¹⁶⁷**Dy** β^- decay (6.20 min) **1977Tu01**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Parent: ¹⁶⁷Dy: E=0.0; $J^{\pi}=(1/2^{-})$; $T_{1/2}=6.20 \text{ min } 8$; $Q(\beta^{-})=2368 \ 7$; $\%\beta^{-}$ decay=100

¹⁶⁷Dy-J^{π},T_{1/2}: From ¹⁶⁷Dy Adopted Levels.

¹⁶⁷Dy-Q(β^{-}): From 2021Wa16.

1977Tu01: ¹⁶⁷Dy from ¹⁷⁰Er(n, α),E(n)=14-15 MeV using 96.9% enriched ¹⁷⁰Er target at the 400 kV neutron generator of the University of Helsinki. Measured E β , I β , E γ , I γ , $\gamma\gamma$ -coin, prompt and delayed $\beta\gamma$ -coin using plastic scintillator for β detection and Ge(Li) detectors for γ rays.

Others:

1999As03: 133.2, 250.0, 310.3, and 569.7 keV γ rays reported from from the decay of ¹⁶⁷Dy in the main study of ¹⁶⁷Tb decay. 1974Ka21: 250.0, 258.9, 569.7, 599.2, 843.2, 975.9, 996.5, and 1014.1 keV γ rays tentatively assigned to the decay of ¹⁶⁷Dy in the main study of decays of ¹⁷⁰Ho isomers to ¹⁷⁰Er. The γ rays of 843.2, 975.9 and 1014.1 keV were not confirmed in 1977Tu01.

¹⁶⁷Ho Levels

E(level) [†]	J ^π ‡	$T_{1/2}^{\ddagger}$	Comments
0.0	7/2-	2.98 h 3	Configuration= $\pi 7/2[523]$ (1977Tu01).
259.34 11	$3/2^{+}$	6.0 µs 10	$T_{1/2}$: from $\beta \gamma(t)$ (1977Tu01).
			Configuration= $\pi 3/2[411]$ (1977Tu01).
319.75 12	$5/2^{+}$		Configuration= $\pi 3/2[411]$ (1977Tu01).
392.48 13	$(1/2^+)$		Configuration= $\pi 1/2[411]$ (1977Tu01).
409.97 12	$3/2^{+}$		Configuration= $\pi 1/2[411]$ (1977Tu01).
569.69 12	$(3/2^{-})$		Configuration= $\pi 7/2[523] \otimes 2^+$ (1977Tu01).
922.0? 2			
1099.5 2			
1149.0 <i>3</i>			
1168.8? 2			
1240.6 4			
1664.9 <i>4</i>			
1919.0? <i>3</i>			

[†] From a least-squares fit to $E\gamma$ values, with tentative placements included.

[‡] From the Adopted Levels. Nilsson assignments proposed in 1977Tu01 were confirmed in (pol t, α) study by 1979Lo02.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(449 [#] 7) (703 7) (1127 7)	1919.0? 1664.9 1240.6	0.46 5 0.79 11 ≈1.3	5.55 5 5.97 6 ≈6.5	av $E\beta$ =132.3 24 av $E\beta$ =222.2 26 av $E\beta$ =387.0 28
(1199 [#] 7) (1219 7) (1269 7)	1168.8? 1149.0 1099.5	1.22 22 0.81 <i>16</i> 1.22 24	6.61 8 6.82 9 6.70 9	av $E\beta$ =416.3 29 av $E\beta$ =424.5 29 av $E\beta$ =445.1 29
(1446 [#] 7) (1798 7) (1958 7) (1976 7)	922.0? 569.69 409.97 392.48	0.94 <i>13</i> 82 <i>4</i> 1.5 <i>5</i> 6 3 <i>11</i>	7.03 6 5.452 23 7.33 15 6 73 8	av $E\beta$ =519.0 30 av $E\beta$ =669.6 30 av $E\beta$ =739.4 31 av $E\beta$ =747.2 31
(19707) (2048#7)	319.75	<4	$> 8.0^{1u}$	av $E\beta = 759.2$ 29 $I\beta^-$: 0 4 from intensity balance.
(2109 [#] 7)	259.34	<8	>6.7	av $E\beta=805.7 \ 31$ $I\beta^-: 3 \ 6$ from intensity balance.
				Continued on next page (footnotes at end of table)

1

¹⁶⁷Dy β^- decay (6.20 min) 1977Tu01 (continued)

β^{-} radiations (continued)

 $^{\dagger}\beta^{-}$ feedings are from transition intensity balance at each level, with tentative placements included. No feeding to g.s. is expected, as $\Delta J=3$ and $\Delta \pi=no$. Feedings to low-energy levels are uncertain because of lack of definite multipolarity assignments for the low-energy γ rays.

- [‡] Absolute intensity per 100 decays.
 [#] Existence of this branch is questionable.

 $\gamma(^{167}\text{Ho})$

I γ normalization: From total I(γ +ce) to g.s.=100% (no feeding to g.s. expected, as Δ J=3 and $\Delta\pi$ =no). I γ (Ho K x ray)=81 *I*2, relative to I γ =100.0 for 569.7 γ . The corresponding decay-scheme value is I γ (Ho K x ray)=64.4.

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α #	Comments
60.44 8	1.9 3	319.75	5/2+	259.34 3/2+	M1(+E2)	≤1.25	14.1 30	$ α(K)exp=11 5 $ %Iγ=0.92 15 $α(K)=7.2 22; α(L)=5 4; α(M)=1.3 10$ $α(N)=0.29 21; α(O)=0.035 24; α(P)=4.5×10^{-4} 14$ Mult.: from α(K)exp, determined from comparison of K x-rays and γ-ray intensities in singles and coincidence spectra (1977Tu01).
72.67 ^{†@} 10	≈0.3	392.48	(1/2+)	319.75 5/2+	[E2]		9.73 15	%I $\gamma \approx 0.15$ $\alpha(K) = 2.061$ 29; $\alpha(L) = 5.89$ 9; $\alpha(M) = 1.425$ 22 $\alpha(N) = 0.321$ 5: $\alpha(Q) = 0.0376$ 6: $\alpha(P) = 9.32 \times 10^{-5}$ 13
90.26 8	0.89 13	409.97	3/2+	319.75 5/2+	[M1+E2]		3.83 <i>33</i>	$\alpha(1) = 0.213$; $\alpha(0) = 0.0050$; $\alpha(1) = 0.221$ $\alpha(K) = 0.237$; $\alpha(L) = 1.38$; $\alpha(M) = 0.3021$ $\alpha(N) = 0.075$; $\alpha(D) = 0.0085$; $\alpha(P) = 1.2 \times 10^{-4} 6$
133.19 7	6.5 5	392.48	(1/2 ⁺)	259.34 3/2+	[M1+E2]		1.07 8	$\alpha(K)=0.74\ 23;\ \alpha(L)=0.25\ 11;\ \alpha(M)=0.059\ 28$ %I γ =3.1 3 $\alpha(N)=0.013\ 6;\ \alpha(O)=0.0017\ 7;\ \alpha(P)=4.1\times10^{-5}\ 19$
150.58 8	1.4 2	409.97	3/2+	259.34 3/2+	[M1+E2]		0.73 9	This γ also reported in spectral Fig. 1 of 1999As03. %I γ =0.68 <i>10</i> α (K)=0.53 <i>16</i> ; α (L)=0.16 <i>6</i> ; α (M)=0.037 <i>14</i>
159.71 8	≈1.0	569.69	(3/2 ⁻)	409.97 3/2+	[E1]		0.0910 13	$\alpha(N)=0.0085\ 51;\ \alpha(O)=0.00108\ 52;\ \alpha(P)=2.9\times10^{-7}\ 15$ %I $\gamma\approx0.48$ $\alpha(K)=0.0764\ 11;\ \alpha(L)=0.01141\ 16;\ \alpha(M)=0.002509\ 35$ $\alpha(N)=0.000575\ 8;\ \alpha(O)=7.96\times10^{-5}\ 11;\ \alpha(P)=3.72\times10^{-6}\ 5$
250.03 <i>13</i>	19.9 <i>11</i>	569.69	(3/2 ⁻)	319.75 5/2+	[E1]		0.0282 4	$\%$ I γ =9.6 6 α (K)=0.02385 34; α (L)=0.00344 5; α (M)=0.000756 11 α (N)=0.0001740 24; α (O)=2.449×10 ⁻⁵ 34; α (P)=1.223×10 ⁻⁶ 17
259.33 13	58.0 40	259.34	3/2+	0.0 7/2-	M2		0.827 12	%Iγ=28.0 10 α(K)exp=0.69 11 α(K)=0.661 9; $α$ (L)=0.1286 18; $α$ (M)=0.0294 4 α(N)=0.00685 10; $α$ (O)=0.000980 14; $α$ (P)=5.11×10 ⁻⁵ 7 I _(γ+ce) : 27.9% 9 based on adopted normalization. Mult.: from $α$ (K)exp, determined from comparison of K x-rays and γ-ray intensities in singles and coincidence spectra (1977Tu01).
310.26 12	52.0 30	569.69	(3/2 ⁻)	259.34 3/2+	[E1]		0.01643 23	% $I\gamma=25.1 I7$ $\alpha(K)=0.01390 20; \ \alpha(L)=0.001981 28; \ \alpha(M)=0.000435 6$ $\alpha(N)=0.0001001 14; \ \alpha(O)=1.419\times10^{-5} 20; \ \alpha(P)=7.27\times10^{-7} 10$

 $\boldsymbol{\omega}$

¹⁶⁷₆₇Ho₁₀₀-3

¹⁶⁷Dy $β^-$ decay (6.20 min) **1977Tu01** (continued) $\gamma(^{167}\text{Ho})$ (continued) α**#** Iγ[‡] E_i (level) J_i^{π} \mathbf{E}_{f} Comments J_{f}^{π} Mult.

352.2 2	2.1 2	922.0?		569.69	$(3/2^{-})$	[D,E2]	0.046 34	%Iy=1.01 10
569.7 2	100.0	569.69	$(3/2^{-})$	0.0	7/2-	[E2]	0.01135 16	%Iγ=48.3 <i>17</i>
								$\alpha(K)=0.00920 \ 13; \ \alpha(L)=0.001672 \ 23; \ \alpha(M)=0.000377 \ 5$
								$\alpha(N)=8.67\times10^{-5}$ 12; $\alpha(O)=1.198\times10^{-5}$ 17; $\alpha(P)=5.17\times10^{-7}$ 7
579.4 <i>3</i>	0.47 8	1149.0		569.69	$(3/2^{-})$			%Iγ=0.23 <i>4</i>
599.2 2	1.7 2	1168.8?		569.69	$(3/2^{-})$	[D,E2]	0.012 8	%Iγ=0.82 <i>10</i>
662.9 ^{†@} 3	0.70 8	922.0?		259.34	$3/2^{+}$			%Iy=0.34 4
689.4 ^{†@} 3	≈0.5	1099.5		409.97	$3/2^{+}$			%Iγ≈0.24
707.1 2	2.0 4	1099.5		392.48	$(1/2^+)$	[D,E2]	0.008 5	%Iy=0.97 20
738.8 4	1.2 3	1149.0		409.97	$3/2^{+}$	[D,E2]	0.007 5	%Iy=0.58 15
^x 746.0 [†] 2	0.86 10							
^x 799.0 [†] 4	≈0.8							
830.8 5	≈0.7	1240.6		409.97	$3/2^{+}$			%Iy≈0.34
848.3 10	≈ 1.0	1240.6		392.48	$(1/2^+)$			%Iγ≈0.48
909.1 ^{†@} 5	≈0.8	1168.8?		259.34	3/2+			%Iy≈0.39
920.5 ^{†@} 5	≈0.5	1240.6		319.75	$5/2^{+}$			%Iγ≈0.24
981.4 8	≈0.5	1240.6		259.34	$3/2^{+}$			%Iy≈0.24
997.0 2	0.95 10	1919.0?		922.0?				%Iy=0.46 5
^x 1080.3 [†] 3	0.62 8							
1094.6 6	0.5 2	1664.9		569.69	$(3/2^{-})$			%Iy=0.24 <i>10</i>
1272.9 6	0.65 8	1664.9		392.48	$(1/2^+)$			%Iγ=0.31 <i>4</i>
1405.6 5	0.48 7	1664.9		259.34	$3/2^{+}$			%Iγ=0.23 <i>4</i>

[†] Isotopic assignment of this γ ray is uncertain (1977Tu01).

[‡] For absolute intensity per 100 decays, multiply by 0.483 17.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 E_{γ}

¹⁶⁷Dy β^- decay (6.20 min) 1977Tu01

