$\frac{\text { Type }}{} \quad$| History |
| :---: |
| Full Evaluation |

Target $={ }^{166 \mathrm{~m}} \mathrm{Ho}$, with level energy $=5.969 \mathrm{keV} 12, J^{\pi}=7^{-}$from ${ }^{166} \mathrm{Ho}$ Adopted Levels in the ENSDF database (March 2008 update); and $\mathrm{T}_{1 / 2}=1132.6$ y 39 (2012Ne05).
1992Ma66: measured neutron resonances in ${ }^{166 \mathrm{~m}} \mathrm{Ho}$ using time-of-flight method with a mechanical neutron selector placed in the horizontal beam of an SM-2 reactor at the V.I. Lenin Scientific Research Institute of Atomic Reactors. Deduced resonance parameters.
2023Po08: ${ }^{166} \mathrm{Ho}(\mathrm{n}, \gamma), \mathrm{E}(\mathrm{n})=0.001-10 \mathrm{MeV}$; and the Maxwellian-averaged cross sections (MACS) for $\mathrm{kT}<105 \mathrm{keV}$ were deduced from the determination of nuclear level density (NLD) and $\gamma$-strength function (GSF) from an experiment using ${ }^{164} \mathrm{Dy}(\alpha, \mathrm{p} \gamma)$ reaction at $\mathrm{E} \alpha=26 \mathrm{MeV}$ at the University of Oslo cyclotron facility. Relevance to astrophysical s-process.

$$
{ }^{167} \text { Ho Levels }
$$

All data are from 2018MuZZ evaluation, based on data in 1992Ma66.

| E(level) ${ }^{\dagger}$ | $\mathrm{J}^{\pi}$ | $\Gamma$ | L | Comments |
| :---: | :---: | :---: | :---: | :---: |
| S(n)+0.00027 | 13/2-,15/2 ${ }^{-}$ | 0.146 eV 5 | 0 | $\mathrm{E}(\mathrm{n})=0.274 \mathrm{eV} 1,2 \mathrm{~g} \Gamma_{n}=1.26 \mathrm{meV} \mathrm{8}, \Gamma_{\gamma}=0.145 \mathrm{eV} 5$ (2018MuZZ). |
| $\mathrm{S}(\mathrm{n})+0.008501$ | 13/2-, $15 / 2^{-}$ | 0.098 eV 29 | 0 | $2 \mathrm{~g} \Gamma_{\mathrm{n}}=10.6 \mathrm{meV} 8, \Gamma_{\gamma}=0.092 \mathrm{eV} 30$ (2018MuZZ). |
| $\mathrm{S}(\mathrm{n})+0.05743$ | 13/2- $2^{-} 15 / 2^{-}$ | 0.113 eV 28 | 0 | $2 \mathrm{~g} \Gamma_{\mathrm{n}}=66 \mathrm{meV} 20$ (2018MuZZ). |

