Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023					

 $Q(\beta^{-}) = -9430 \ 80; \ S(n) = 9140 \ 80; \ S(p) = 1.95 \times 10^{3} \ 12; \ Q(\alpha) = 5980 \ 60$ 2021Wa16

 $S(2n)=20900\ 220\ (syst),\ S(2p)=2220\ 80,\ Q(\epsilon p)=8100\ 80,\ Q(\epsilon)=8340\ 90\ (syst)\ (2021Wa16).$

 $Q(\alpha)$: g.s. α transition assumed, with 60-keV uncertainty added because of lack of information concerning the energy of the daughter state populated in the α decay of ¹⁶⁷Os (2021Wa16).

1977Ca23, 1978Ca11, 1982De11: ¹⁶⁷Os produced and identified in

 $^{107}, ^{109}Ag, ^{106}, ^{108}, ^{110}Cd, ^{110}Pd, ^{112}, ^{116}Sn, ^{113}In(^{63}Cu, X), E(^{63}Cu) = 245-320$ MeV reaction at Orsay, followed by the assignment of α lines from the decay of ¹⁶⁷Os through cross-bombardments, excitation functions, and α -energy systematics.

1978MaYF: yield measurement of 167 Os in 58 Ni, 63 Cu(58 Ni,X), E(58 Ni)=290 MeV reaction, and measurement of its α decay using the heavy-ion accelerator UNILAC at GSI.

1981Ho10: ¹⁶⁷Os identified from the decay of ¹⁷¹Pt parent which was formed in Sn(⁵⁸Ni,X),E=4.4 MeV/nucleon, followed by separation of fragments using SHIP velocity filter at GSI.

1982En03: identification of ¹⁶⁷Os as the α daughter of ¹⁷¹Pt.

Additional information 1.

No references were found in the NSR database for theoretical structure calculations for ¹⁶⁷Os.

¹⁶⁷Os Levels

All configurations are from 2009Od02.

Cross Reference (XREF) Flags

Α	¹⁶⁷ Os	IT	decay	(700)	ns)
---	-------------------	----	-------	-------	-----

¹⁷¹Pt α decay (45.5 ms) В

⁹²Mo(⁷⁸Kr,2pnγ) ¹¹²Sn(⁵⁸Ni,2pnγ) С

D

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0@	(7/2 ⁻)	839 ms 5	ABC	$%ε+%β^+=49$ 5; %α=51 5 (2010Sc02) %α: others: 58% 12 (1981Ho10, from positions and intensities of correlated parent/daughter events); 76% 10 (1982En03, from matching of ¹⁷¹ Pt- ¹⁶⁷ Os velocity distributions following recoil-mass selection of the evaporation residues formed by 5-neutron emission from ¹⁷⁶ Pt); and 49% 7 (1996Pa01). %ε+%β ⁺ from 100-%α. T _{1/2} : from 2010Sc02, measured from α-decay correlated with 3-s recoils. Others: 0.65 s 15 (1977Ca23,1978Ca11), 1.05 s 35 (1981Ho10), 0.8 s 2 (1982En03), 0.84 s 7 (1996Pa01). T _{1/2} : value of 835 ms 9 in Fig. 8 is a misprint as confirmed in an e-mail reply from C. Scholey on Feb 4, 2010. Additional information 2.
87.10 ^{&} 10	$(9/2^{-})$	7 00 10	A C	
434.7" 8	(13/2+)	700 ns 10	A CD	%II=100 $T_{1/2}$: from 2010Sc02, measured from time differences between recoil implantations and delayed γ rays detected in the GREAT focal plane spectrometer. Delayed γ rays were observed at 86.7 and 347.6 keV. Note that $T_{1/2}$ =672 ns 7 stated in level-scheme Fig. 11 of 2010Sc02 is a misprint, as communicated in an e-mail reply from C. Scholev on Feb 5, 2010.
451.50 [@] 10	(11/2 ⁻)		С	······································
502.90 ^{&} 22	(13/2 ⁻)		C	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁶⁷Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
797.6 ^a 8	$(17/2^+)$	13.9 ps 28	CD	$T_{1/2}$: recoil-distance method in 92 Mo(78 Kr,2pn γ) (2009Od02).
1060.80 [@] 14	$(15/2^{-})$		С	
1091.40 ^{&} 25	$(17/2^{-})$		С	
1096.40 22			С	
1340.8 ^{<i>a</i>} 8	$(21/2^+)$		CD	
1758.20 [@] 17	$(19/2^{-})$		С	
1789.9 ^{&} 3	$(21/2^{-})$		С	
1811.2 3			С	
1995.9 ^{<i>a</i>} 8	$(25/2^+)$		CD	
2148.5 [°] 8	$(23/2^{-})$		CD	J^{π} : (21/2 ⁻) assigned by 2001Jo11 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2206.2 ^b 8	$(23/2^{-})$		С	
2331.6 [#] 8			CD	J^{π} : (23/2 ⁻) assigned by 2001Jo11 in ¹¹² Sn(⁵⁸ Ni,2pn γ), but none assigned in 2009Od02 since mult(990.8 γ) could not be established.
2417.2 10			С	
2509.8 ^b 8	$(27/2^{-})$		С	
2556.8 ^{&} 5	$(25/2^{-})$		С	
2627.7 11			С	
2628.3 ^C 8	$(27/2^{-})$		CD	J^{π} : (25/2 ⁻) assigned by 2001Jo11 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2680.0 ^{<i>a</i>} 8	$(29/2^+)$		CD	
2820.0 [#] 9			CD	J^{π} : (27/2 ⁻) assigned by 2001Jo11 in ¹¹² Sn(⁵⁸ Ni,2pn γ), but none assigned in 2009Od02 since mult(488.4 γ) could not be established.
2897.2 9			С	
3044.1 ^b 9	$(31/2^{-})$		С	
3125.9 ^c 8	$(31/2^{-})$		С	
3317.9 ^a 9	$(33/2^+)$		С	
3716.4 <mark>b</mark> 10	$(35/2^{-})$		С	
3984.1 ^{<i>a</i>} 10	$(37/2^+)$		С	

[†] From a least-squares fit to γ -ray energies. Normalized χ^2 =4.1 in comparison to critical χ^2 =3.8. It is possible that some of the uncertainties in $E\gamma$ values are underestimated.

[±] As proposed by 2009Od02 in ⁹²Mo(⁷⁸Kr,2pnγ) based on systematics, comparisons with theoretical predictions, and angular distributions for selected transitions.
[#] Possible 3-quasineutron state.

[@] Band(A): $\nu(f_{7/2},h_{9/2}),\alpha = -1/2$.

[&] Band(a): $\nu(f_{7/2},h_{9/2}),\alpha=+1/2.$

^{*a*} Band(B): $\nu i_{13/2}$, yrast band.

^b Band(C): Possible 3-quasineutron band. Configuration= $v(f_{7/2},h_{9/2}\otimes i_{13/2}^2)$.

^c Band(D): Band based on $(23/2^{-})$. Possible 3-quasineutron band.

 $\gamma(^{167}\text{Os})$

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
87.10	(9/2-)	87.1 <i>1</i>	100	0.0	(7/2-)	M1	8.5 <i>3</i>	α (K)=6.99 22; α (L)=1.14 4; α (M)=0.263 8 α (N)=0.0641 20; α (O)=0.0111 4; α (P)=0.00082 3 Mult.: from ¹⁶⁷ Os IT decay.
434.7	(13/2+)	347.6 8	100	87.10	(9/2 ⁻)	M2	0.629 10	α (K)=0.491 9; α (L)=0.1032; α (M)=0.0245; α (N)=0.00602 B(M2)(W.u.)=0.176 3 E _{γ} ,Mult.: from ¹⁶⁷ Os IT decay.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{167}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${f J}_f^\pi$	Mult. [†]	α^{\ddagger}	Comments
451.50	$(11/2^{-})$	451.5 <i>1</i>	100	0.0	$(7/2^{-})$	(Q)		
502.90	$(13/2^{-})$	415.8 2	100	87.10	$(9/2^{-})$	(Q)		
797.6	(17/2 ⁺)	362.9 1	100	434.7	(13/2+)	E2	0.0528 8	B(E2)(W.u.)=112 23 E _{γ} : 362.8 2 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
1060.80	$(15/2^{-})$	609.3 1	100	451.50	$(11/2^{-})$	Q		
1091.40	$(17/2^{-})$	588.5 <i>1</i>	100	502.90	$(13/2^{-})$			
1096.40		644.9 2	100	451.50	$(11/2^{-})$			
1340.8	$(21/2^+)$	543.2 <i>1</i>	100	797.6	$(17/2^+)$	Q		E_{γ} : 542.8 2 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
1758.20	$(19/2^{-})$	697.4 <i>1</i>	100	1060.80	$(15/2^{-})$			
1789.9	$(21/2^{-})$	698.5 <i>1</i>	100	1091.40	$(17/2^{-})$			
1811.2		750.4 <i>3</i>	100	1060.80	$(15/2^{-})$			
1995.9	$(25/2^+)$	655.3 1	100	1340.8	$(21/2^+)$	Q		E_{γ} : 655.1 2 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2148.5	$(23/2^{-})$	807.5 1	100	1340.8	$(21/2^+)$	D		E_{γ} : 807.0 3 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2206.2	$(23/2^{-})$	865.4 2	100	1340.8	$(21/2^+)$	D		
2331.6		990.8 <i>1</i>	100	1340.8	$(21/2^+)$			E_{γ} : 988.8 3 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2417.2		1076.4 6	100	1340.8	$(21/2^+)$			
2509.8	$(27/2^{-})$	303.6 2	100 10	2206.2	$(23/2^{-})$			
		513.9 2	51 <i>13</i>	1995.9	$(25/2^+)$			
2556.8	$(25/2^{-})$	766.9 4	100	1789.9	$(21/2^{-})$			
2627.7		210.5 4	100	2417.2				
2628.3	$(27/2^{-})$	479.6 1	100 10	2148.5	$(23/2^{-})$			E_{γ} : 479.8 <i>3</i> in ¹¹² Sn(⁵⁸ Ni,2pn γ).
		632.5 <i>1</i>	98 <i>13</i>	1995.9	$(25/2^+)$			E_{γ} : 631.5 3 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
								I_{γ} : other: 55 14 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
								Unweighted average is 77 22.
2680.0	$(29/2^+)$	684.1 <i>1</i>	100	1995.9	$(25/2^+)$	Q		E_{γ} : 683.4 3 in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2820.0		488.4 <i>4</i>	100	2331.6				E_{γ} : 487.6 3 IN in ¹¹² Sn(⁵⁸ Ni,2pn γ).
2897.2		901.3 4	100	1995.9	$(25/2^+)$			
3044.1	$(31/2^{-})$	534.3 4	100	2509.8	$(27/2^{-})$			
3125.9	$(31/2^{-})$	497.6 <i>1</i>	100	2628.3	$(27/2^{-})$			
3317.9	$(33/2^+)$	637.9 <i>3</i>	100	2680.0	$(29/2^+)$			
3716.4	$(35/2^{-})$	672.3 2	100	3044.1	$(31/2^{-})$			
3984.1	$(37/2^+)$	666.2 4	100	3317.9	$(33/2^+)$			

[†] From ⁹²Mo(⁷⁸Kr,2pn γ), with an exception for 347.6 γ from 434.7 level which is from ¹⁶⁷Os IT decay. E γ and I γ values in ¹¹²Sn(⁵⁸Ni,2pn γ) are in general agreement but much less complete. Also several authors share the two studies, the latter paper comments on some of the differences e.g. the ⁹²Mo(⁷⁸Kr,2pn γ) study involves $\gamma\gamma$ coincidences with characteristic α rays from ¹⁶⁷Os decay (recoil-decay tagging method) whereas ¹¹²Sn(⁵⁸Ni,2pn γ) study involved $\gamma\gamma$ coincidences with recoils. The former study is, in principle, expected to be more precise and accurate, thus data are adopted from 2009Od02.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁶⁷₇₆Os₉₁

4

Adopted Levels, Gammas

¹⁶⁷₇₆Os₉₁