p3n),E(⁸³Kr)=383 MeV, followed by separation of fragments of interest using RITU in-flight separator at the University of Jyvaskyla cyclotron facility. The ^{171m}Ir nuclei and decay radiations were detected using GREAT spectrometer and JUROGAM II array of 15 Eurogam Phase I and 24 Euroball clover Compton-suppressed HPGe detectors. Measured E α , I α , E γ , I γ , $\alpha\gamma$ -coin, α -branching ratios, K-conversion coefficients for γ rays, half-life of ^{171m}Ir decay. Deduced levels in ¹⁶⁷Re, and α -hindrance factors.

2014Pe02: measured $E\alpha$ and half-life of ¹⁷¹Ir α decay.

2013An10, 2010An01: ¹⁷¹Ir from α decay chain of ¹⁷⁹Tl produced in two reactions. First reaction E(p)=1.4 GeV at ISOLDE. Target=50 g/cm² ²³⁸U. ¹⁷⁹Tl ionized to 1⁺ charge by the Resonance Ionization Laser Ion Source (RILIS) and mass separated by the High Resolution (HRS) and General Purpose (GPS) Separators. Second reaction E(⁴⁰Ca)=232 MeV provided by the UNILAC at GSI. Target≈350 µg/cm² ¹⁴⁴Sm. Separated by the velocity filter SHIP. Measured E γ , I γ , E α , I α , T_{1/2}, yield using a single Miniball Ge cluster and a PSSD. Deduced J^π, and α branching ratio.

2002Ro17: measured $E\alpha$ and half-life of ¹⁷¹Ir α decay.

1996Pa01: sources from heavy-ion fusion-evaporation reactions; recoil mass separator, double-sided Si strip detector (FWHM \leq 20 keV); measured E α , parent T_{1/2} and $\%\alpha$.

1992Sc16: source from ¹⁴¹Pr(³⁶Ar,xn), E=175-204 MeV; measured α excitation, E α , I α , E γ , I γ , I(K x ray), α -(K x ray) coin, $\alpha\gamma$ coin, $\alpha(t)$; deduced α branching; Si and Ge detectors. Only one activity of ¹⁷¹Ir reported decaying with half-life of 1.46 s.

1982De11: sources from ⁶³Cu bombardments of Ag, Cd, In, Sn; measured E α (silicon surface-barrier detector); He-jet transport. 1978MaYF: ¹⁷¹Ir produced in ⁵⁸Ni,⁶³Cu(⁵⁸Ni,X),E=290 MeV followed by the measurement of α decay at the UNILAC facility of GSI.

Others: 1978Ca11, 1978Sc26, 1967Si02.

¹⁶⁷Re Levels

E(level)	J^{π}	T _{1/2}	Comments					
0.0+x	(9/2 ⁻)	5.9 s 5	E(level), J^{π} , $T_{1/2}$: from the Adopted Levels.					
92.1+x 2	$(11/2^{-})$		J : tentative configuration $-\pi \frac{3}{2} \begin{bmatrix} 514 \end{bmatrix}$, analogous to Ke (19925010).					

α radiations

Εα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	Comments
5920 4	92.1+x	85.5 12	1.06 11	 Eα: weighted average of 5919 4 (2023Zh03); 5925 8 (2010An01); and 5920 4 recommended in 1991Ry01 (value based on measurements: 5925 3 in 1982De11, 5909 5 in 1967Si02, 5910 10 in 1978Ca11, and 5910 10 in 1978Sc26). Other: 5945 11 (1996Pa01, seems discrepant). Iα: 53% 5 (2023Zh03). Relative Iα=85.5 12 (evaluators), assuming Iα(6011α)+Iα(5920α)=100. HF: other: 1.9 3 (2023Zh03).
6011 5	0.0+x	14.5 12	14.7 20	E α : from 2023Zh03. I α : 9% 1 (2023Zh03). Relative I α =14.5 12 (evaluators), assuming I α (6011 α)+I α (5920 α)=100. HF: other: 15 2 (2023Zh03).

Continued on next page (footnotes at end of table)

¹⁷¹Ir α decay (1.27 s) 2023Zh03,2013An10,2014Pe02 (continued)

α radiations (continued)

[†] The nuclear radius parameter $r_0(^{167}\text{Re})=1.5595\ 50$ is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides (2020Si16). In deducing α -hindrance factors, energy of the (11/2⁻) isomer in ¹⁷¹Ir assumed as 100 keV for 0+x, and level energies in ¹⁶⁷Re as 0.0 keV for 0.0+x, and 92.1 keV for 92.1+x.

[‡] For absolute intensity per 100 decays, multiply by 0.62 5.

171 Ir α decay (1.27 s) 2023Zh03,2013An10,2014Pe02 (continued)									
$\gamma(^{167}\text{Re})$									
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	δ	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
92.1 2	11.42 24	92.1+x	(11/2 ⁻)	0.0+x (9/2 ⁻)	M1+E2	0.28 15	6.49 12	85.5 12	$\begin{aligned} &\alpha(\text{K}) = 5.1 \ 4; \ \alpha(\text{L}) = 1.08 \ 24; \ \alpha(\text{M}) = 0.25 \ 6; \ \alpha(\text{N}) = 0.061 \ 15 \\ &\alpha(\text{O}) = 0.0098 \ 20; \ \alpha(\text{P}) = 0.00056 \ 5 \\ &\text{E}_{\gamma}: \ \text{from } 2023\text{Zh03}. \\ &\text{I}_{(\gamma + ce)}: \ \text{from } I\alpha = 85.5 \ 12. \\ &\text{I}_{\gamma}: \ \text{from } I(\gamma + ce) \ \text{and } \alpha. \\ &\text{Mult.: \ from } \alpha(\text{K})\text{exp} = 5.1 \ 4 \ (2023\text{Zh03}, \ \text{from } I\gamma \ \text{and } I(\text{Re K x-rays})). \ \text{Other: } \delta(\text{E2/M1}) < 1.8 \ \text{from } \alpha(\text{K})\text{exp} = 10 \ 8 \\ &(1992\text{Sc16}). \\ &\text{I(K x ray, Re):I(92\gamma)} = 95 \ 15:9 \ 5 \ (1992\text{Sc16}). \end{aligned}$

[†] For absolute intensity per 100 decays, multiply by 0.62 5. [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

 $^{167}_{75}\mathrm{Re}_{92}$ -3

Legend

¹⁷¹Ir α decay (1.27 s) 2023Zh03,2013An10,2014Pe02

