¹⁶⁴**Dy**(*α*,**p**γ) **2023Po08**

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 191,1 (2023)	22-Aug-2023

Determination of nuclear level density (NLD) and γ -strength function (GSF) using the Oslo method from the measurement of continuum γ -ray spectra in coincidence with protons. Using these results, authors deduced ¹⁶⁶Ho(n, γ) cross sections at different neutron energies, including at temperatures relevant to nucleosynthesis by the s-process.

2023Po08: $E(\alpha)=26$ MeV. Measured E(p), I(p), $E\gamma$, $I\gamma$, $p\gamma$ -coin using the OSCAR array of 30 LaBr₃(Ce) scintillation detectors for γ detection, and the SiRi detector array of eight silicon-telescope modules for detection of protons at the University of Oslo cyclotron facility. Deduced nuclear level density (NLD) up to 8-MeV excitation energy, and the γ -ray strength function (GSF) for $E\gamma$ up to 7 MeV, estimation of the E1 strength, and presence of a scissors resonance and a pygmy dipole resonance in GSF. 166 Ho(n, γ), E(n)=0.001-10 MeV; deduced σ (E) for E(n)=0.001-10 MeV, and the Maxwellian-averaged cross sections (MACS) for kT<105 keV using extracted NLD and GSF, and the Oslo analysis method. Relevance to astrophysical s-process in AGB stars. Comparison to various theoretical model calculations.