Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023					

 $Q(\beta^{-})=10105; S(n)=72805; S(p)=69845; Q(\alpha)=-1097$ 2021Wa16

S(2n)=13524 5, S(2p)=16269 5 (2021Wa16).

1955Ha45: ¹⁶⁷Ho produced and identified in ¹⁷⁰Er(p, α),E(p)=22.4 MeV, and ¹⁶⁷Er(n,p) reactions using natural erbium target, followed by ion-exchange method at the ORNL cyclotron facility. Measured half-life of the decay of ¹⁶⁷Ho, β and γ radiations. Deduced β -end-point energies of 1.0 MeV *1* and 0.28 MeV. Gamma rays of 0.35 and 0.70 MeV were observed.

1960Wi10: ¹⁶⁷Ho produced in ¹⁶⁷Er(n,p),E(n)=14 MeV, followed by chemical separation at the University of Arkansas Cockcroft-Walton 400-kV accelerator. Measured half-life of the decay of ¹⁶⁷Ho.

Theoretical structure calculations:

2017Ta12: calculated ground-state band, moments of inertia and gyromagnetic ratios, B(M1), magnetic moments, deformations using quasiparticle phonon nuclear model (QPNM).

1970Ri02: calculated levels, J^{π} using Hartree-Fock-Bogolyubov theory.

Other theory references for structure: nine references retrieved from from the NSR database listed in this dataset as 'document' records.

Additional information 1.

¹⁶⁷Ho Levels

Three neutron resonances at 0.27 eV, 8.5 eV and 57.4 eV, each with $J^{\pi}=13/2^{-},15/2^{-}$ are known from 2018MuZZ evaluation. See 166 Ho(n, γ),(n,n):resonances dataset for details.

A brief dataset is included for continuum γ -ray spectroscopy from ¹⁶⁴Dy(α ,p γ) reaction studied by 2023Po08 for determination of nuclear level density (NLD) and γ -strength function (GSF).

Cross Reference (XREF) Flags

			A B C	¹⁶⁷ Dy β^- decay (6.20 min) D ¹⁶⁸ Er(pol t, α) ¹⁶⁴ Dy(α ,p γ) E ¹⁷⁰ Er(p, α) ¹⁶⁶ Ho(n, γ),(n,n):resonances						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments						
0.0 ^{&}	7/2-	2.98 h <i>3</i>	A DE	%β ⁻ =100 J ^π : angular distribution and analyzing power in ¹⁶⁸ Er(pol t,α). T _{1/2} : from 2002Ka45, decay curves for 321γ and 347γ. 2002Ka45 give weighted average of 3.003 h <i>18</i> from the following eight measurements, four for each of the two γ rays: 2.952 h <i>5</i> , 2.961 h <i>32</i> , 3.035 h <i>3</i> , 2.948 h <i>11</i> , 2.947 h <i>3</i> , 2.932 h <i>15</i> , 3.0253 h <i>20</i> , and 3.002 h <i>23</i> , uncertainties being statistical only. However, evaluators find that the dataset of T _{1/2} values in 2002Ka45 is highly discrepant, with reduced χ^2 =106 as compared to critical χ^2 =2.0. Evaluators adopt unweighted average of 2.98 h <i>3</i> , where the uncertainty has been doubled to account for systematic uncertainties. Others: 3.1 h <i>1</i> (1960Wi10, β counting), 3.0 h (1055Ha45, from α decay)						
100 ^{&} 4	9/2-		DE							
221 ^{&} 4	$11/2^{-}$		DE							
259.34 ^a 11	$3/2^{+}$	6.0 µs 10	A DE	%IT=100						
319.75 ^a 12	5/2+		A DE	J ^{π} : M2 γ to 7/2 ⁻ ; angular distribution and analyzing power in ¹⁶⁸ Er(pol t, α). T _{1/2} : $\beta\gamma$ (t) in ¹⁶⁷ Dy β^- decay (1977Tu01). J ^{π} : M1 γ to 3/2 ⁺ ; angular distribution and analyzing power in ¹⁶⁸ Er(pol t, α).						
392.48 ^b 13	$(1/2^+)$		A	J^{π} : γ to $3/2^+$ and position of level relative to $3/2^+$ $1/2[411]$ state consistent with $1/2[411]$ bandhead assignment.						

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁶⁷Ho Levels (continued)

E(level) [†]	Jπ‡	XF	REF	Comments
409.97 <mark>b</mark> 12	3/2+	A	DE	XREF: E(403).
507 ^a 4	$(9/2^+)^{\#}$		DE	
541 ^{b} 4	$(7/2^+)^{\#}$		DE	
569.69 12	$(3/2^{-})$	A		J ^{π} : log <i>ft</i> =5.45 from (1/2 [−]); γ to 7/2 [−] . Configuration= π 7/2[523] \otimes 2 ⁺ (1977Tu01).
702 4			D	
804 4			D	
922.0? 2	7/2+	A	_	
9/4° 4	1/2*		D	
1006 ^{<i>a</i>} 4	(9/2 ⁻)		D	
1092 4	$(7/2^+)^{\#}$		D	J^{π} : possible 7/2 member of a γ -vibration band built on the 1/2 ⁺ , π 1/2[411] state.
1099.5 2		Α		
1149.0 <i>3</i>		A		
1165 4	7/2+		D	
1168.8? 2		A		
1240.64	(a /a +) #	A	_	
12757 4	$(9/2^+)''$		D	
1403° 4	$(5/2^+)^{\#}$		D	
14648 4	7/2-		D	
1664.9 4	11/2-	A	D	
10000 4	11/2		ע ח	
1775 4			ם	
1858h /	$(1/2^+)$		D	
1919.0? 3	(1/2)	A	ע	
1938 ^h 4	5/2+		D	E(level): doublet from a wider peak than normal, although $\sigma(\theta)$ and $A_y(\theta)$ distributions consistent with 5/2 ⁺ for most of the peak (1979Lo02).

[†] From ¹⁶⁷Dy β^- decay for levels decaying by γ rays, and from (pol t, α) for levels populated only in transfer reactions.

[‡] From Nilsson-model interpretation (including pairing and Coriolis-coupling effects) of angular-distribution and analyzing-power data in ¹⁶⁸Er(pol t, α) (1979Lo02), except where noted.

[#] Assignment by 1979L002 considered tentative because of poor fit to $A_v(\theta)$ for a weakly populated level.

[@] Possible assignment to a band (1979Lo02) of weak population and poor fit to $A_y(\theta)$ in (pol t, α).

[&] Band(A): $\pi 7/2[523]$ band.

- ^{*a*} Band(B): $\pi 3/2[411]$ band. The 7/2⁺ member is not seen in (pol t, α), as it is probably obscured by the strongly excited 1/2[411] state at 409 keV (1979Lo02).
- ^{*b*} Band(C): $\pi 1/2[411]$ band. The $1/2^+$ bandhead in (pol t, α) is not seen as it would be obscured by a strong α -particle group, and the $5/2^+$ member would be populated weakly (1979Lo02).
- ^c Band(D): $\pi 7/2[404]$. $9/2^+$ member is expected to be populated weakly, and would be obscured by larger peaks in the spectrum (1979Lo02).
- ^{*d*} Band(E): $\pi 1/2[541]$. Tentative assignment.
- ^{*e*} Band(F): $\pi 5/2[402]$. Tentative assignment.
- f Band(G): $\pi 5/2[413]$ band.
- ^{*g*} Band(H): $\pi 5/2[532]$ band.
- ^{*h*} Band(I): $\pi 1/2[420]$ band.

 $^{167}_{67}\mathrm{Ho}_{100}\text{--}3$

Adopted Levels, Gammas (continued)

					$\gamma(^{167}\text{Ho})$			
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
259.34	3/2+	259.33 13	100	0.0 7/2-	M2		0.827 12	B(M2)(W.u.)=0.080 14 α (K)=0.661 9; α (L)=0.1286 18; α (M)=0.0294 4 α (N)=0.00685 10; α (O)=0.000980 14; α (P)=5 11×10 ⁻⁵ 7
319.75	5/2+	60.44 8	100	259.34 3/2+	M1(+E2)	≤1.25	14.1 30	$\alpha(K)=7.2 \ 22; \ \alpha(L)=5 \ 4; \\ \alpha(M)=1.3 \ 10 \\ \alpha(N)=0.29 \ 21; \ \alpha(O)=0.035 \\ 24; \ \alpha(P)=4.5\times10^{-4} \ 14 $
392.48	(1/2+)	72.67 [#] 10	≈4.6	319.75 5/2+	[E2]		9.73 15	α (K)=2.061 29; α (L)=5.89 9; α (M)=1.425 22 α (N)=0.321 5; α (O)=0.0376
		133.19 7	100 8	259.34 3/2+	[M1+E2]		1.07 8	6; α (P)=9.32×10 5 13 α (K)=0.74 23; α (L)=0.25 11; α (M)=0.059 28 α (N)=0.013 6; α (O)=0.0017 7; α (D)=41×10 ⁻⁵ 10
409.97	3/2+	90.26 8	64 9	319.75 5/2+	[M1+E2]		3.83 <i>33</i>	$\alpha(\mathbf{K})=2.2 \ \epsilon_{1} \times 10^{-19}$ $\alpha(\mathbf{K})=2.2 \ \epsilon_{2} \ \alpha(\mathbf{L})=1.3 \ \epsilon_{3}$ $\alpha(\mathbf{M})=0.30 \ 2I$ $\alpha(\mathbf{N})=0.07 \ 5; \ \alpha(\mathbf{O})=0.008 \ 5;$ $\alpha(\mathbf{P})=1 \ 2\times 10^{-4} \ \epsilon_{3}$
		150.58 8	100 14	259.34 3/2+	[M1+E2]		0.73 9	$\begin{array}{l} \alpha(\mathbf{N}) = 0.23 \ 16; \ \alpha(\mathbf{L}) = 0.16 \ 6; \\ \alpha(\mathbf{M}) = 0.037 \ 14 \\ \alpha(\mathbf{N}) = 0.0083 \ 31; \\ \alpha(\mathbf{O}) = 0.00108 \ 32; \\ \alpha(\mathbf{O}) = 2.0 \times 10^{-5} \ 12 \end{array}$
569.69	(3/2 ⁻)	159.71 8	≈1.0	409.97 3/2+	[E1]		0.0910 <i>13</i>	$\alpha(\mathbf{F}) = 2.5 \times 10^{-15}$ $\alpha(\mathbf{K}) = 0.0764 \ 11;$ $\alpha(\mathbf{L}) = 0.01141 \ 16;$ $\alpha(\mathbf{M}) = 0.002509 \ 35$ $\alpha(\mathbf{N}) = 0.000575 \ 8;$ $\alpha(\mathbf{O}) = 7.96 \times 10^{-5} \ 11;$ $(\mathbf{D}) = 2.72 \times 10^{-6} \ 5$
		250.03 <i>13</i>	19.9 <i>11</i>	319.75 5/2+	[E1]		0.0282 4	$\alpha(\mathbf{F}) = 5.72 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) = 0.02385 \ 34;$ $\alpha(\mathbf{L}) = 0.00344 \ 5;$ $\alpha(\mathbf{M}) = 0.000756 \ 11$ $\alpha(\mathbf{N}) = 0.0001740 \ 24;$ $\alpha(\mathbf{O}) = 2.449 \times 10^{-5} \ 34;$ $\alpha(\mathbf{O}) = 1.222 \times 10^{-6} \ 17$
		310.26 <i>12</i>	52.0 <i>30</i>	259.34 3/2+	[E1]		0.01643 23	$\alpha(\mathbf{r})=1.223\times10^{-17}$ $\alpha(\mathbf{K})=0.01390\ 20;$ $\alpha(\mathbf{L})=0.001981\ 28;$ $\alpha(\mathbf{M})=0.000435\ 6$ $\alpha(\mathbf{N})=0.0001001\ 14;$ $\alpha(\mathbf{O})=1.419\times10^{-5}\ 20;$ $\alpha(\mathbf{P})=7.27\times10^{-7}\ 10$
922.0?		569.7 2 352.2 2 662.9 [#] 3	100.0 100 <i>10</i> 33 <i>4</i>	0.0 7/2 ⁻ 569.69 (3/2 ⁻) 259.34 3/2 ⁺	[E2]		0.01135 16	
1099.5		689.4 [#] 3 707.1 2	≈25 100 20	$409.97 3/2^+$ $392.48 (1/2^+)$ $560.60 (2/2^-)$				
1149.0		579.4 5 738.8 4 599.2 2	597 100 25 100 12	309.09 (3/2) $409.97 3/2^+$ $569.69 (3/2^-)$				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{167}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
1168.8?		909.1 [#] 5	≈47	259.34	3/2+	1664.9		1094.6 6	77 31	569.69	$(3/2^{-})$
1240.6		830.8 5	≈70	409.97	$3/2^{+}$			1272.9 6	100 12	392.48	$(1/2^+)$
		848.3 10	≈ 100	392.48	$(1/2^+)$			1405.6 5	74 11	259.34	3/2+
		920.5 [#] 5	≈50	319.75	$5/2^{+}$	1919.0?		997.0 [#] 2	100	922.0?	
		981.4 8	≈50	259.34	$3/2^{+}$						

[†] From ¹⁶⁷Dy β^- decay.

[±] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
 [#] Placement of transition in the level scheme is uncertain.

 \mathbf{v}

¹⁶⁷Ho₁₀₀-5

From ENSDF

¹⁶⁷₆₇Ho₁₀₀-5

Adopted Levels, Gammas

¹⁶⁷₆₇Ho₁₀₀

Adopted Levels, Gammas (continued)

Band(I): $\pi 1/2[420]$ band

<u>5/2+</u> 1938

(1/2⁺) 1858

Band(H): $\pi 5/2[532]$ band

11/2- 1666

7/2- 1464

Band(G): π5/2[413] band

(9/2+) 1275

7/2+ 1165

¹⁶⁷₆₇Ho₁₀₀