¹⁶⁷Hf ε decay **1973Me09**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 90, 431 (2000)	5-Jul-2000

Parent: ¹⁶⁷Hf: E=0.0; $J^{\pi} = (5/2)^{-}$; $T_{1/2} = 2.05 \text{ min } 5$; $Q(\varepsilon) = 4000 \text{ SY}$; $\%\varepsilon + \%\beta^+$ decay=100.0 Others: 1969Ar23, 1970At01, 1987Es08, 1989Br19.

Sources from 170 Yb(3 He,6n); Yb oxide targets enriched to 67% in 170 Yb; chemical separation; measured E γ , I γ ,

(Compton-suppression Ge(Li) spectrometer (FWHM=1.9 keV at 1332 keV)), K x ray (surface-barrier Ge(Li) detector (FWHM=0.8 keV at 122 keV)), Ice (Si(Li)).

The decay scheme is tentative, and most certainly very incomplete; only three γ rays were observed, although Q+=4000 suggests there might be many more.

¹⁶⁷Lu Levels

E(level)	J^{π}	T _{1/2}		Comments
0.0 [‡]	7/2+	51.5 min 10	$T_{1/2}$: from Adopted Levels.	
139.87 [‡] <i>15</i>	$(9/2^+)$			
315.25 [#] 10	(7/2) ⁻			

[†] Adopted values.

[‡] Band(A): π 7/2[404] band.

[#] Band(B): π 7/2[523] band.

ε, β^+ radiations

1973Me09 estimate>65% $\varepsilon + \beta^+$ branching to 315.2 level from I γ (K x ray)=58 29 and I (γ^{\pm}) =60 30, relative to I γ =100 for 315.2 γ . Intensity imbalance at 139.9 level indicates very little, if any, $\varepsilon + \beta^+$ feeding of that level (1.4% 17).

E(decay)	E(level)	$I\beta^+$ [†]	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(3684 <i>SY</i>)	315.25	>22	>43	<4.8	>65	av E β = 1203; ε K=0.546; ε L=0.0862; ε M+=0.0262
$(4000^{\ddagger} SY)$	0.0	<15	<20	>5.2	<35	av E β =1347; ε K=0.481; ε L=0.0758; ε M+=0.0230

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{167}Lu)$

I γ normalization: From K x ray intensity (corrected for internal conversion) and γ^{\pm} intensity. However, see comment concerning tentative status of decay scheme.

I γ (K x ray)=58 29, I(γ^{\pm})=60 30, relative to I γ =100 for 315.2 γ .

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
139.9 2	3.8 8	139.87	$(9/2^+)$	0.0	7/2+	[M1,E2]	1.21 24	$\alpha(K)=0.84; \alpha(L)=0.2911; \alpha(M)=0.073;$
175.4 2	6 1	315.25	$(7/2)^{-}$	139.87	(9/2+)	[E1]	0.0809	$\alpha(N+)=0.019 \ 8$ $\alpha(K)=0.0674; \ \alpha(L)=0.0105; \ \alpha(M)=0.00234;$ $\alpha(N+.)=0.00063$
315.24 10	100	315.25	(7/2)-	0.0	7/2+	E1	0.0184	$\alpha(K)=0.0154; \alpha(L)=0.00229; \alpha(M)=0.00051; \alpha(N+)=0.00016$

$\frac{167 \text{Hf } \varepsilon \text{ decay}}{\gamma(^{167}\text{Lu}) \text{ (continued)}}$

 E_{γ} E_i (level)

Comments

Mult.: from α (K)exp=0.014 *3*, as deduced from a simultaneous measurement of Ice(315.2 γ) and I γ (315.2 γ) (detector calibration from α (L)=0.0823 (E2 theory) for 198.8 γ in ¹⁶⁸Yb).

 † For absolute intensity per 100 decays, multiply by 1.0 5.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁷Hf ε decay 1973Me09

Decay Scheme

¹⁶⁷₇₁Lu₉₆

¹⁶⁷₇₁Lu₉₆